Numerical Analysis
MATH 4271/6271
Dept Math Sciences
University
of Memphis

 

Spring 2012
D. P. Dwiggins, PhD

35 lectures, 2 tests, 4 review days, final exam

 

Text: An Introduction to Numerical Analysis, K. E. Atkinson (Univ. Iowa)
second edition (1989), Wiley & Sons, ISBN 0-471-62489-6, QA.297.A84

 

Chapter One.  Error: Sources, Propagation, and Analysis

1.1.            Preliminaries

1.2.            Floating-Point Numbers

1.3.            Definition and Sources of Error

1.4.            Propagation of Errors

1.5.            Error Analysis

1.6.            Stability Theory

 

Chapter Two.  Finding Roots of Equations and Nonlinear Systems

2.1.      The Bisection Method

2.2.      Newton’s Method

2.3.      The Secant Method

2.4.      Muller’s Method

2.5.      One-Point Iteration: General Theory

2.6.      Aitken’s Method

2.7.      Multiple Roots

2.8.      Brent’s Algorithm

2.9.      Roots of Polynomials

2.10.    Systems of Nonlinear Equations

2.11.    Newton’s Method for Nonlinear Systems

2.12.    Unconstrained Optimization

 

Chapter Three.  Interpolation Theory

3.1.      Polynomial Interpolation (Splines)

3.2.      Divided Differences

3.3.      Finite Difference Tables

3.4.      Forward Differences, Error Propagation

3.5.      Interpolation Error Analysis

3.6.      Hermite Interpolation

3.7.      Spline Theory

3.8.      Trigonometric Splines

 

Chapter Four.  Functional Analysis: Approximation Theory

4.1.      From Taylor to Weierstrass

4.2.      The Minimax Problem

4.3.      The Least Squares Problem

4.4.      Orthogonal Polynomials

4.5.      L2 Approximation of Functions

4.6.      Minimax Approximations

4.7.      Near-Minimax Approximation

 

Chapter Five.  Numerical Integration

5.1.      What was covered in Calc II

5.2.      Spline Integration (Newton-Cotes Method)

5.3.      Gaussian Quadrature

5.4.      Error Analysis

5.5.      Automatic (?) Numerical Integration

5.6.      Improper Integrals

5.7.      Numerical Differentiation

 

Chapter Six.  Numerical Solutions for Differential Equations

6.1.      Existence, Uniqueness, and Stability

6.2.      Euler’s Method

6.3.      Multistep Methods

6.4.      Midpoint Method

6.5.      Trapezoidal Method

6.6-11 = other topics (6.10 = Runge-Kutta, 6.11 = BVP’s)

 

Chapter Seven.  Linear Algebra

7.1.      Linear Spaces and Systems of Equations

7.2.      Eigenvalues and Eigenvectors

7.3.      Vector Norms and Matrix Norms

7.4.      Convergence and Perturbation

 

Chapter Eight.  Matrix Methods

8.1.      Gaussian Elimination

8.2.      Pivoting and Scaling

8.3.      Other ways to improve Gaussian Elimination

8.4.      Error Analysis

8.5.      Residual Method

8.6.      Iteration Methods

8.7.      Error Propagation

8.8-9 = other topics

 

Chapter Nine.  Numerical Analysis of Eigenvalues

9.1.      Error and Stability

9.2-4 = special cases (symmetric tridiagonal systems)

9.5-7 = other stuff (QR Method)

Professor Atkinson designed his textbook for a two-semester course, so we will not be able to cover every section.

 

My proposal is to have a mid-February test on Chapters One, Two, Three (error analysis, iteration methods, and interpolation theory), a second test near the end of March on Chapters Seven and Eight (linear algebra and matrix methods), with the final exam also covering selected topics from Chapters Four (functional approximation theory), Five (numerical integration), and Six (numerical solutions for differential equations).

 

In addition to homework assignments (exercises from the textbook), students might expect selected topics to lead to mid-term and final projects, such as comparing various methods for solving a given differential equation or a large system of equations.

 

 

Nonlinear Analysis

Tentative Schedule of Lectures and Exams
Spring 2012

 

Friday  Jan 13 = Course Introduction and Overview

Weds   Jan 18 = §§ 1.1-2 = Representation of Numbers as Numerals

Friday  Jan 20 = §§ 1.3-4 = Error: Definition, Sources, and Propagation

Mon     Jan 23 = §§ 1.5-6 = Introduction to Error Analysis

 

Weds   Jan 25 = §§ 2.1-2 = Finding Roots of Nonlinear Equations

Friday  Jan 27 = §§ 2.3-5 = Iteration Methods: General Theory

Mon     Jan 30 = §§ 2.6-8 = Comparing Newton’s Method with other methods

Weds   Feb 1 = §§ 2.9-11 = other topics

 

Friday  Feb 3 = §§ 3.1-2 = Interpolation Theory

Mon     Feb 6 = §§ 3.3-4 = Finite Difference Tables

Weds   Feb 8 = §§ 3.5-6 = Error Analysis

Friday  Feb 10 = §§ 3.7-8 = Spline Theory

 

Mon     Feb 13 = Review Chapters One and Two

Weds   Feb 15 = Review Chapters Two and Three

Friday  Feb 17 = Test # 1

 

Mon     Feb 20 = §§ 7.1-2 = Review of Linear Algebra

Weds   Feb 22 = § 7.3 = Norms and Linear Spaces

Friday  Feb 24 = § 7.4 = Convergence and Perturbation

Mon     Feb 27 = §§ 8.1-2 = Gaussian Elimination

Weds   Feb 29 = §§ 8.3-4 = Error Analysis

Friday  March 1 = Wilson’s (or is it Wilkinson’s ?) “Fig Leaf”

 

March 2-11 = Spring Break

 

Mon     Mar 12 = § 8.4 = Condition Number of a Matrix

Weds   Mar 14 = § 8.5 = Residual Methods

Friday  Mar 16 = § 8.6 = Other Iteration Methods

Mon     Mar 19 = §§ 8.7-9 = other topics

Weds   Mar 21 = Chapter Nine = Numerical Eigenvalues

Friday  Mar 23 = Review

Mar 26 = Test # 2

 

Weds   Mar 28 = § 4.1 = Functional Approximation: From Taylor to Weierstrass

Friday  Mar 30 = §§ 4.2-4 = Inner Product Spaces and Orthogonal Polynomials

Mon     Apr 2 = §§ 4.4-6 = Least Squares Approximation

 

Weds   Apr 4 = § 5.1 = Numerical Integration

Friday  Apr 6 = § 5.2 = Splines and the Newton-Cotes Method

Mon     Apr 9 = § 5.3 = Gaussian Quadrature

Weds   Apr 11 = § 5.4 = Error Analysis

 

Friday  Apr 13 = §§ 6.1-2 = Differential Equations

Mon     Apr 16 = §§ 6.2-3 = Euler’s Method

Weds   Apr 18 = § 6.10 = Runge-Kutta Methods

Friday  Apr 20 = §§ 6.4-5 = Other Methods

 

Mon     Apr 23 = Review

Weds   Apr 25 = Review

Friday  Apr 27 = Final Exam

 

Two tests, 100 points each

Two homework scores, 100 points each

Final Exam (covers Chapters One through Eight), 100 points

Semester Average based on 500 points

Lowest of the test/homework scores can be replaced with final exam score

20% of test/exam scores will come from projects based on selected topics

 

Instructor: D. P. Dwiggins

Office: Room 368, Dunn Hall

678.4174, ddwiggns@memphis.edu