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Abstract. We prove the existence of mixed spectrum C∞ reparameteriza-

tions of any linear flow on T2 with Liouville rotation number. For a restricted
class of Liouville rotation numbers we prove the existence of mixed spectrum

real-analytic reparameterizations.

1. Introduction; formulation of results

Consider the translation Tα on the torus Td = Rd/Zd given by Tα(x) = x+α. If
α1, . . . , αd, 1 are rationally independent then Tα is minimal and uniquely ergodic.
We define the linear flow on the torus Td+1 by

dx

dt
= α,

dy

dt
= 1,

where x ∈ Td and y ∈ T1. We denote this flow by Rt(α,1). Notice that this flow can

be realized as the time 1 suspension over the translation Tα on Td. Given a positive
continuous function φ : Td+1 → R+ we define the reparameterization of the linear
flow by

dx

dt
=

α

φ(x, y)
,

dy

dt
=

1

φ(x, y)
.

The reparameterized flow is still minimal and uniquely ergodic while more subtle
properties may change under reparameterization. In particular, the linear flow has
discrete (pure point) spectrum with the group of eigenvalues isomorphic to Zd+1.
Reparameterizations with continuous time change φ may have a wide variety of er-
godic properties. This follows from the theory of monotone (Kakutani) equivalence
[6] and the fact that every monotone measurable time change is cohomologous to
a continuous one [12]; see also [7, Corollary 2.11]. However for sufficiently smooth
reparameterizations the possibilities are more limited and they depend on the arith-
metic properties of the vector α.

Definition 1. Given a vector α ∈ Rd we say it is Diophantine if there exists and
constant C > 0 and a number σ ≥ d such that for all k ∈ Zd\{0}

inf
p∈Z
| < k, α > −p| ≥ C

‖k‖σ
.

If the vector is not Diophantine then we call it Liouville.

If α is Diophantine and the function φ is C∞ than the reparameterized flow is
smoothly isomorphic to a linear flow . This was first noticed by A. N. Kolmogorov
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[9]. Many of the basic questions concerning reparameterizations appeared in Kol-
mogorov’s seminal I.C.M. address in 1954 [10]. M. R. Herman [4] found sharp
results of that kind for finite regularity case.

For a Liouville α the reparameterized flow often is weakly mixing, i.e. has no
eigenfunctions at all. Specifically, M. D. Šklover [13] proved existence of analytic
weakly mixing reparametrizations some Liouvillean linear flows on T2; his result
for special flows on which this is based is optimal in that he showed that for any
analytic roof function ϕ other than a trigonometric polynomial there is α such that
the special flow under the rotation Rα with the roof function ϕ is weakly mixing.
About the same time A. Katok found a general criterion for weak mixing (see [7,
Theorem 5.7]). B. Fayad [3] showed that for a Liouville translation Tα on the torus
Td the special flow under a generic C∞ function ϕ is weak-mixing.

Katok [5] showed that for special flows over irrational rotations and under C5

functions ϕ the spectrum is simple, the maximal spectral type is singular, and the
flow can not be mixing. The latter conclusion was extended by A. V. Kočergin to
functions of bounded variation [8]. The argument is based on a Denjoy–Koksma
type estimates which fail in higher dimension. Fayad [3] showed that there exist
α ∈ R2 and analytic functions ϕ for which the special flow over the translation
Tα and under the function ϕ is mixing. Recently Kočergin showed that for Hölder
reparametrizations of some Diophantine linear flows on T2 mixing is also possible
(oral communication).

In this paper we will show that yet another possibility is realized for smooth
reparameterization of linear flows. We will restrict ourselves to the case of flows
on T2 although our methods allow a fairly straightforward generalization to higher
dimension.

Theorem 1. If α ∈ T1 is Liouville then for a dense set of φ ∈ C∞(T2,R+) the
reparameterization of Rt(α,1) by φ has mixed spectrum with a group of eigenvalues

with a single generator.

For a given irrational number α we denote by pn/qn, n = 1, 2, . . . the sequence
of best rational approximations coming for the continued fraction expansion.

Theorem 2. For α ∈ T1 with a subsequence {qs(n)} of the sequence of denomina-
tors of the best approximations {qn} satisfying

qs(n)+1 > eq
5
s(n)

there exists a φ ∈ Cω(T2,R+) such that the reparameterization of Rt(α,1) by φ has

a mixed spectrum with a group of eigenvalues with a single generator.

Just as a linear flow on the torus Td+1 can be represented as the constant time
suspension flow over a translation on Td one can represent the reparameterization
of a linear flow by φ as a special flow over the same translation on Td and under a
function ϕ. The function ϕ is given by

(1) ϕ(x) =

∫ 1

0

φ(x+ tα, t)dt.

This is the return time function for the section xd+1 = 0. Conversely any special
flow is differentiably conjugate to a reparameterization (see Lemmas 2 and 3). This
will allow as to deal exclusively with special flows.
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We call λ an eigenvalue of the flow T t if there exists a measurable function h
for which h(T tx) = e2πiλth(x). It is a simple matter to calculate the eigenvalues of
a constant time suspension. Restricting an eigenfunction to a section on which it
is measurable we see an eigenvalue λ of the suspension flow with constant return
time C satisfies the equation

e2πiλC = σT

where σT is some eigenvalue of the transformation T in the base. For every eigen-
value σT = e2πiλT we get an associated eigenvalue of the flow λT /C plus we get an
additional generator λ = 1/C coming from the trivial eigenvalue in the base.

For special flows under functions not cohomologous to a constant the situation
is more complex. Eigenvalues of general special flows are determined by a multi-
plicative cohomological equation. The equation for a suspension flow is a special
case of this.

Lemma 1 (Eigenvalue Criterion for Special Flows). [2] A special flow over an
ergodic transformation T on a Lebesgue space L and under a function ϕ has an
eigenvalue λ if and only if the function e2πiλϕ(x) is multiplicatively cohomologous
to 1, that is if and only if

(2) h(Tx) = e2πiλϕ(x)h(x)

has a non-trivial measurable solution.

Theorem 3. Let β > 0. If α ∈ T1 is Liouville, then there exists a positive ϕ ∈
C∞(T1,R), such that, for the special flow over Rα and under ϕ, (2) admits solutions
only for λ = nβ−1.

Theorem 4. Let β > 0. If α ∈ T1 admits a subsequence {qs(n)} of the sequence of
best approximations satisfying

(3) qs(n)+1 > eq
5
s(n)

then there exists a positive ϕ ∈ Cω(T1,R), such that, for the special flow over Rα
and under ϕ, (2) admits solutions only for λ = nβ−1.

These results for special flows establish that the reparameterized flow has a
spectrum whose discrete part has a single generator. Notice that a reparameterized
linear flow on T2 cannot have a discrete spectrum with a single generator. Such a
flow would be measurably conjugate to a linear flow on T1 which is impossible since
a linear flow on T1 has orbits of full measure while the orbit of any reparameterized
linear flow on T2 has zero measure [11].

Notice that for any measure preserving transformation T : X → X if positive
functions ϕ1, ϕ2 on X are such that

(4) ψ(Tx)− ψ(x) = ϕ1(x)− ϕ2(x)

for some measurable ψ, then the special flows over T with roof functions ϕ1 and
ϕ2 are conjugate. The conjugacy in question is provided by the shift of the “base”
along the orbits on the first special flow by time ψ(x).

An expression of the form ψ(Tx) − ψ(x) is called an additive coboundary, two
functions whose difference is an additive coboundary are called (additively) coho-
mologous.
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Notice that for any irrational α any trigonometric polynomial P with zero aver-
age is an additive coboundary, i.e.

P (x) = Q(x+ α)−Q(x)

where Q is another trigonometric polynomial. Thus the roof function of a spe-
cial flow over an irrational rotation can be changed by adding any trigonometric
polynomial with zero average without changing properties of the flow.

In particular adding an additive coboundary to ϕ will not change the group of
eigenvalues. Thus, given any ϕ, we can produce a dense set of functions which give
the same eigenvalues by adding trigonometric polynomials with zero average.

2. Some Open Problems

2.1. Regularity.

2.1.1. It is interesting to find roof functions (and hence reparameterizations) of
finite smoothness which produce mixed spectrum over a Diophantine rotation.

Constructing such functions for certain special Diophantine numbers can probably
be achieved by a modification of the method of this paper. The next problem seems
more challenging.

2.1.2. What the optimal regularity conditions allowing such behavior would be and
how far are they from Herman’s conditions?

2.2. Other Types of Spectra. We have shown the existence of mixed spectra
special flows over Liouville rotations on T1. Our techniques easily extend to produce
the existence of mixed spectra with only a one parameter family of eigenfunctions
over some Liouville translations on higher dimensional tori.

2.2.1. It would be interesting to obtain mixed spectra with families of eigenvalues
with more parameters.

2.2.2. A more exotic possibility would be a situation where all eigenvalues are
retained from the constant time suspension but the spectrum has some continuous
part.

These two problems do not seem to be beyond the grasp of the currently available
techniques.

2.2.3. Finally there is a question of possibility of exotic discrete spectra where the
reparameterization exhibits eigenfrequencies not arising from the original linear
flow. Such a situation must appear if the reparameterized flow has eigenfunctions
with more frequencies than the dimension of the torus (e.g. three frequencies on
T2).

Currently this problem does not look easily approachable. Let us point out though
that in the nonlinear context of the “approximation by conjugation” constructions
[1] a similar possibility can be realized.

2.3. Dichotomy. The mixed spectrum examples we have constructed here all ex-
hibit Fourier coefficients for the roof functions which behave extremely irregularly.
They all have blocks of non-zero Fourier coefficients separated from one another on
an exponential scale. For functions with more regular decay of coefficients it may
well be that exotic spectra are impossible.
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2.3.1. It would be interesting to find for which roof functions there is a dichotomy;
for any irrational α either the special flow is conjugate to the constant time sus-
pension or it is weak mixing.

2.3.2. A natural conjecture here is that for functions satisfying assumptions of the
weak mixing criterion [7, Theorem 5.7] such a dichotomy holds. A simplest example
of this kind is the function

h(z) = 2 +
∑
n 6=0

2−|n|e2πinx =
8− 2 cosx

5− 2 cosx
.

3. Reduction of Reparameterization to Special Flow

Lemma 2. Given a positive function ϕ ∈ C∞ there exists a positive function
φ ∈ C∞ which satisfies

ϕ(x) =

∫ 1

0

φ(x+ tα, t)dt.

Proof. Let ε > 0. Let b(y) be a C∞ function satisfying

(1) b(y) ≥ 0.
(2) b(y) = 0 for y ∈ [0, ε] ∪ [1− ε, 1].
(3)

∫
b(y)dy = 1.

Choose δ < minϕ(x). Set φ(x, y) = (ϕ(x − yα) − δ)b(y) + δ. This defines a C∞

function on T2 with the required property. �

For the analytic case we will use a slightly different argument.

Lemma 3. Given a positive real analytic function ϕ on the circle there exists a
trigonometric polynomial Q and a positive real analytic function φ on R2

α such that

(5) ϕ(x) =

∫ 1

0

φ(x+ tα, t)dt+Q(x+ α)−Q(x).

Proof. Every real analytic function is cohomologous to the function obtained by
subtracting any finite number of non-constant terms in its Fourier expansion. and
this cohomology is again given by a trigonometric polynomial. The cohomologous
function can be made arbitrary close to a constant with any number of derivatives;
in particular one can assume that for the Fourier coefficients

(6) ϕ̂(0) >
π

2

∑
m∈Z
m 6=0

∣∣ϕ̂(m)
∣∣

For such a function equation (1) can be solved in positive functions by elementary
Fourier analysis. Namely, let

φ(x, y) =
∑
m,n∈Z

cm,ne
2πi(mx+ny).

Now ∫
T1

φ(x+ tα, t)dt = c0,0 +
∑
m∈Z
m6=0

(∑
n∈Z

cm,n(e2πi(mα+n) − 1)

2π(mα+ n)

)
e2πimx.
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From this it is natural to look for a function φ such that for each m ∈ Z there is only
one nonzero Fourier coefficient cm,n, say cm,nm . From equating Fourier coefficients
we get

ϕ̂(m) =

{
cm,nm

e2πi(mα+nm)−1
2π(mα+nm) (m,nm) 6= (0, 0)

c0,0 (m,nm) = (0, 0)

which immediately gives

cm,nm =

{
ϕ̂(m) 2πi(mα+nm)

e2πi(mα+nm)−1 (m,nm) 6= (0, 0)

ϕ̂(m) (m,nm) = (0, 0)
.

Now we choose nm to be the closest integer to −mα. Then we have∣∣∣∣ 2πi(mα+ nm)

e2πi(mα+nm) − 1

∣∣∣∣ < π

2

From the formula for cm,nm and the fact ϕ is a real-function we have c−m,n−m =
c−m,−nm = cm,nm which proves that φ is real. Finally

φ(x, y) ≥ ϕ̂(0)−
∑
m∈Z
m6=0

|cm,nm | >
π

2

∑
m∈Z
m6=0

|ϕ̂(m)|

which establishes our last claim. �

Theorems 1 and 2 follow from Theorems Theorems 3 and 4 via Lemmas 2 and
3. In the rest of the paper we prove Theorems 3 and 4.

4. Construction of the Ceiling Function

We will construct the required function ϕ using an inductive process. The basic
element is a smooth “step” function.

Definition 2. Let θ : R→ [0, 1] be a C∞ function satisfying

θ(x) = 0 x ≤ 0
θ(x) = 1 x ≥ 1

4.1. Arithmetic Conditions. Each step of the construction takes place on a dif-
ferent scale. These scales are related to the arithmetic properties of α. For the
smooth construction we choose a sequence of scales {ps(n)/qs(n)}, from the sequence
of best approximations {qn}, with the following properties

qs(n)+1 > qns(n)(7)

qs(n+1) > anqs(n).(8)

Such a choice can always be made since we assumed that α was Liouville. For the
analytic construction we replace (7) with (3).

The number an is a parameter which will be chosen at the n-th step of our
construction. The full strength of (7) and (8) will be used at only two points in
the proof, elsewhere we use the weaker assumption

(9) qs(n) > enqs(1).

The choice of qs(1) will be made later in order to ensure that ϕ satisfies (6).
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1
8 qs( n  )

1
qs (n  )

7
8 qs(n  )

β
kn

kn

qs( n  )+1

Figure 1. The function ϕn on [0, q−1s(n)]. ϕn is 0 on the rest of T1.

We use function θ to construct a function ϕn with two bumps on the interval
[0, q−1s(n)] each with width approximately knq

−1
s(n)+1. We choose the sequence of

widths

(10) kn =
qs(n)+1

qs(n)en

and use the function θ to construct a function ϕn with two bumps on the interval
[0, q−1s(n)] each with width approximately knq

−1
s(n)+1

Definition 3. Let Bn : R→ R be the C∞ bump function of height 1 given by

Bn(x) = θ
(

8qs(n)e
2n(x+

e−2n

8qs(n)
)
)
− θ
(

8qs(n)e
2n(x− kn

qs(n)+1
)
)

Using this bump function we write

Rn(x) = Bn

(
x− 1

8qs(n)

)
−Bn

(
x− 7

8qs(n)

)
.

Since Rn(0) = Rn(1) and Rn(x) is C∞ flat at x = 0 and x = 1 we can view Rn as
a C∞ function on T1. Finally

ϕn(x) =
β

kn
Rn(x)

As the rotation number α is Liouville we don’t know that ϕn is a additive
coboundary. In order to ensure that we have a coboundary we will truncate ϕn to
get a trigonometric polynomial. Trigonometric polynomials are always cobound-
aries.

Definition 4. Define a new function

R̃n(x) =
∑

|m|≤q4
s(n)

R̂n(m)e2πimx.

Finally we will define

ϕ̃n(x) =
β

kn
R̃n(x)
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The function ϕ is constructed from the truncated functions ϕ̃n. We will need
information on the derivatives of the ϕ̃n in order to prove that ϕ is C∞. Later in
the proof of the main technical Proposition we will need estimates on the difference
between ϕn and ϕ̃n.

Lemma 4. The functions ϕn and ϕ̃n satisfy the following estimates

‖ϕn − ϕ̃n‖0 < C
e5n

qs(n)qs(n)+1
C =

32β‖θ′′‖
0

π2

‖ϕ̃(r)
n ‖0 < C(r)

e(2r+1)nqr+5
s(n)

qs(n)+1
C(r) = 2β8r‖θ(r)‖

0

where ‖ · ‖
0

is the supremum norm and f (r) denotes the r-th derivative of the
function f . In particular,

‖ϕ̃n‖0 <
β

kn
+ C

e5n

qs(n)qs(n)+1
.

Proof. We begin by observing that

Rn(x)− R̃n(x) =
∑

|m|>q4
s(n)

cme
2πimx

and that |cm| <
‖R′′n‖0
4π2m2 . Summing and putting ‖R′′n‖0 = (8qs(n)e

2n)2‖θ′′‖
0

we get

‖Rn − R̃n‖0 <
2

4π2q4s(n)
64q2s(n)e

4n‖θ′′‖0

<
32‖θ′′‖

0

π2

e4n

q2s(n)
.

We produce a crude estimate on the derivatives of R̃n by noticing that

(R̃(r)
n )∧(m) = (R(r)

n )∧(m) |m| < q4s(n)

where (·)∧(m) denotes the m-th Fourier coefficient. We estimate

(R(r)
n )∧(m) ≤ ‖R(r)

n ‖0 = (8qs(n)e
2n)r‖θ(r)‖0 .

Multiplying by βk−1n , and using the definition of kn given in (10) we get the required
estimates. �

Lemma 4 is sufficient to prove that ϕ is C∞ and satisfies (6).

Proposition 1. The function

ϕ = β +

∞∑
n=1

ϕ̃n

is a positive C∞-function on T1 satisfying (6). Furthermore if α satisfies (3) then
ϕ is analytic.

Proof for the C∞ Case. It suffices to show that for every r the sum
∑∞
n=0 ‖ϕ̃

(r)
n ‖0

converges. Fix r. Using the derivative estimate in Lemma 4 and our Liouville
assumption (7)

‖ϕ(r)
n ‖0 < C(r)e(2r+1)nqr+5−n

s(n) < e(3r+6)n−n2
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which is summable. Finally using the estimate for ‖ϕ̃n‖0 from Lemma 4 and (9)
we can choose qs(1) such that

π

2

∞∑
n=1

‖ϕ̃n‖0 < β

which proves that ϕ satisfies (6). �

For the analytic case we need information on the Fourier coefficients of ϕ̃n.

Lemma 5. If α admits a sequence of best approximations satisfying (3) then

∣∣(ϕ̃n)∧(m)
∣∣ < C

e−|m|

2n

for all n ∈ N and m ∈ Z.

Proof. First we observe that by construction we have (ϕ̃n)∧(m) = 0 for all |m| >
q4s(n) so we only need to consider |m| ≤ q4s(n). Combining the estimates of Lemma

7 and 4 we get ∣∣(ϕ̃n)∧(m)
∣∣ < ‖ϕ̃n‖0 < β

qs(n)e
n

qs(n)+1
+

Ce5n

qs(n)+1qs(n)
.

Using (9) we can reduce this to

∣∣(ϕ̃n)∧(m)
∣∣ < (β + C)

q4s(n)

qs(n)+1

which gives us the required result since using (3) we immediately get that

∣∣(ϕ̃n)∧(m)
∣∣ < (β + C)

e−q
4
s(n)

2n
< (β + C)

e−m

2n
.

�

This lemma gives us the analyticity of ϕ.

Proof for the Analytic Case. The Fourier coefficients of ϕare given by

ϕ̂(m) =

∞∑
n=1

(ϕ̃n)∧(m).

From Lemma 5 we have immediately that

|ϕ̂)(m)| < e−|m|

which suffices to show that ϕ is analytic. �

The remaining part of the proof, showing (2) admits solutions only for λ = nβ−1,
is the same in both cases. The stronger assumption (3) is necessary only to show
that ϕ is analytic.
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5. Proof of Theorems 1 and 2

The function ϕ̃n is a trigonometric polynomial with zero mean. Hence there is
a solution to

(11) ψn
(
Rα(x)

)
− ψn(x) = ϕ̃n(x),

which is in fact a trigonometric polynomial given by

(12) ψn(x) = ψ̂n(0) +
∑

0<|m|≤q4
s(n)

̂̃ϕn(m)

e2πimα − 1
e2πimx.

Notice that ψn is determined only up to an additive constant. Our construction of
ϕ̃n is such that the transfer function ψn is essentially like a step function (with two
discontinuities) taking the values 0 and β, see Figure 2. The crucial consequence
is that while

∑
ψn diverges, the product of the functions e2πiλψn(x) will be well-

defined if and only if λ is a multiple of β−1.

5.1. The shape of the function ψn. Define

B1 =
⋃

k≤qs(n)−1

[ k

qs(n)
,
k

qs(n)
+

1− e−2n

8qs(n)

]
,

B2 =
⋃

k≤qs(n)−1

[ k

qs(n)
+

1 + e−2n

8qs(n)
,
k

qs(n)
+

7− e−2n

8qs(n)

]
,

B3 =
⋃

k≤qs(n)−1

[ k

qs(n)
+

7 + e−2n

8qs(n)
,
k + 1

qs(n)

]
.

We have

µ(T1 − ∪3i=1Bi) =
e−2n

2
.(13)

We will state now the central proposition for the proof of Theorems 1 and 2.

Proposition 2 (Structure of the Transfer Function). Let ψn be given by (12) with
ψn(0) = 0. There exists a summable sequence {εn} such that

(1) For any x ∈ B1 ∪B3, |ψn(x)| ≤ εn,

(2) For any x ∈ B2, |ψn(x)− β| ≤ εn.

Unfortunately it is very difficult to obtain information about the shape of ψn
from (12). Instead, we will estimate the values of ψn along the first qs(n)+1 points
of the orbit of 0 using (11) and then interpolate between these points. Indeed, for
every m ≥ 0 one has

ψn(Rmα (0)) =

m−1∑
i=0

ϕ̃n
(
Riα(0)

)
.(14)
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The function ϕ̃n being an approximation of the function ϕn (see Definition 3,
we introduce the sequence

(15) ψ̄n
(
Rmα (0)

)
:=

m−1∑
i=0

ϕn
(
Riα(0)

)
.

From Lemma 4 and the fact that we sum over at most qs(n)+1 points we get for
every m ≤ qs(n)+1

(16)
∣∣∣ψ̄n(Rmα (0)

)
− ψn

(
Rmα (0)

)∣∣∣ < Ce5n

qs(n)
.

The analysis of the dynamics of Rα and the shape of the function ϕn will enable
us to prove the following estimates on the ψ̄n

(
Rmα (0)

)
:

Lemma 6 (Consequence of the dynamics of Rα). We have for m ≤ qs(n)+1:

(1) If Rmα (0) ∈ B1 ∪B3, then |ψ̄n
(
Rmα (0)

)
| ≤ e−nβ,

(2) If Rmα (0) ∈ B2, then |ψ̄n
(
Rmα (0)

)
− β| ≤ e−nβ.

In the next lemma we will describe the shape of ϕn (see Fig. 1).

Definition 5. Define the following covering of T1

A1 =
[
0,

1− e−2n

8qs(n)

]
A2 =

[1 + e−2n

8qs(n)
+

kn
qs(n)+1

,
7− e−2n

8qs(n)

]
,

A3 =
[7 + e−2n

8qs(n)
+

kn
qs(n)+1

,
1

qs(n)

]
,

L =
(1− 2e−2n

8qs(n)
,

1 + 2e−2n

8qs(n)
+

kn
qs(n)+1

)
∪
(7− 2e−2n

8qs(n)
,

7 + 2e−2n

8qs(n)
+

kn
qs(n)+1

)
,

I = [
1

qs(n)
, 1].

We summarize the crucial properties of ϕn:

Lemma 7. ϕn is a C∞ function on T1 with the following properties

5.1 ‖ϕn‖0 =
β

kn
.

5.2 ϕn(x) = 0 for x ∈ A1 ∪A2 ∪A3 ∪ I.

5.3 ϕn(x) = β
kn

for x ∈
[

1
8qs(n)

, 1
8qs(n)

+ kn
qs(n)+1

]
.

5.4 ϕn(x) = − β
kn

for x ∈
[

7
qs(n)

, 7
8qs(n)

+ kn
qs(n)+1

]
.

The proof of this lemma is straightforward from the Definition 3 of ϕn.

Proof of Lemma 6. Since qs(n) is a best approximation of α we have if we assume
that qs(n) is even (the other case being similar)

α =
ps(n)

qs(n)
+

1

qs(n)qs(n)+1
+ h.o.t.(17)
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1
qs( n  )

β

kn

qs( n  )+1

L LA2 A3A1

Figure 2. The function ψn on [0, q−1s(n)]. Ai and L are defined in

Definition 5.

where h.o.t. stands for higher order terms bounded by (qs(n)+1)
−2

. From (17) and
Lemma 7 we deduce (a)–(d) below:

(a) For k < (1− e−2n)qs(n)+1/8, Rkα(0) ∈ A1 ∪ I, hence ϕn(Rkα(0)) = 0.

(b) For
qs(n)+1

8 < k <
qs(n)+1

8 + knqs(n), we have Rkα(0) ∈ [ 1
8qs(n)

, 1
8qs(n)

+ kn
qs(n)+1

] if

k = pqs(n) and Rkα(0) ∈ I if not.

(c) If k ∈ [ 1−e
−2n

8 qs(n)+1,
qs(n)+1

8 ] ∪ [
qs(n)+1

8 + knqs(n),
1+e−2n

8 qs(n)+1 + knqs(n)],

then Rkα(0) ∈ L if k = pqs(n) and Rkα(0) ∈ I if not.

(d) If 1+e−2n

8 qs(n)+1 + knqs(n) < k < 7−e−2n

8 qs(n)+1,

then Rkα(0) ∈ A2 ∪ I and ϕn(Rkα(0)) = 0.

From (17) we get that Rmα (0) ∈ B1 if m < (1− e−2n)qs(n)+1/8, but (a) then

implies that ψ̄n
(
Rmα (0)

)
= 0, which proves the first part of (1) in Lemma 6.

WhenRmα (0) ∈ B2, i.e. whenm ∈ [(1 + e−2n)qs(n)+1/8+knqs(n), (7− e−2n)qs(n)+1/8]
we have from (a)–(d) all together with Lemma 7 (5.1–5.3) that

kn
β

kn
− 2

4e−2n

8

qs(n)+1

qs(n)

β

kn
≤
m−1∑
k=0

ϕn(Rkα(0)) ≤ kn
β

kn
+ 2

4e−2n

8

qs(n)+1

qs(n)

β

kn
,

which finishes the proof of (2) in Lemma 6. We prove the second part of (1) in a
similar way using in addition (5.4) of Lemma 7 .

�
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To obtain Proposition 2 from Lemma 6 we will need the following information
on the derivative of ψn:

Lemma 8. There exists K > 0 such that

‖ψ′n‖0 < Ke2n+1q10s(n)

Proof. Differentiating (12) gives

ψ′n(x) =
∑

0<|m|<q4
s(n)

̂̃ϕ′n(m)

e2πimα − 1
e2πimx.

Now |e2πimα−1| > 4 infp∈Z |mα−p|. However since ps(n)+1/qs(n)+1 is a best return

and m < qs(n)+1 we have infp∈Z |mα − p| > (2qs(n)+1)−1. We can estimate ̂̃ϕ′n(m)
by ‖ϕ̃′n‖0 . Applying the estimate for ‖ϕ̃′n‖0 from Lemma 4 yields the result. �

Proof of Proposition 2. Observe first that for any x ∈ T1, there exists an m ≤
qs(n)+1 such that |x− Rmα (0)| ≤ 2/qs(n)+1. Then for x ∈ B1 ∪ B3, we obtain from
Lemma 6 and (16) that

|ψn(x)| ≤ |ψn(x)− ψn(Rmα (0))|+ |ψn(Rmα (0))− ψ̄n
(
Rmα (0)

)
|+ |ψ̄n

(
Rmα (0)

)
|

≤ 2/qs(n)+1Ke
2n+1q10s(n) +

Ce5n

qs(n)
+ e−nβ,

which proves the first part of Proposition 2, the other part being obtained in a
similar fashion.

�

5.2. Proof of the existence of an eigenfunction. As a corollary of our technical
proposition on the shape of the transfer function ψn we can establish that β−1 is
an eigenvalue of the special flow over Rα and under ϕ.

Proposition 3. The sequence

hn(x) =

n∏
i=1

exp
(
2πiβ−1ψn(x)

)
converges in L1 to a solution to (2) for λ = β−1.

Proof. For the convergence of hn it suffices to show that {hn} is Cauchy.

‖hn(x)− hn+1(x)‖1 = ‖1− exp
(
2πiβ−1ψn+1(x)

)
‖1 .

Hence it suffices to show that ‖1− exp
(
2πiβ−1ψn+1(x)

)
‖
1

is summable. We have

|1− exp
(
2πiβ−1ψn(x)

)
| ≤ 2π inf

p∈Z
|β−1ψn(x)− p|.

Proposition 2 implies for x ∈ B1 ∪B2 ∪B3 that

(18) inf
p∈Z
|β−1ψn(x)− p| < (1 + β−1)εn.

For x ∈ T1 − ∪3i=1Bi we use

(19) |1− exp
(
2πiβ−1ψn(x)

)
| ≤ 2,

and recall (13), that is µ(T1 − ∪3i=1Bi) ≤ 1
2e
−2n.
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From (18) and (19) we deduce that ‖1 − exp
(
2πiβ−1ψn+1(x)

)
‖
1
≤ e−2n + (1 +

β−1)εn. In conclusion, we have L1 convergence of hn to some function h. Moreover,
by definition of ψn we have for every n

hn(Rα(x)) = e2πiβ
−1 ∑n

i=1 ϕ̃i(x)hn(x).

Since β−1ϕ(x) = 1 +β−1
∑∞
i=1 ϕ̃i(x) (with convergence in the C∞ topology) we go

to the limit as n goes to infinity and get the required condition

h(Rα(x)) = e2πiβ
−1ϕ(x)h(x).

�

5.3. Proof of the uniqueness of the one parameter group of eigenvalues.
There is a classical criterion used to show that a certain cohomological equation
has no measurable solutions:

Lemma 9. Let T t be a special flow over an ergodic transformation T on a Lebesgue
space L and under a function ϕ. Suppose {mn} is a sequence of times such that

Tmn → Id

in probability. If

e2πiλSmnϕ(x) 6→ 1

in probability then λ is not an eigenvalue of T t. Here Smϕ(x) =
∑m−1
i=0 ϕ(T ix).

Proof. if λ is an eigenvalue for T t then our earlier condition shows

e2πiλϕ(x) =
h(Tx)

h(x)

for some measurable h. Iterating these expressions gives us

e2πiλSmϕ(x) =
h(Tmx)

h(x)
.

Now along the subsequence {mn} the right-hand side converges to 1 in probability.
�

We use the foregoing criterion and Proposition 2 to prove the absence of eigen-
values other than the multiples of β−1.

Proposition 4. Let mn = d qs(n)+1

8qs(n)
eqs(n). For λ which is not a multiple of β−1

e2πiλSmnϕ(x) 6→ 1

in probability.

The sequence mn satisfies the hypothesis of Lemma 9 since for any x ∈ T1, one
has

(20) d
(
Rmnα (x), x

)
<

1

4qs(n)
.

Thus Proposition 4 proves that there a no eigenvalues of the special flow over Rα
and under ϕ other than multiples of β−1.
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Proof. We begin by observing that∥∥e2πiλSmnϕ(x) − 1
∥∥

1
≥ 4
∥∥ inf
p∈Z
|λSmnϕ(x)− p|

∥∥
1

Next, we break Smnϕ(x) up into three pieces (plus a constant) as follows

Smnϕ(x) = mnβ +

n−1∑
i=1

Smn ϕ̃i(x) + Smn ϕ̃n +

∞∑
i=n+1

Smn ϕ̃i(x).

We have

inf
p∈Z
|λSmnϕ(x)− p| > inf

p∈Z

∣∣∣mnλβ + λSmn ϕ̃n(x)− p
∣∣∣

− λ
∥∥n−1∑
i=1

Smn ϕ̃i
∥∥

0
− λ
∥∥ ∞∑
i=n+1

Smn ϕ̃i
∥∥

0
.

By construction
∥∥ϕ̃i∥∥

0
is comparable to ki

−1 = o(1/qs(i)). Hence, if we choose

an in (8) sufficiently large we can ensure that∥∥ ∞∑
i=n+1

Smn ϕ̃i
∥∥

0
≤ mn

∞∑
i=n+1

1

qs(i)
≤ e−n.

To estimate the norm of the lower frequencies we use the relation

Smn ϕ̃i(x) = ψi
(
Rmnα (x)

)
− ψi(x)

which comes from (11).
Lemma 8 and (20) imply that for every x ∈ T1 we have∣∣∣n−1∑

i=1

(
ψi
(
Rmnα (x)

)
− ψi(x)

)∣∣∣ < nKe2n−1qs(n−1)
1

4qs(n)
,

again, the choice of an−1 in (8) sufficiently large ensures that this is less than e−n.
Finally, in light of Proposition 2 and the fact that |||mnα||| is equivalent to

1/8qs(n) we deduce that Smn ϕ̃n(x) = ψn
(
Rmnα (x)

)
− ψn(x) takes essentially each

of the values 0, β and −β on more than a proportion 1/8 of T1. Therefore∥∥ inf
p∈Z
|mnλβ + λSmn ϕ̃n(x)− p|

∥∥
1
≥ 1

8
inf
p∈Z
|λβ − p|,

which is non-zero when λ is not a multiple of β−1. Thus∥∥e2πiλSmnϕ(x) − 1
∥∥

1
6→ 0.

�
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