Avoiding Early Closing: A Corrigendum to *"Livšic Theorems..."*†

Rafael de la Llave^{††}, and Alistair Windsor[‡]

 † Department of Mathematics, University of Texas at Austin, 1 University Station, C1200, Austin, Texas 78712.
 ‡ 373 Dunn Hall, Department of Mathematical Sciences, University of Memphis,

Memphis, TN 38152-3240.

(Received 27 November 2007)

1. Introduction

This paper serves as a corrigendum to our paper [dlLW09]. In particular, in the proof of Theorem 6.3 we claimed the following:

CLAIM: Let f be a topologically transitive Anosov diffeomorphism of a compact manifold M. For all $\epsilon > 0$ there exists $L \ge 1$ such that for every $n \in \mathbb{N}$ and $x \in M$ there exists a periodic point $p \in M$ satisfying

1. for all $0 \le i \le n$,

$$d_M(f^i x, f^i p) < \epsilon,$$

and

2. p has minimal period $n + \ell$ with $0 \le \ell \le L$.

Unfortunately, as B. Kalinin and V. Sadovskaya discovered, the proof sketched contained gaps. Using specification as was suggested in our paper leads to a weaker result than we claimed. In this paper we prove a uniform version of closing :

THEOREM: Let f be a topologically transitive C^1 Anosov diffeomorphism of a compact connected manifold M. Given $\epsilon > 0$ there exists $D \ge 1$ and N > 0 such that for all $x \in M$ and $n \in \mathbb{N}$ there exists a periodic point $p \in M$ with minimal period $m \in \mathbb{N}$ and $d \in \mathbb{N}$ such that:

1. for all $0 \le i \le n-1$

$$d_M(f^i x, f^i p) < \epsilon,$$

and

† RAFAEL DE LA LLAVE and ALISTAIR WINDSOR Livšic theorems for non-commutative groups including diffeomorphism groups and results on the existence of conformal structures for Anosov systems. *Ergodic Theory and Dynamical Systems*, Published online by Cambridge University Press 17 Jul 2009 doi:10.1017/S014338570900039X

† R. de la Llave was supported by the NSF grant NSF DMS 0354567.

2. $n \leq d \cdot m \leq n + N \text{ and } 1 \leq d \leq D.$

This result is strong enough to complete the proof of Theorem 6.3.

2. Results

To prove our result for Anosov diffeomorphisms we will first prove a similar statement for subshifts of finite type. Since every Anosov diffeomorphism is a factor of a subshift this will allow us to prove the desired result.

Recall that a subshift of finite type can be described by a transition matrix A. Symbol j may follow symbol i in a word in Σ_A if $A_{i,j} = 1$. A finite sequence (a_1, \ldots, a_n) is called admissible if $A_{a_i,a_{i+1}} = 1$ for $0 \le i \le n-1$. We will call a finite sequence (a_1, \ldots, a_n) periodic if it is admissible and $A_{a_n,a_1} = 1$ so that the sequence can be extended periodically to a point $a \in \Sigma_A$ of period n.

The following result is similar to that of Fine and Wilf [FW65].

LEMMA 1. Let (Σ_A, σ) be a subshift of finite type. Let (a_1, \ldots, a_n) be a periodic sequence of period m_1 . Let $(a_1, \ldots, a_n, \ldots, a_{n+L})$ be an extension of (a_1, \ldots, a_n) and be periodic with period m_2 .

If $m_1 + m_2 \leq n$ then (a_1, \ldots, a_n) and (a_1, \ldots, a_{n+L}) are both periodic of period $gcd(m_1, m_2)$.

Proof: Write $d := \text{gcd}(m_1, m_2) = k_1 m_1 + k_2 m_2$ with $k_1, k_2 \in \mathbb{Z}$. Consider the following variation on the proof of Bézout's theorem that only uses numbers in the range $1, \ldots, n$. If $k_1 > 0$ then define $k_+ = k_1, m_+ = m_1, k_- = -k_2$ and $m_- = m_2$. If $k_2 > 0$ then define $k_+ = k_2, m_+ = m_2, k_- = -k_1$ and $m_- = m_1$

Let $1 \leq i \leq n-d$ be arbitrary and initialize k = i.

- 1. Add m_+ to k successively until either
 - (a) adding a further m_+ would give k above n, or
 - (b) all k_+ of the m_+ s have been used.
 - Subtract m_{-} from the new k successively until either
 - (a) subtracting a further m_{-} would give k below 1, or
 - (b) all k_{-} of the m_{-} s have been used.
- 3. If $k \neq i + d$ then return to step 1.

Notice that if $k + m_+ \ge n + 1$ and $k - m_- \le 0$ then $m_1 + m_2 \ge n + 1$ which is a contradiction. Thus this cannot terminate at an intermediate stage and the algorithm must proceed to give k = i + d.

Since each of these steps involves one of the two periods and all of the numbers are within $1, \ldots, n$ this shows that $a_i = a_{i+d}$ for $1 \le i \le n-d$ i.e. that the original sequence (x_1, \ldots, x_n) is *d*-periodic. Since *d* divides m_2 and $m_2 < n$ we may conclude that the extended sequence (a_1, \ldots, a_{n+L}) is also *d* periodic. \Box

Remark: The hypothesis that $m_1 + m_2 \leq n$ is necessary. If we take the sequence of length 10 with period 5

2.

and extend this by (1, 0, 0, 1) we obtain the sequence

$$(0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1)$$

of length 14 that has period 7. Obviously the original sequence is not constant even though 5 and 7 are relatively prime.

THEOREM 1. Let (Σ_A, σ) be a mixing subshift of finite type. Let L be such that $A^L > 2$. Let $n \ge L$. Let (a_1, \ldots, a_n) be a periodic sequence. Either

- 1. (a_1,\ldots,a_n) has minimal period n or $\frac{n}{2}$, or
- 2. there exists an extension (a_1, \ldots, a_{n+L}) of (a_1, \ldots, a_n) such that (a_1, \ldots, a_{n+L}) is periodic with minimal period n + L or $\frac{n+L}{2}$.

Proof: If (a_1, \ldots, a_n) has minimal period, m_1 , either n or $\frac{n}{2}$ then we are done. Therefore we may suppose that $m_1 \leq \frac{n}{3}$. Let (a_1, \ldots, a_{n+L}) be an arbitrary periodic extension of (a_1, \ldots, a_n) . If (a_1, \ldots, a_{n+L}) has minimal period, m_2 , either n+L or $\frac{n+L}{2}$ then we are done. Therefore we may suppose that $m_2 \leq \frac{n+L}{3}$.

In this case, since $L \leq n$ we must have $m_1 + m_2 \leq n$. Hence by our Lemma 1 we are able to show that the extended sequence (a_1, \ldots, a_{n+L}) has period m_1 . There is a unique extension of (a_1, \ldots, a_n) that makes (a_1, \ldots, a_{n+L}) have period m_1 but there are at least two ways of completing (a_1, \ldots, a_{n+L}) . Using this other completion we get (a_1, \ldots, a_{n+L}) does not have period m_1 . If we denote its minimal period by m_2 we see that we must have $m_1 + m_2 > n$. This means that m_2 must be at least $\frac{n+L}{2}$.

Now our main theorem:

THEOREM 2. Let f be a topologically transitive C^1 Anosov diffeomorphism of a compact connected manifold M. Given $\epsilon > 0$ there exists $D \ge 1$ and N > 0 such that for all $x \in M$ and $n \in \mathbb{N}$ there exists a periodic point $p \in M$ with minimal period $m \in \mathbb{N}$ and $d \in \mathbb{N}$ such that:

1. for all $0 \le i \le n-1$

$$d_M(f^i x, f^i p) < \epsilon,$$

and

 $2. \qquad n \leq d \cdot m \leq n+N \ and \ 1 \leq d \leq D.$

Proof: Let $\epsilon > 0$ be arbitrary. There exists a Markov partition \mathfrak{M} of M by "rectangles" of diameter less than ϵ [**Bow70b**]. Let (Σ_A, σ) be the associated subshift of finite type with transition matrix A and alphabet \mathscr{A} . Every transitive Anosov diffeomorphism of a connected manifold is topologically mixing so there exists $L \in \mathbb{N}$ such that A^L is a positive matrix. Immediately we have $A^{2L} \geq 2$. By [**Bow70a**, Proposition 10] there exists $k \in \mathbb{N}$ the canonical projection $\pi : \Sigma_A \to M$ satisfies $\#\pi^{-1}(x) \leq k$ for all $x \in M$.

Consider one of the possible lifts of the point $x \in M$, $(\ldots, x_0, x_1, \ldots, x_{n-1}, \ldots)$. Consider the finite sequence (x_0, \ldots, x_{n-1}) . We can extend this by 2L states to get a new finite sequence $(y_0, \ldots, y_{n-1+2L})$ that is periodic. We chose to extend by 2L rather than simply L so that 2L < n + 2L. Now we can apply our symbolic extension lemma to obtain either a point q of period n + 2L with minimal period at least $\frac{n+2L}{2}$ or a point q of period n + 4L with minimal period $\frac{n+4L}{2}$. Let m be in the minimal period of the point q. The orbit of the periodic point q consists of m distinct points. Projecting the orbit under π gives at least m/k distinct points. Hence the minimal period of the projected point $p = \pi(q)$ is at least m/k.

Taking N = 4L and D = 2k we see that we obtain a periodic point p of period $n \le n' \le n + N$ with minimal period at least $\frac{n'}{D}$.

Since we extended the original (x_0, \ldots, x_{n-1}) we have that p and x belong to the same rectangle for the first n iterations of f. This means that

$$d_M(f^i x, f^i p) < \epsilon$$

$$n - 1.$$

3. Completing the Proof of Theorem 6.3

for $0 \leq i \leq$

Theorem 6.3 states that if the distortion of f along every periodic orbit is bounded then the distortion of any iterate of f is uniformly bounded. The idea was that any orbit segment is close to a segment of a periodic orbit whose period is not very different from the length of the orbit segment. This lead to the (54) in [**dlLW09**]

$$K_{g,E^{s}}(f^{n},p) \leq K_{g,E^{s}}(f^{n+\ell},p) K_{g,E^{s}}(f^{-\ell},p) \\
 \leq C_{\text{per}} K_{g,E^{s}}(f^{-\ell}).$$
(54)

Here we used $K_{g,E^s}(f^{n+\ell}, p) \leq C_{per}$ since we were supposing that $n + \ell$ was the minimal period of the periodic point p. We are unable to show that this is the case, however using our previous lemma, we may find a periodic point p with minimal period m such that for some $d \in \mathbb{N}$ with $1 \leq d \leq D$ we have $m \cdot d = n + \ell$ for $0 \leq \ell \leq N$. Now we have

$$K_{g,E^s}(f^{n+\ell}, p) = K_{g,E^s}(f^{m\cdot d}, p)$$
$$= K_{g,E^s}(f^m, p)^d$$
$$\leq K_{g,E^s}(f^m, p)^D$$
$$\leq C_{ner}^D$$

This then leads immediately to our replacement for (54)

$$K_{g,E^{s}}(f^{n},p) \leq K_{g,E^{s}}(f^{n+\ell},p) K_{g,E^{s}}(f^{-\ell},p) \\
 \leq C_{\text{per}}^{D} K_{g,E^{s}}(f^{-\ell}).$$
(54')

With estimate (54') the remainder of the proof of Theorem 6.3 in [dlLW09] carries through as stated. The only change is in the value of the constant obtained.

References

Prepared using etds.cls

- [Bow70a] Rufus Bowen. Markov partitions and minimal sets for Axiom A diffeomorphisms. Amer. J. Math., 92:907–918, 1970.
- [Bow70b] Rufus Bowen. Markov partitions for Axiom A diffeomorphisms. Amer. J. Math., 92:725–747, 1970.
- [dlLW09] Rafael de la Llave and Alistair Windsor. Livšic theorems for non-commutative groups including diffeomorphism groups and results on the existence of conformal structures for Anosov systems. Ergodic Theory Dynam. Systems, 2009. Appeared online 17 July 2009 doi: 10.1017/S014338570900039X.
- [FW65] N. J. Fine and H. S. Wilf. Uniqueness theorems for periodic functions. Proc. Amer. Math. Soc., 16:109–114, 1965.

4