Avoiding Early Closing:
A Corrigendum to “Livšic Theorems...”†

Rafael de la Llave††, and Alistair Windsor‡

† Department of Mathematics, University of Texas at Austin, 1 University Station, C1200, Austin, Texas 78712.
‡ 373 Dunn Hall, Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152-3240.

(Received 27 November 2007)

1. Introduction
This paper serves as a corrigendum to our paper [dlLW09]. In particular, in the proof of Theorem 6.3 we claimed the following:

CLAIM: Let \(f \) be a topologically transitive Anosov diffeomorphism of a compact manifold \(M \). For all \(\epsilon > 0 \) there exists \(L \geq 1 \) such that for every \(n \in \mathbb{N} \) and \(x \in M \) there exists a periodic point \(p \in M \) satisfying
1. for all \(0 \leq i \leq n \),
\[
 d_M(f^i x, f^i p) < \epsilon,
\]
and
2. \(p \) has minimal period \(n + \ell \) with \(0 \leq \ell \leq L \).

Unfortunately, as B. Kalinin and V. Sadovskaya discovered, the proof sketched contained gaps. Using specification as was suggested in our paper leads to a weaker result than we claimed. In this paper we prove a uniform version of closing:

THEOREM: Let \(f \) be a topologically transitive \(C^1 \) Anosov diffeomorphism of a compact connected manifold \(M \). Given \(\epsilon > 0 \) there exists \(D \geq 1 \) and \(N > 0 \) such that for all \(x \in M \) and \(n \in \mathbb{N} \) there exists a periodic point \(p \in M \) with minimal period \(m \in \mathbb{N} \) and \(d \in \mathbb{N} \) such that:
1. for all \(0 \leq i \leq n - 1 \)
\[
 d_M(f^i x, f^i p) < \epsilon,
\]
and

† RAFAEL DE LA LLAVE and ALISTAIR WINDSOR Livšic theorems for non-commutative groups including diffeomorphism groups and results on the existence of conformal structures for Anosov systems. Ergodic Theory and Dynamical Systems, Published online by Cambridge University Press 17 Jul 2009 doi:10.1017/S014338570900039X.
†† R. de la Llave was supported by the NSF grant NSF DMS 0354567.
2. \(n \leq d \cdot m \leq n + N \) and \(1 \leq d \leq D \).

This result is strong enough to complete the proof of Theorem 6.3.

2. Results

To prove our result for Anosov diffeomorphisms we will first prove a similar statement for subshifts of finite type. Since every Anosov diffeomorphism is a factor of a subshift this will allow us to prove the desired result.

Recall that a subshift of finite type can be described by a transition matrix \(A \). Symbol \(j \) may follow symbol \(i \) in a word in \(\Sigma_A \) if \(A_{i,j} = 1 \). A finite sequence \((a_1, \ldots, a_n)\) is called admissible if \(A_{a_i, a_{i+1}} = 1 \) for \(0 \leq i \leq n - 1 \). We will call a finite sequence \((a_1, \ldots, a_n)\) periodic if it is admissible and \(A_{a_n, a_1} = 1 \) so that the sequence can be extended periodically to a point \(a \in \Sigma_A \) of period \(n \).

The following result is similar to that of Fine and Wilf [FW65].

LEMMA 1. Let \((\Sigma_A, \sigma)\) be a subshift of finite type. Let \((a_1, \ldots, a_n)\) be a periodic sequence of period \(m_1 \). Let \((a_1, \ldots, a_n, \ldots, a_{n+L})\) be an extension of \((a_1, \ldots, a_n)\) and be periodic with period \(m_2 \).

If \(m_1 + m_2 \leq n \) then \((a_1, \ldots, a_n)\) and \((a_1, \ldots, a_{n+L})\) are both periodic of period \(\gcd(m_1, m_2) \).

Proof: Write \(d := \gcd(m_1, m_2) = k_1 m_1 + k_2 m_2 \) with \(k_1, k_2 \in \mathbb{Z} \). Consider the following variation on the proof of Bézout’s theorem that only uses numbers in the range \(1, \ldots, n \). If \(k_1 > 0 \) then define \(k_+ = k_1, m_+ = m_1, k_− = −k_2 \) and \(m_− = m_2 \). If \(k_2 > 0 \) then define \(k_+ = k_2, m_+ = m_2, k_− = −k_1 \) and \(m_− = m_1 \).

Let \(1 \leq i \leq n − d \) be arbitrary and initialize \(k = i \).

1. Add \(m_+ \) to \(k \) successively until either
 (a) adding a further \(m_+ \) would give \(k \) above \(n \), or
 (b) all \(k_+ \) of the \(m_+ \)'s have been used.
2. Subtract \(m_− \) from the new \(k \) successively until either
 (a) subtracting a further \(m_− \) would give \(k \) below \(1 \), or
 (b) all \(k_− \) of the \(m_− \)'s have been used.
3. If \(k ≠ i + d \) then return to step 1.

Notice that if \(k + m_+ ≥ n + 1 \) and \(k − m_− ≤ 0 \) then \(m_1 + m_2 ≥ n + 1 \) which is a contradiction. Thus this cannot terminate at an intermediate stage and the algorithm must proceed to give \(k = i + d \).

Since each of these steps involves one of the two periods and all of the numbers are within \(1, \ldots, n \) this shows that \(a_i = a_{i+d} \) for \(1 ≤ i ≤ n − d \) i.e. that the original sequence \((x_1, \ldots, x_n)\) is \(d \)-periodic. Since \(d \) divides \(m_2 \) and \(m_2 < n \) we may conclude that the extended sequence \((a_1, \ldots, a_{n+L})\) is also \(d \)-periodic. \(\Box \)

Remark: The hypothesis that \(m_1 + m_2 ≤ n \) is necessary. If we take the sequence of length 10 with period 5

\[(0, 1, 0, 1, 0, 0, 1, 0, 1, 0)\]
and extend this by \((1,0,0,1)\) we obtain the sequence
\[(0,1,0,1,0,0,1,0,1,0,0,1,0,0,1)\]
of length 14 that has period 7. Obviously the original sequence is not constant even though 5 and 7 are relatively prime.

Theorem 1. Let \((\Sigma_A,\sigma)\) be a mixing subshift of finite type. Let \(L\) be such that \(A^L > 2\). Let \(n \geq L\). Let \((a_1, \ldots, a_n)\) be a periodic sequence. Either
1. \((a_1, \ldots, a_n)\) has minimal period \(n\) or \(\frac{n}{2}\), or
2. there exists an extension \((a_1, \ldots, a_{n+L})\) of \((a_1, \ldots, a_n)\) such that \((a_1, \ldots, a_{n+L})\) is periodic with minimal period \(n + L\) or \(\frac{n+L}{2}\).

Proof: If \((a_1, \ldots, a_n)\) has minimal period, \(m_1\), either \(n\) or \(\frac{n}{2}\) then we are done. Therefore we may suppose that \(m_1 \leq \frac{n}{2}\). Let \((a_1, \ldots, a_{n+L})\) be an arbitrary periodic extension of \((a_1, \ldots, a_n)\). If \((a_1, \ldots, a_{n+L})\) has minimal period, \(m_2\), either \(n + L\) or \(\frac{n+L}{2}\) then we are done. Therefore we may suppose that \(m_2 \leq \frac{n+L}{2}\).

In this case, since \(L \leq n\) we must have \(m_1 + m_2 \leq n\). Hence by our Lemma 1 we are able to show that the extended sequence \((a_1, \ldots, a_{n+L})\) has period \(m_1\). There is a unique extension of \((a_1, \ldots, a_n)\) that makes \((a_1, \ldots, a_{n+L})\) have period \(m_1\) but there are at least two ways of completing \((a_1, \ldots, a_{n+L})\). Using this other completion we get \((a_1, \ldots, a_{n+L})\) does not have period \(m_1\). If we denote its minimal period by \(m_2\) we see that we must have \(m_1 + m_2 > n\). This means that \(m_2\) must be at least \(\frac{n+L}{2}\).

Now our main theorem:

Theorem 2. Let \(f\) be a topologically transitive C\(^1\) Anosov diffeomorphism of a compact connected manifold \(M\). Given \(\epsilon > 0\) there exists \(D \geq 1\) and \(N > 0\) such that for all \(x \in M\) and \(n \in \mathbb{N}\) there exists a periodic point \(p \in M\) with minimal period \(m \in \mathbb{N}\) and \(d \in \mathbb{N}\) such that:
1. for all \(0 \leq i \leq n - 1\)
 \[d_M(f^i x, f^i p) < \epsilon,\]
 and
2. \(n \leq d \cdot m \leq n + N\) and \(1 \leq d \leq D\).

Proof: Let \(\epsilon > 0\) be arbitrary. There exists a Markov partition \(\mathcal{M}\) of \(M\) by “rectangles” of diameter less than \(\epsilon\) [Bow70b]. Let \((\Sigma_A,\sigma)\) be the associated subshift of finite type with transition matrix \(A\) and alphabet \(\mathcal{A}\). Every transitive Anosov diffeomorphism of a connected manifold is topologically mixing so there exists \(L \in \mathbb{N}\) such that \(A^L\) is a positive matrix. Immediately we have \(A^{2L} \geq 2\). By [Bow70a, Proposition 10] there exists \(k \in \mathbb{N}\) the canonical projection \(\pi: \Sigma_A \rightarrow M\) satisfies \(\#\pi^{-1}(x) \leq k\) for all \(x \in M\).

Consider one of the possible lifts of the point \(x \in M\), \((\ldots, x_0, x_1, \ldots, x_{n-1}, \ldots)\). Consider the finite sequence \((x_0, \ldots, x_{n-1})\). We can extend this by \(2L\) states to get a new finite sequence \((y_0, \ldots, y_{n-1+2L})\) that is periodic. We chose to extend by \(2L\) rather than simply \(L\) so that \(2L < n + 2L\). Now we can apply our symbolic
extension lemma to obtain either a point q of period $n + 2L$ with minimal period at least $\frac{n + 2L}{2}$ or a point q of period $n + 4L$ with minimal period $\frac{n + 4L}{2}$. Let m be in the minimal period of the point q. The orbit of the periodic point q consists of m distinct points. Projecting the orbit under π gives at least m/k distinct points. Hence the minimal period of the projected point $p = \pi(q)$ is at least m/k.

Taking $N = 4L$ and $D = 2k$ we see that we obtain a periodic point p of period $n \leq n' \leq n + N$ with minimal period at least $\frac{n'}{D}$.

Since we extended the original (x_0, \ldots, x_{n-1}) we have that p and x belong to the same rectangle for the first n iterations of f. This means that

$$d_M(f^i x, f^i p) < \epsilon$$

for $0 \leq i \leq n - 1$. \hfill \Box

3. Completing the Proof of Theorem 6.3

Theorem 6.3 states that if the distortion of f along every periodic orbit is bounded then the distortion of any iterate of f is uniformly bounded. The idea was that any orbit segment is close to a segment of a periodic orbit whose period is not very different from the length of the orbit segment. This lead to the (54) in [dlILW09]

$$K_{g,E^s}(f^n, p) \leq K_{g,E^s}(f^{n+\ell}, p) K_{g,E^s}(f^{-\ell}, p) \leq C_{\text{per}} K_{g,E^s}(f^{-\ell}).$$

Here we used $K_{g,E^s}(f^{n+\ell}, p) \leq C_{\text{per}}$ since we were supposing that $n + \ell$ was the minimal period of the periodic point p. We are unable to show that this is the case, however using our previous lemma, we may find a periodic point p with minimal period m such that for some $d \in \mathbb{N}$ with $1 \leq d \leq D$ we have $m \cdot d = n + \ell$ for $0 \leq \ell \leq N$. Now we have

$$K_{g,E^s}(f^{n+\ell}, p) = K_{g,E^s}(f^{m \cdot d}, p) = K_{g,E^s}(f^m, p)^d \leq K_{g,E^s}(f^m, p)^D \leq C_{\text{per}}^D.$$

This then leads immediately to our replacement for (54)

$$K_{g,E^s}(f^n, p) \leq K_{g,E^s}(f^{n+\ell}, p) K_{g,E^s}(f^{-\ell}, p) \leq C_{\text{per}}^D K_{g,E^s}(f^{-\ell}).$$

With estimate (54’) the remainder of the proof of Theorem 6.3 in [dlILW09] carries through as stated. The only change is in the value of the constant obtained.

References

