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Abstract

We consider the linear Volterra equation

x(t) = a(t)−
∫ t

0

K(t, s)x(s) ds

and suppose that the kernel K and forcing function a depend on some param-
eters ε ∈ Rd. We prove that, under suitable conditions, the solutions depend
on ε as smoothly the functions a and K. The proof is based on the contraction
mapping principle and the variational equation. Though our conditions are not
the most general possible they nonetheless include many important examples.
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1. Introduction

We consider linear Volterra equations of the form

x(t) = a(t)−
∫ t

0

K(t, s)x(s) ds.

There are three basic questions to be addressed when confronted with such
an equation: does a solution exist, is that solution unique, and is the solution
stable?
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There are several approaches to proving the existence of solutions to differen-
tial and integral equations. Most fall into the categories of contraction mapping
arguments, compactness arguments, or index theory arguments.

Of these the contraction mapping approach is probably the most elementary
and has several advantages; the contraction mapping principle automatically
gives uniqueness of the solution in some class and typically gives continuous
dependence of the solution on the defining data.

There are many different forms of stability that have been defined for differ-
ential equations. Perhaps the weakest is continuous dependence of the solution
on the functions a and K that define the equation. This has been widely stud-
ied, see for example Miller [Mil71] or Kelley [Kel73]. The work of Artstein gives
a fairly complete picture of the problem of continuous dependence of solutions
to Volterra integral equations [Art75a] [Art75b]. Continuous dependence can
be thought of as weak stability under misspecification of the model.

However, in many problems arising out of physics the model is certain and
any uncertainty in the model specification comes from uncertainty in the mea-
surement of various physical parameters describing the model. Often this re-
duces our uncertainty to some finite dimensional vector space of parameters. In
this case it is the natural to consider differentiable dependence of the solution
on this finite dimensional space of parameters.

We prove such differential dependence on parameters in Theorem 8. A ver-
sion of our theorem can be found in Gripenberg et al. [GLS90, Theorem 1.2
Chapter 13]. It comes as a corollary of a stronger theorem proved using com-
pactness arguments.

2. Existence and Uniqueness of Solutions

We begin here by giving a version of the existence and uniqueness of solutions
to the linear Volterra integral equation

x(t) = a(t)−
∫ t

0

K(t, s)x(s) ds. (1)

As with differential equations an existence and uniqueness theorem can be ob-
tained using the contraction mapping principle.

Theorem 1 (Contraction Mapping Principle). Let (X, d) be a complete metric
space and P : X → X be a contraction mapping, i.e. there exists 0 ≤ λ < 1
such that

d
(
P (x), P (y)

)
≤ λd(x, y).

Then P has a unique fixed point, which we denote by ω(P ). Moreover, for any
x ∈ X we have

d
(
x, ω(P )

)
<
d
(
x, P (x)

)
1− λ

.
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First we wish to prove an existence and uniqueness theorem for finite time
horizons. We denote the space of continuous functions with values in the normed
space (V, ‖ · ‖) on a compact metric space X by C(X,V ). We endow this space
with the norm ‖φ‖0 = supx∈X ‖φ(x)‖ and write d0 for the associated metric. We
will use V = Rn endowed with the usual Euclidean norm and V = Mn(R), the
space of n× n matrices with entries in R, endowed with the standard operator
norm. For an interval I ⊆ R denote 4(I) :=

{
(t, s) : s, t ∈ I, s ≤ t}.

Theorem 2 (Existence and Uniqueness for a Finite Time Horizon). Fix T > 0.
Suppose a ∈ C

(
[0, T ],Rn

)
and K : 4([0, T ]) → Mn(R) such that for every

φ ∈ C
(
[0, T ],Rn

) ∫ t

0

K(t, s)φ(s) ds (2)

is a continuous function of t and there exists λ < 1 and such that

sup
t∈[0,T ]

∫ t

0

‖K(t, s)‖ ds < λ. (3)

Then there exists a unique bounded solution x to (1) and x ∈ C
(
[0, T ],Rn

)
.

Remark 1. If we have K ∈ C
(
4([0, T ]),Mn(R)

)
then our condition (2) holds.

However our kernel

K(t, s) =

{
1

1+(t−s) t− 1 ≤ s ≤ t
0 s < t− 1

satisfies (2) even though it is not continuous.

Proof. Define the map P : C
(
[0, T ],Rn

)
→ C

(
[0, T ],Rn

)
by

P (φ)(t) := a(t)−
∫ t

0

K(t, s)φ(s) ds. (4)

We have

d0

(
P (φ1), P (φ2)

)
≤ sup
t∈[0,T ]

∥∥∥∫ t

0

K(t, s)(φ1(s)− φ2(s)) ds
∥∥∥

≤ sup
t∈[0,T ]

∫ t

0

‖K(t, s)‖‖φ1(s)− φ2(s)‖ ds

≤ sup
t∈[0,T ]

∫ t

0

‖K(t, s)‖ ds sup
t∈[0,T ]

‖φ1(t)− φ2(t)‖

< λd0

(
φ1, φ2

)
where λ is from (3). Thus P is a contraction mapping on C

(
[0, T ],Rn

)
. Thus

we get a unique fixed point x(t) in C
(
[0, T ],Rn

)
. If we apply our estimate from

the contraction mapping principle to the function 0 we get

‖x‖0 = d0(0, x) ≤
d0

(
0, P (0)

)
1− λ

=
‖a‖0
1− λ

.
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It remains to prove that the solution is unique. Suppose that x1 and x2 are
two bounded solutions to the equation (1) then consider ∆(t) = x1(t) − x2(t).
This satisfies the integral equation

∆(t) = −
∫ t

0

K(t, s)∆(s) ds

and hence we have the estimate

|∆(t)| ≤
∫ t

0

‖K(t, s)‖ |∆(s)| ds

Suppose that ∆∗ = sup[0,T ] |∆(t)| > 0. Choose t∗ ∈ [0, T ] such that |∆(t∗)| >
λ∆∗. Now

|∆(t∗)| ≤
∫ t∗

0

‖K(t∗, s)‖ |∆(s)| ds

≤
∫ t∗

0

‖K(t∗, s)‖ ds ∆∗

≤ λ∆∗

which is a contradiction. Hence ∆(t) ≡ 0 and x1(t) = x2(t).

Remark 2. One can extend the class of kernels that can be treated using
the contraction mapping principle considerably by introducing exponentially
weighted norms. We replace our norm on C

(
[0, T ],Rn

)
by a family of equiva-

lent exponentially weighted norms

‖φ‖r := sup
t∈[0,T ]

e−rt‖φ(t)‖ (5)

for r > 0. The we can replace our contraction condition (3) by the much weaker
condition that

κ := sup
t∈[0,T ]

∫ t

0

‖K(t, s)‖p ds <∞

for some p > 1. In this case one obtains an estimate

dr
(
P (φ1), P (φ2)

)
≤ κ

(q r)1/q
dr
(
φ1, φ2

)
where q is the Hölder conjugate of p. For a suitable choice of r we recover
a contraction and proceed as above. As we aim to make the exposition as
elementary as possible we choose not to pursue this.

Now we give two slightly different versions of the existence and uniqueness
theorem for the infinite time horizon. We denote by Cb(X,R) the space of
bounded continuous real-valued functions on X endowed with the supremum
metric.
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Theorem 3 (Existence and Uniqueness for Infinite Time Horizon 1). Suppose
a ∈ Cb

(
[0,∞),Rn

)
and K : 4([0,∞))→Mn(R) such that

1. for every φ ∈ C
(
[0,∞),Rn

)
∫ t

0

K(t, s)φ(s) ds

is a continuous function of t.
2. λ := supt≥0

∫ t
0
‖K(t, s)‖ ds < 1.

Then there is a unique solution x to (1) and x ∈ Cb
(
[0,∞),Rn

)
. Moreover

‖x‖0 ≤
‖a‖0
1− λ

.

We can either repeat the contraction mapping proof from Theorem 2 above
or we can observe that we get a unique continuous solution x on every interval
[0, T ] which satisfies the required bound and hence by extension we have a
continuous solution x on [0,∞) which satisfies the required bound. If we replace
our condition 1 with the assumption that K ∈ C

(
4([0,∞)),Mn(R)

)
then is the

result [Bur08, Theorem 0.2.1].

Theorem 4 (Existence and Uniqueness for Infinite Time Horizon 2). Suppose
a ∈ C

(
[0,∞),Rn

)
, K : 4([0,∞))→Mn(R) , and that

1. for every φ ∈ C
(
[0,∞),Rn

)
∫ t

0

K(t, s)φ(s) ds

is a continuous function of t,
2. for every T > 0

sup
t∈[0,T ]

∫ t

0

‖K(t, s)‖ ds < 1.

Then there is a unique solution x to (1) and x ∈ C
(
[0,∞),Rn

)
.

Here we just observe that we get a unique continuous solution x on every
interval [0, T ] and hence by the extension we have a continuous solution x on
[0,∞). The solution need not be bounded. This version of the result works for
K(t, s) = e−(t−s) what has supt≥0

∫ t
0
|K(t, s)| ds = 1.

3. Continuous Dependence

Next we wish to see how the solution x of (1) depends on the function a
and the kernel K. This shows stability properties of the solution with respect
to model specification. These results are useful when the model is constructed
from data.
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Our proof of existence and uniqueness used the contraction mapping prin-
ciple. Therefore we begin by examining how the fixed point of a contraction
mapping depends on the mapping.

We will denote the space of contraction maps on (X, d) by Ctr(X). We will
consider it as a subspace of the continuous functions on X, C(X), endowed
with the supremum metric, denoted by d0.Notice that Ctr(X) is not an open
subset of C(X). The space Ctr(X) is an open subspace of the space of Lipshitz
functions endowed with the Lipshitz metric but we will not use that here.

Lemma 1. The function ω : Ctr(X)→ X is continuous.

Proof. Let P ∈ Ctr(X). By definition we have

d
(
P (x), P (y)

)
≤ λ d(x, y).

for some 0 < λ < 1. Let ε > 0 be arbitrary and define δ = (1 − λ)ε. Suppose
Q ∈ Ctr(X) with d0(P,Q) < δ. We apply the estimate from the contraction
mapping principle for P to ω(Q)

d
(
ω(Q), ω(P )

)
<
d
(
ω(Q), P (ω(Q))

)
1− λ

=
d
(
Q(ω(Q)), P (ω(Q))

)
1− λ

<
δ

1− λ
= ε.

Thus we have that ω is a continuous function.

We will begin with the case of a finite time horizon again.

Theorem 5 (Continuous Dependence for a Finite Horizon). Fix T > 0. Define

K =
{
K ∈ C

(
4([0, T ]),Mn(R)

)
: sup
t∈[0,T ]

∫ t

0

‖K(t, s)‖ ds < 1
}

For every a ∈ C
(
[0, T ],Rn

)
and K ∈ K we get a unique solution xa,K ∈

C
(
[0, T ], Rn

)
. The map

X : C
(
[0, T ],Rn

)
×K → C

(
[0, T ], Rn

)
,

given by X(a,K) = xa,K , is continuous.

Proof. We fix a ∈ C
(
[0, T ],Rn

)
andK ∈ K . Consider B = {φ ∈ C

(
[0, T ], Rn

)
:

d0(φ, xa,K) < 1}. Observe that the mapping

Pa,K(φ)(t) = a(t)−
∫ t

0

K(t, s)φ(s) ds

induces a contraction on B with contraction factor

λ = sup
t∈[0,T ]

∫ t

0

‖K(t, s)‖ ds < 1.
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Suppose a′ ∈ C
(
[0, T ],Rn

)
and K ′ ∈ K . Observe that

‖Pa′,K′(φ)− Pa,K(φ)‖0 ≤ ‖a′ − a‖0 + T ‖K ′ −K‖0 ‖φ‖0 (6)

and hence if

‖a′ − a‖0 + T ‖K ′ −K‖0 (‖xa,K‖0 + 1) < 1− λ

then Pa′,K′ induces a contraction mapping on B. Let P be an open set of func-
tions (a′,K ′) containing (a,K) such that Pa′,K′ induces a contraction mapping
on B,

P = {(a′,K ′) : ‖a′ − a‖0 + T‖K ′ −K‖0(‖xa,K‖0 + 1) < 1− λ}.

The same condition (6) shows that the map P : P → Ctr(B) given by
P (a′,K ′) = Pa′,K′ is continuous at (a,K). By our earlier lemma the map
from Ctr(B) to the solution is continuous. Hence the map from P to the so-
lution is continuous at (a,K). Since P is an open subset of C

(
[0, T ],Rn

)
×K

we see that X is continuous at (a,K).

In fact the result gives some quantitative estimates. Suppose that

λ = sup
t∈[0,T ]

∫ t

0

‖K(t, s)‖ ds < 1.

and that for a′ ∈ C
(
[0, T ],Rn

)
and K ′ ∈ K we have m ∈ R such that

‖a′ − a‖0 + T‖K ′ −K‖0(‖xa,K‖0 +m) < (1− λ)m

then

d0(xa,K , xa′,K′) <
‖a′ − a‖0

1− λ
+
T‖K ′ −K‖0(‖a‖01−λ +m)

1− λ
.

Before proceeding to an infinite horizon case we need to modify our estimate
slightly. Observe that we used the relatively brutal estimate

sup
t∈[0,T ]

∫ t

0

‖K(t, s)−K ′(t, s)‖ ds ≤ T‖K(t, s)−K ′(t, s)‖0.

If we instead define

d1

(
K(t, s),K ′(t, s)

)
:= sup

t∈[0,T ]

∫ t

0

‖K(t, s)−K ′(t, s)‖ ds (7)

then we obtain the estimate

d0(xa,K , xa′,K′) <
‖a′ − a‖0

1− λ
+
d1

(
K(t, s),K ′(t, s)

)
(‖a‖01−λ +m)

1− λ
.

The finite horizon result we stated immediately yields an infinite horizon
result.
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Theorem 6 (Continuous Dependence for the Infinite Horizon 1). Define

K =
{
K ∈ C

(
4
(
[0,∞)

)
,Mn(R)

)
: ∀T > 0 sup

t∈[0,T ]

∫ t

0

‖K(t, s)‖ ds < 1
}

For every a ∈ C
(
[0,∞),Rn

)
and K ∈ K we get a unique solution xa,K ∈

C
(
[0,∞), Rn

)
. The map

X : C
(
[0,∞),Rn

)
×K → C

(
[0,∞), Rn

)
,

given by X(a,K) = xa,K , is continuous where all three spaces of continuous
functions are endowed with the topology of uniform convergence on compact
sets.

However this gives no control over the solution at infinity. To get control
over the solution at infinity we require stronger hypotheses.

Theorem 7 (Continuous Dependence for the Infinite Horizon 2). Define

K =
{
K ∈ C

(
4
(
[0,∞)

)
,Mn(R)

)
: sup
t∈[0,∞)

∫ t

0

‖K(t, s)‖ ds < 1
}

For every a ∈ Cb
(
[0,∞),Rn

)
and K ∈ K we get a unique solution xa,K ∈

Cb
(
[0,∞), Rn

)
. The map

X : Cb
(
[0,∞),Rn

)
×K → Cb

(
[0,∞), Rn

)
,

given by X(a,K) = xa,K , is continuous where Cb
(
[0,∞),Rn

)
is endowed with

the supremum metric and K is endowed with the metric d1 from (7).

4. Smooth Dependence on Parameters

Our argument will be an inductive one. We begin with the crucial lemma
that shows the existence of one derivative for an equation which depends on a
single parameter ε.

Lemma 2. Let U ⊆ R be open. Let

K =
{
K ∈ C

(
4([0, T ]),Mn(R)

)
: sup
t∈[0,T ]

∫ t

0

‖K(t, s)‖ ds < 1
}
.

Suppose that a ∈ C
(
U × [0, T ],Rn

)
and K ∈ C

(
U × 4([0, T ]),Mn(R)

)
with

∂a
∂ε ∈ C

(
U × [0, T ],Rn

)
and ∂K

∂ε ∈ C
(
U ×4([0, T ]),Mn(R)

)
. For each ε ∈ U we

have a continuous solution xε to

xε(t) = aε(t)−
∫ t

0

Kε(t, s)xe(s) ds.
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The solution xε is differentiable in ε with ∂x
∂ε ∈ C

(
U × [0, T ],Rn

)
. Moreover ∂x

∂ε
satisfies the Volterra integral equation

∂xε
∂ε

(t) =
(∂aε
∂ε

(t)−
∫ t

0

∂Kε(t, s)
∂ε

x(s) ds
)
−
∫ t

0

K(t, s)
∂x

∂ε
(s) ds

Proof. For each ε ∈ U we have

sup
t∈[0,T ]

∫ t

0

‖Kε(t, s)‖ ds < 1

and aε ∈ C
(
[0, T ],R

)
. Hence by Theorem 2 we have a continuous solution xε(t)

to (1). Futhermore, since aε ∈ C
(
[0, T ],Rn

)
and Kε ∈ C

(
4([0, T ]),Mn(R)

)
depend continuously on ε by Theorem 5 xε depends continuously on ε. We wish
to show that xε is differentiable with respect to ε.

We consider formally differentiating the equation with respect to ε to obtain

∂xε
∂ε

(t) =
∂aε
∂ε
−
∫ t

0

(∂Kε(t, s)
∂ε

xε(s) +Kε(t, s)
∂xε
∂ε

(s)
)
ds

=
(∂a
∂ε
−
∫ t

0

∂K(t, s)
∂ε

x(s) ds
)
−
∫ t

0

Kε(t, s)
∂x

∂ε
(s) ds

(8)

By hypothesis
∂aε
∂ε
−
∫ t

0

∂Kε(t, s)
∂ε

xε(s) ds

is continuous. Hence applying Theorem 2 we get a continuous solution to equa-
tion (8). We will denote solution by ∂̂xε

∂ε .

Though ∂̂xε
∂ε satisfies the formal equation for the derivative we still need to

show it is in fact the derivative. To do that we compare ∂̂xε
∂ε with the difference

quotient

qε,∆ε(t) =
xε+∆ε(t)− xε(t)

∆ε
.

The difference quotient qε,∆ε(t) also satisfies an integral equation

qε,∆ε(t) =
aε+∆ε(t)− aε(t)

∆ε
−
∫ t

0

Kε+∆ε(t, s)xε+∆ε(s)−Kε(t, s)xε(s)
∆ε

ds

Now

Kε+∆ε(t, s)xε+∆ε(s)−Kε(t, s)xε(s)
∆ε

=

(
Kε+∆ε(t, s)−Kε(t, s)

)
xε(s) +Kε+∆ε(t, s)

(
xε+∆ε(s)− xε(s)

)
∆ε

=
Kε+∆ε(t, s)−Kε(t, s)

∆ε
xε+∆ε(s) +Kε(t, s)

xε+∆ε(s)− xε(s)
∆ε

=
Kε+∆ε(t, s)−Kε(t, s)

∆ε
xε+∆ε(s) +Kε(t, s)qε,∆ε(s)
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Finally we consider the equation satisfied by ∂̂xε
∂ε (t)− qε,∆ε(t)

∂̂xε
∂ε

(t)− qε,∆ε(t)

=
∂aε
∂ε

(t)− aε+∆ε(t)− aε(t)
∆ε

−
∫ t

0

(∂Kε(t, s)
∂ε

xε(s)−
Kε+∆ε(t, s)−Kε(t, s)

∆ε
xε+∆ε(s)

)
ds

−
∫ t

0

Kε(t, s)
( ∂̂xε
∂ε

(s)− qε,∆ε(s)
)
ds.

We have assumed that ∂Kε
∂ε ∈ C

(
4([0, T ]),Mn(R)

)
depends continuously on ε

and by Theorem 2 we have that xε ∈ C
(
[0, T ],Rn

)
depends continuously on ε,

so

lim
∆ε→0

∥∥∥∂aε
∂ε

(t)− aε+∆ε(t)− aε(t)
∆ε

∥∥∥
0

= 0

lim
∆ε→0

∥∥∥∂Kε(t, s)
∂ε

xε(s)−
Kε+∆ε(t, s)−Kε(t, s)

∆ε
xε+∆ε(s)

∥∥∥
0

= 0.

From the estimate in Theorem 2 we have

lim
∆ε→0

∥∥∥ ∂̂xε
∂ε

(t)− qε,∆ε(t)
∥∥∥ = 0

and consequently we see that our candidate is the true derivative. An application
of Theorem 5 shows that ∂x

∂ε ∈ C
(
U × [0, T ],Rn

)
.

Let U ⊆ Rd. Given (α1, . . . , αd) ∈ Nd define |α| = α1 + · · ·+ αd. We define

d|α|

dεα
:=

d|α|

∂εα1
1 . . . ∂εαdd

.

Now we use induction to extend this to a finite dimensional set of parameters
and to higher derivatives.

Theorem 8 (Differentiable Dependence for a Finite Horizon). Let U ⊆ Rd be
open. Let r ∈ N. Let

K =
{
K ∈ C

(
4([0, T ]),Mn(R)

)
: sup
t∈[0,T ]

∫ t

0

‖K(t, s)‖ ds < 1
}
.

Suppose that a ∈ C
(
U × [0, T ],Rn

)
and K ∈ C

(
U ×4([0, T ]),Mn(R)

)
with for

all α ∈ Nd with |α| ≤ r

∂|α|a

∂εα
∈ C

(
U × [0, T ],Rn

)
∂|α|K

∂εα
∈ C

(
U ×4([0, T ]),Mn(R)

)
10



For each ε ∈ U we have a continuous solution xε to

xε(t) = aε(t)−
∫ t

0

Kε(t, s)xe(s) ds.

The solution xε is differentiable in ε with ∂|α|x
∂εα ∈ C

(
U×[0, T ],Rn

)
for all α ∈ Nd

with |α| ≤ r.

Proof. We take as our inductive hypothesis that for all α ∈ Nd with |α| ≤ k < n

the partial derivative ∂|α|x
∂εα ∈ C

(
U × [0, T ],Rn

)
and satisfies a Volterra integral

equation of the form

∂|α|xε
∂εα

(t) = a(α)
ε (t)−

∫ t

0

Kε(t, s)
∂|α|xε
∂εα

(s) ds.

We wish to differentiate with respect to εi for 1 ≤ i ≤ d. We imagine fixing the
other parameters and differentiate with respect to εi using Lemma 2. The new
derivative satisfies the Volterra equation

∂

∂εi

∂|α|xε
∂εα

(t)

=
(∂a(α)

ε

∂εi
(t)−

∫ t

0

∂Kε(t, s)
∂εi

∂|α|xε
∂εα

(s) ds
)
−
∫ t

0

Kε(t, s)
∂

∂εi

∂|α|xε
∂εα

(s) ds.

Our inductive hypothesis and assumptions ensure that

∂a
(α)
ε

∂εi
(t)−

∫ t

0

∂Kε(t, s)
∂εi

∂|α|xε
∂εα

(s) ds

is a continuous function of ε. We appeal to Theorem 5 to prove that

∂

∂εi

∂|α|x

∂εα
∈ C

(
U × [0, T ],Rn

)
.

Applying this to each i in turn we conclude that that for all α ∈ Nd with
|α| ≤ k + 1 the partial derivative ∂|α|x

∂εα ∈ C
(
U × [0, T ],Rn

)
and satisfies a

Volterra integral equation of the form

∂|α|xε
∂εα

(t) = a(α)
ε (t)−

∫ t

0

Kε(t, s)
∂|α|xε
∂εα

(s) ds.

The induction continues until we can no longer differentiate a and K.
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