Introduction to Integral Calculus
(A Review of Chapter Five)

Let f be a ontinuous function with f(x) > 0 for a< x < b, and y =f(X)

let D represent the region in the plane bounded by the x-axis, the Ya

vertical linesx = a, x = b, and the graph of y = f(x). 1n symbols, AA
D={0<y< f(x),asx<b}. s

Let A represent the aeaof D. Then A may be gproximated

using tiny redangles of area AA asillustrated. The aeas of D

these re¢angles are caculated by first forming a partition of « _ a « _ b

the interval [a,b] along the x-axis. Thisis done by choosing

aset of points{x}, fork=1to N, witha=x,<Xx, <X, < ... <Xy=b. Thisdividesthe

interval [a,b] into N subintervals [x,_;,%] for k= 1to N, ead with length Ax, = X, —X,_, and

forming the base of the redangle A,. The height of each readangle is given by the function f,

choosing y, = f(é,) where ¢, isany value of x in the subinterval [x,_,, xk].

>
X

N

A isthus approximated by summing the aeas of these redangles: A ;A( ; f (& )AX, .

Taking the limit as N goes to infinity (and correspondingly as each Ax, goesto zero)
gives the definition of the definite integral of f over [a,b] as

I: f(x)dx = Li[r;\oi f(E)DX, .

Riemann proved this limit is always well defined (provided f is continuous or at least piecavise
continuous over [a,b]), no matter how the partition is chosen. Thus, it makes nse to choose the
partition which will make the alculation of the Riemann sums as easy as possible. Usually, the
simplest way to do thisisto use auniform partition where each subinterval has the same length
Ax = (b—a)/N and each ¢, is simply the right-hand endpoint of the subinterval [x,_,,%]. That is,
é=x =a+kAxfork=1toN. This glvesAk f(x)Ax, and summing these redangles gives the
Right-Endpoint Riemann Sum
Ry = ; f (x )AX.

If instead the left-hand endpoint of each subinterval is chosen, what is then formed isthe
Left-Endpoint Riemann Sum N-1
Ly = Z f (% )AX,

and taking the average of these two sums gives the result of the Trapezidal Rule, for which we
have theoretica upper bounds on the eror in approximating a definite integral with a Riemann sum,
in terms of bounds on the derivatives of f and the size of the partition. Your textbook also mentions
the Midpoint Rule, taking ¢, = (x_, + %)/2 asthe midpoint of each subinterval. The Midpoint Rule
usually gives a better approximation than the other sums, but it takes longer to calculate. Later

(Chapter 7) we will discussan even better approximation technique referred to as Simpson’s Rule.
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Motivation for Taking Calc I1
If all that is needed isaway to cdculate goproximate values for definite integrals, then there is
no reason to take Calc II, since Riemann Sums may be used to approximate definite integrals for
continuous functions to as many dedamal places as needed. In fact, many modern hand-held
scientific cadculators have such calculation devices already installed. However, Calculusisthe
Science of How to Calculate (without using a cmputer), and there ae Tools of Integral Calculus
which may be learned in order to make the computation of definite integrals easier, quite often
easy enough to calculate by hand. It isthe study of these topics, along with even more alvanced
techniques in approximation, which motivates a second semester course in caculus.

Tools of Integral Calculus

* Properties of the Definite Integral
* The Fundamental Theorem of Calculus
» Tedhniques of Integration
» Geometric Theorems

* Series Approximation Techniques

The properties of the definite integral and the Fundamental Theorem of Calculus are discussed in
Chapter Five and should be covered at the end of a first-semester calculus course. One basic
technique of integration, the Method of Substitution, is covered in 85.5, and ather techniques wil |
be discussed in Chapter Seven. Series methods are discussed in Chapter Eleven, and theorems
from classicd and analytic geometry will be discussed throughout the semester. We will also look
at applications of integral calculus (Chapters Six, Eight, and Nine) and conclude the semester with
some advanced topics from analytic geometry (Chapter Ten).

Properties of the Definite Integral (pages 373-375)

1. Areaof Redangle I:cdx = cl{b—a) (cisconstant)

2. Linearity I:[f(x)+g(x)]dx = I: f (x) dx +I: g(x) dx

3 Linearity I:cEf(x)dx = cq:f(x)dx (only if cisconstant)

4, Linearity I:[f(x)—g(x)]dx = I: f(x) dx—I: g(x) dx

5. Additivity [ H00d = [TH(9dk + [

6 Comparison  f(x) =0for xin[a,b] O I:f(x)dx >0

7. Compaison f(x)= g(x) for xin[a,b] O I:f(x)dx > I:g(x)dx

8. Comparison M, < f(x)<M, O Ml(b—a)sI:f(x)dstz(b—a)

0
—I: f (X) dx

9. Follows from 5 I: f (X) dx

10. Followsfrom5 I: f (X) dx
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The Fundamental Theorem of Calculus

Let f be a ontinuous function with f(x) > 0 for a< x < b, and define .
the aeafunction A(t) for a <t < binterms of the definite integral: Alt) = J’a f (x)dx

Note A(a) = 0 (seeproperty 9 on the precaling page), and sincef is nonnegative

A(t) must be an increasing function (the aeaunder the aurve increases ast increases).
We know from Calc | that if adifferentiable function isincreasing then its derivative
must be positive. To determine whether or not the aeafunction AA _ A(t +At) — A(t)
isdifferentiable, we need to calculate the difference quatient: At At

AAiscdculated using the alditivity of the definite integral: AA:J':JrAt f (x)dx

Note AA uses values of f(x) for x betweent and t + At, so taking the limit as At goesto zero
forcesx to be equal to t. Thus, for At small enough, f(x) can be replaced by f(t), and so by
property 1 of the definite integral A J'tHAt ft)dx = [(t+at)-t]OF (1) = f () AL,
which means "y, is approximately

equal to f(t) when At is small enough, and since f is continuous this approximation gets
better as At gets gnaller. Thus, taking the limit as At goesto zero

shows the aeafunction is differentiable, with its derivative given by P f).
Thisisthe statement of the Fundamental Theorem of Calculus.

In other words, if afunction is constructed in terms of the definite integral for a cntinuous
integrand f, then the wnstructed function is differentiable and its derivative is simply equal
tof. Another way to sate thisisthat the operations of integration and differentiation are
inverse operations, i.e. they cancd each other out. This can be written symbolicaly as

d ~
r RICLSRIOF

which is smetimes referred to as Version One of the Fundamental Theorem of Calculus.
Another way to say the operations of calculating integrals and derivatives are inverse
operations isto sate that integration can be performed using antiderivatives, where t

“F isan antiderivative of f ” istrue whenever f is the derivative of F. Letting F(t) :J’O f (x) dx
gives F as an antiderivative of f, since the Fundamental Theorem of Calculus

states the derivative of F isequal to f. Using the additivity of the definite integral gives

J': f(x)dx = J'(f’ f(x)dx—J'oa f(x) dx=F(b)-F(a),

which is the statement of Version Two of the Fundamental Theorem of Calculus. Both
versions are given on page 387 of the text.

If the Fundamental Theorem of Calculusis used to calculate definite integrals, then the
tedhniques of integration basicdly involve methods for finding antiderivatives. Thisis
not as easy as the problem of calculating derivatives, since the definition of the derivative
(interms of the limiting value of a difference quotient) always gives away to calculate the
derivative, but the definition of the definite integral (in terms of the limiting value of a
Riemann Sum) does not give any way to caculate aitiderivatives. Thusthe only way to
calculate antiderivatives isto study the rules for derivatives and then figure out how to
write those rules backwards.
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