
Let f be a continuous function with f(x) > 0 for a < x < b, and
let D represent the region in the plane bounded by the x-axis, the 
vertical lines x = a, x = b, and the graph of y = f(x).  In symbols,
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(A Review of Chapter Five)
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Let A represent the area of D.  Then A may be approximated 
using tiny rectangles of area ∆A as illustrated.  The areas of 
these rectangles are calculated by first forming a partition of 
the interval [a,b] along the x-axis.  This is done by choosing
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a set of points { xk} , for k = 1 to N, with a = x0 < x1 < x2 <  . . .  < xN = b.  This divides the 
interval [a,b] into N subintervals [xk–1,xk] for k = 1 to N, each with length ∆xk = xk – xk–1 and 
forming the base of the rectangle Ak.  The height of each rectangle is given by the function f, 
choosing yk = f(ξk) where ξk is any value of x in the subinterval [xk–1,xk].

A is thus approximated by summing the areas of these rectangles:

Taking the limit as N goes to infinity (and correspondingly as each ∆xk goes to zero) 
gives the definition of the definite integral of f over [a,b] as 
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Riemann proved this limit is always well defined (provided f is continuous or at least piecewise 
continuous over [a,b]), no matter how the partition is chosen.  Thus, it makes sense to choose the 
partition which wil l make the calculation of the Riemann sums as easy as possible.  Usually, the 
simplest way to do this is to use a uniform partition where each subinterval has the same length 
∆x = (b – a)/N and each ξk is simply the right-hand endpoint of the subinterval [xk–1,xk].  That is, 
ξk = xk = a + k∆x for k = 1 to N.  This gives Ak = f(xk)∆x, and summing these rectangles gives the 
Right-Endpoint Riemann Sum
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If instead the left-hand endpoint of each subinterval is chosen, what is then formed is the 
Left-Endpoint Riemann Sum 1
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and taking the average of these two sums gives the result of the Trapezoidal Rule, for which we 
have theoretical upper bounds on the error in approximating a definite integral with a Riemann sum, 
in terms of bounds on the derivatives of f and the size of the partition.  Your textbook also mentions 
the Midpoint Rule, taking ξk = (xk–1 + xk)/2 as the midpoint of each subinterval.  The Midpoint Rule 
usually gives a better approximation than the other sums, but it takes longer to calculate.  Later 
(Chapter 7) we will discuss an even better approximation technique referred to as Simpson’s Rule.
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Properties of the Definite Integral (pages 373-375)

1. Area of Rectangle

2. Linearity

3. Linearity

4. Linearity

5. Additivity

6. Comparison

7. Comparison

8. Comparison

9. Follows from 5

10. Follows from 5

If all that is needed is a way to calculate approximate values for definite integrals, then there is 
no reason to take Calc II , since Riemann Sums may be used to approximate definite integrals for 
continuous functions to as many decimal places as needed.  In fact, many modern hand-held 
scientific calculators have such calculation devices already installed.  However, Calculus is the 
Science of How to Calculate (without using a computer), and there are Tools of Integral Calculus
which may be learned in order to make the computation of definite integrals easier, quite often 
easy enough to calculate by hand.  It is the study of these topics, along with even more advanced 
techniques in approximation, which motivates a second semester course in calculus.
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Tools of Integral Calculus

• Properties of the Definite Integral

• The Fundamental Theorem of Calculus

• Techniques of Integration

• Geometric Theorems

• Series Approximation Techniques
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The properties of the definite integral and the Fundamental Theorem of Calculus are discussed in 
Chapter Five and should be covered at the end of a first-semester calculus course.  One basic 
technique of integration, the Method of Substitution, is covered in §5.5, and other techniques wil l 
be discussed in Chapter Seven.  Series methods are discussed in Chapter Eleven, and theorems 
from classical and analytic geometry wil l be discussed throughout the semester.  We will also look 
at applications of integral calculus (Chapters Six, Eight, and Nine) and conclude the semester with 
some advanced topics from analytic geometry (Chapter Ten).

[ ]( ) ( ) ( ) ( )
b b b

a a a
f x g x dx f x dx g x dx+ = +∫ ∫ ∫
( ) ( ) (only if isconstant)

b b

a a
c f x dx c f x dx c⋅ = ⋅∫ ∫

[ ]( ) ( ) ( ) ( )
b b b

a a a
f x g x dx f x dx g x dx− = −∫ ∫ ∫

( ) ( ) ( )
b c b

a a c
f x dx f x dx f x dx= +∫ ∫ ∫

( ) 0
a

a
f x dx =∫
( ) ( )

a b

b a
f x dx f x dx= −∫ ∫

( ) ( ) for in [ , ] ( ) ( )
b b

a a
f x g x x a b f x dx g x dx≥ ⇒ ≥∫ ∫

( ) 0 for in [ , ] ( ) 0
b

a
f x x a b f x dx≥ ⇒ ≥∫

1 2 1 2( ) ( ) ( ) ( )
b

a
M f x M M b a f x dx M b a≤ ≤ ⇒ − ≤ ≤ −∫

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com



Let f be a continuous function with f(x) > 0 for a < x < b, and define 
the area function A(t) for a < t < b in terms of the definite integral:

Note A(a) = 0 (see property 9 on the preceding page), and since f is nonnegative
A(t) must be an increasing function (the area under the curve increases as t increases).
We know from Calc I that if a differentiable function is increasing then its derivative
must be positive.  To determine whether or not the area function
is differentiable, we need to calculate the difference quotient:

∆A is calculated using the additivity of the definite integral:

Note ∆A uses values of f(x) for x between t and t + ∆t, so taking the limit as ∆t goes to zero 
forces x to be equal to t.  Thus, for ∆t small enough, f(x) can be replaced by f(t), and so by 
property 1 of the definite integral

which means         is approximately
equal to f(t) when ∆t is small enough, and since f is continuous this approximation gets 
better as ∆t gets smaller.  Thus, taking the limit as ∆t goes to zero 
shows the area function is differentiable, with its derivative given by
This is the statement of the Fundamental Theorem of Calculus.

In other words, if a function is constructed in terms of the definite integral for a continuous 
integrand f, then the constructed function is differentiable and its derivative is simply equal 
to f.  Another way to state this is that the operations of integration and differentiation are 
inverse operations, i.e. they cancel each other out. This can be written symbolically as

which is sometimes referred to as Version One of the Fundamental Theorem of Calculus.  
Another way to say the operations of calculating integrals and derivatives are inverse 
operations is to state that integration can be performed using antiderivatives, where 
“F is an antiderivative of f ” is true whenever f is the derivative of F.  Letting
gives F as an antiderivative of f, since the Fundamental Theorem of Calculus 
states the derivative of F is equal to f.  Using the additivity of the definite integral gives

which is the statement of Version Two of the Fundamental Theorem of Calculus.  Both 
versions are given on page 387 of the text.

If the Fundamental Theorem of Calculus is used to calculate definite integrals, then the 
techniques of integration basically involve methods for finding antiderivatives.  This is 
not as easy as the problem of calculating derivatives, since the definition of the derivative 
(in terms of the limiting value of a difference quotient) always gives a way to calculate the 
derivative, but the definition of the definite integral (in terms of the limiting value of a 
Riemann Sum) does not give any way to calculate antiderivatives.  Thus the only way to 
calculate antiderivatives is to study the rules for derivatives and then figure out how to 
write those rules backwards.

7KH�)XQGDPHQWDO�7KHRUHP�RI�&DOFXOXV

0 0
( ) ( ) ( ) ( ) ( ) ,

b b a

a
f x dx f x dx f x dx F b F a= − = −∫ ∫ ∫

( ) ( )
t

a
A t f x dx= ∫

( ) ( )A A t t A t

t t

∆ + ∆ −=
∆ ∆

( )
t t

t
A f x dx

+∆
∆ = ∫

[ ]( ) ( ) ( ) ( ) ,
t t

t
A f t dx t t t f t f t t

+∆
∆ ≅ = + ∆ − ⋅ = ⋅∆∫A

t

∆
∆

( ) .
dA

f t
dt

=

( ) ( ) ,
t

a

d
f x dx f t

dt
=∫

0
( ) ( )

t
F t f x dx= ∫

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com


