The Triple Cross Product

 

Given vectors u, v, w, the cross product v × w is normal (perpendicular) to the plane containing v and w, and so any vector

which is orthogonal (perpendicular) to the vector v × w must lie in the plane determined by v and w.  Therefore, the triple

cross product u × (v × w), which is orthogonal to both u and v × w, must be of the form  Av + Bw for some numbers A and B. 

The purpose of the sequel is to prove A = u · w and B = – u · v.

 

Taking u = u1i + u2j + u3k and v × w = (v2w3w2v3)i + (v3w1w3v1)j + (v1w2w1v2)k,

 

u × (v × w) =  [u2(v1w2w1v2) – u3(v3w1w3v1)] i

                  + [u3(v2w3w2v3) – u1(v1w2w1v2)] j

                     + [u1(v3w1w3v1) – u2(v2w3w2v3)] k

        

         =       (u2w2 + u3w3)v1 i – (u2v2 + u3v3)w1 i

                      + (u1w1 + u3w3)v2 j – (u1v1 + u3v3)w2 j

                          + (u1w1 + u2w2)v3 k – (u1v1 + u2v2)w3 k

 

         =       (u1w1 + u2w2 + u3w3)v1 i – (u1v1 + u2v2 + u3v3)w1 i

                      + (u1w1 + u2w2 + u3w3)v2 j – (u1v1 + u2v2 + u3v3)w2 j

                          + (u1w1 + u2w2 + u3w3)v3 k – (u1v1 + u2v2 + u3v3)w3 k

 

                  (this last line is obtained from the one above by adding and subtracting  u1v1w1i + u2v2w2j + u3v3w3k )

 

Therefore u × (v × w)  =  (u1w1 + u2w2 + u3w3)(v1i + v2j + v3k)

                                    – (u1v1 + u2v2 + u3v3)(w1i + w2j + w3k)  =  (u · w)v – (u · v)w .