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AN APPLICATION OF TOPOLOGICAL MULTIPLE
RECURRENCE TO TILING

R. DE LA LLAVE AND A. WINDSOR

Abstract. We show that given any tiling of Euclidean space, any geometric
patterns of points, we can find a patch of tiles (of arbitrarily large size) so
that copies of this patch appear in the tiling nearly centered on a scaled and
translated version of the pattern. The rather simple proof uses Furstenberg’s
topological multiple recurrence theorem.

1. Introduction. Tilings have a very long story as an applied sub-discipline at
the service of architecture and decoration [7].

The modern mathematical theory of tiling (we collect several of the standard
definitions of tilings in Section 2) can be said to begin in the 60’s with the work
[17]. The surprising main result of [17] is that there is no algorithmic way to prove
that certain collections of tiles in R

d could be used to tile the whole of R
d, see also

[1]. Central to the proof is the construction of sets of tiles that tile the plane only
non-periodically, such sets of tiles are called aperiodic. By now many aperiodic sets
of tiles are known of varying complexity [7]. Perhaps the most famous aperiodic
set of tiles are the Penrose tiles [8].

The goal of this paper is sort of complementary with the previous results. Rather
than showing that there are aperiodic sets of tiles, or sets of tiles that exhibit
unordered behavior [3], we show that for any tiling, there has to be some amount
of order, in particular approximate periodicity. Roughly speaking, our results show
(see Theorems 2, 3, 4 for precise formulations) that in any tiling, given any pattern
and any size R, we can find a patch of size at least R so that copies of this patch
appear in the tiling nearly centered on a scaled and translated copy of the specified
pattern. We can also require that the scalings of the pattern appearing in the
conclusions have scaling factors belonging to some special sets (see Section 3.1).
For an informal pictorial explanation of our results refer to Section 4.

There are several classes of tilings that have been studied in the literature (see
Section 2). Roughly, a tiling is an arrangement of tiles (all of which are copies of
some prototiles) that covers the Euclidean space without overlapping. The classes
of tilings differ in whether when generating the tiles out of the prototiles one allows
rotations, and in whether or not the tiling has a property “finite local complexity”
that roughly indicates that the tiles cannot slide.

Even if the results are slightly different in all these cases, the ideas of the proofs
are very similar. In all cases, we define a tiling space by considering the closure of
all the translations of the given tiling in the appropriate topology (this topology
depends on the considerations alluded to in the previous paragraph). One then
shows that translations are commuting homeomorphisms of this tiling space and
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one can use Birkhoff’s multiple recurrence theorem. The statements of the results
are obtained by unraveling the previous definitions of the tiling spaces and the
meaning of convergence in these spaces.

Our proof mirrors Furstenberg’s proof of Gallai’s theorem using the Birkhoff
multiple recurrence theorem [4]. Gallai’s theorem is a higher dimensional version of
Van der Waerden’s theorem [9]. We recall that Van der Waerden’s theorem states
that any partition of the integers into a finite number of sets has arbitrarily long
arithmetic progressions contained in one of the sets of the partition.

The analogy of tilings with dynamical systems in Z
d was noted in [15]. The

application of ergodic theory to tilings was surveyed in [11] and [12]. The use
of recurrence (either topological or measure-theoretic) to obtain combinatorial or
Ramsey theory results is surveyed in [4].

Let us emphasize that the results of this paper show that all patterns can be
found in any tiling of the Euclidean space. Sometimes the fact that arbitrary sets
(or graphs) cannot avoid having some amount of order is called Ramsey theory [6].

2. Tiling Spaces and the Tiling Topology. We reproduce here the requisite
definitions of tiling spaces and their topologies. We refer the reader to the excellent
survey [13] for further exposition and examples. We have augmented the definitions
to allow for pinwheel and more general tilings following [10].

2.1. Tiling Spaces. A set D ⊂ R
d is called a tile if it is compact and equal to the

closure of its interior. A tiling of R
d is a collection of tiles {Di} such that

1.
⋃

i Di = R
d – we say that the tiling covers R

d.
2. for all i, j with i �= j, D◦

i ∩ D◦
j = ∅ – we say that the tiling packs R

d.
Two tiles are called equivalent if one is a translation of the other. An equivalence
class is called a prototile. Two tiles are called congruent of they are related by an
orientation preserving isometry. We will call the equivalence class of congruent tiles
a congruence prototile.

Definition 1. Let T be a finite set of distinct prototiles (resp. congruence pro-
totiles) in R

d. We call the tiling space XT associated to T the set of all tilings of
R

d by tiles that are elements of the prototiles (resp. congruence prototiles) in T .

In both cases the translation of a tiling is still a tiling and hence there is a natural
action of R

d on XT . We shall use T�v to denote both the translation by �v ∈ R
d

and its induced action on XT . If T consists of congruence prototiles then there is
a natural action of the group of orientation preserving isometries on XT .

Definition 2. Let T be a finite set of distinct (congruence) prototiles in R
d. A

T -patch is subset x′ of a tiling x such that the union of tiles in x′ is a connected
subset of R

d.1 We call the union of tiles in x′ the support of the patch x′, denoted
supp(x′). We call two patches equivalent if one is a translation of the other and call
an equivalence class a protopatch. We call two patches congruent if they are related
by an orientation preserving isometry and call an equivalence class of congruent
patches a congruence protopatch. If T consists of prototiles (resp. congruence
prototiles) then we denote by T (n) the collection of protopatches (resp. congruence
protopatches) consisting of n-tiles.

1Some authors require that the union be a simply connected subset of R
d, but we will not use

that.
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Several elaborations on this definition can be found in the literature includ-
ing distinguishing identical prototiles by coloring or labeling. Our results can be
adapted to such finite extensions but we will not consider them here.

2.2. Complexity of tilings. We emphasize that according to our definition tilings
have either a finite number of prototiles or a finite number of congruence prototiles.

In the following subsections, we will consider three situations of increasing gen-
erality.

2.2.1. Finite Local Complexity under Translation.

Definition 3. We say that a tiling space has finite local complexity under trans-
lation if T consists of a finite number of prototiles and T (2) is finite. That is, the
set of pairs of adjacent tiles is finite.

One example of a tiling that does not have finite local complexity is the tiling
of the plane by a single translated square. The tiles are necessarily located so that
there are countably many straight line that consists of entirely of tile edges, these
are called shear lines. On each side of a shear line the tiling can be translated along
the shear line and these translations can be chosen independently. Hence for any
square along the line there are uncountably many configuration of nearby tiles.

Often a finite T (2) is specified in the description of the tiling space. This describes
a set of local matching rules. These local matching rules are often specified in terms
of edge labels or colors. These local matching rules can be disposed of by suitably
modifying the prototiles, adding little teeth that make them to match only on very
precise locations. Wang tiles, the classical Penrose kite and dart tiling, and the
tiling by Penrose rhombs all have such local matching rules. In all these cases the
prototiles are polygonal. There are local matching rules that require the polygons
to meet full edge to edge and, in the case of the Penrose tilings, to preclude the
formation of shear lines.

2.2.2. Finite Local Complexity under the Euclidean Group.

Definition 4. We say that a tiling space has finite local complexity under the
Euclidean group if T consists of a finite number of congruence prototiles and T (2)

is finite.

The pinwheel tessellation of J. H. Conway was shown to be a tiling of finite local
complexity under the full Euclidean group in [10].

2.2.3. Tilings without Finite Local Complexity.

Definition 5. We say that a tiling space does not have finite local complexity if
T consists of a finite number of congruence prototiles and T (2) is infinite.

The simplest example of this type of tiling is the tiling by squares, discussed
above.

2.3. The Tiling Topologies. In this section we will discuss several variations of
the topology of tilings (which are induced by a metric). There are several variations
in the literature. All of them have in common the fact that two tilings are at small
distance when they are very similar in a large ball about the origin.
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2.3.1. The General Metric. We first give a definition of a metric that applies to all
three of our tiling situations. This is the metric used in [11, Page 70] with proofs
in [16].

Given two tilings x, x′ ∈ XT we define d(x, x′) by

d(x, x′) = sup
n∈N

1
n

dH

(
Bn(∂x), Bn(∂x′)

)
(1)

where dH denotes the usual Hausdorff distance between compact subsets of R
d,

Bn(∂x) = Bn ∩ ∂x, Bn := {p ∈ R
d : ‖p‖ ≤ n}, and ∂x = ∪D∈x∂D. In other words,

two tilings are close if their skeletons are close on a large ball about the origin.
The following result is proved in [10, 16].

Lemma 1. The metric makes the tiling space complete and compact. Moreover,
the action of R

d by translation on the tiling space is continuous.

Proving compactness consists of showing that given a sequence, one can extract
a convergent subsequence. Given one sequence of tilings, if we consider any ball,
we can extract a subsequence so that the tiles in the ball converge. Note that the
positions of the tiles in the ball are given by a finite number of real parameters,
which lie on a bounded set. Then, going to a larger ball, we can extract another se-
quence that converges in both balls. We can repeat the argument over an increasing
sequence of balls and then perform a diagonal argument. It is easy to verify that
the resulting object is indeed a tiling (if it was not, some violation of the conditions
would happen in a finite ball). It is also easy to verify that the diagonal sequence
indeed converges in the metric.

The verification of continuity of translations is straightforward. We just note
than, if two tilings are very similar in a large ball about the origin, then the two
tilings that result from applying a small translation will also be very similar in a
large ball about the origin.

Note that the proof indicated here does not use local complexity. It only uses
the fact that the position of all the tiles in a ball is indicated by a finite number of
parameters.

2.4. Adapted Metrics. Though the previous metric applies equally well to all
three situations we will give separate metrics for each of the three situations. Each
of these metrics is equivalent to the general metric but gives more geometric infor-
mation.

2.4.1. Finite Local Complexity under Translation. We will define a metric d1 on a
tiling space that has finite local complexity under the action of translation that
makes two tilings close if after a small translation they agree on a large ball about
the origin [14].

Let K ⊂ R
d be compact. We denote by x[[K]] the collection of patches x′

contained in x with the property that supp(x′) ⊇ K. Let ‖ · ‖ denote the Euclidean
norm on R

d and Br = {p ∈ R
d : ‖p‖ ≤ r}.

Definition 6. We define a metric on the tiling space XT by

d1(x, y) = inf
(
{ 1√

2
} ∪ {0 < r <

1√
2

: ∃x′ ∈ x[[B 1
r
]],

y′ ∈ y[[B 1
r
]], �v ∈ Br, such that T�v x′ = y′}

)
.
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The proof that this defines a metric may be found in [13] and does not depend
on finite local complexity. The only property that is not immediately obvious is
the triangle inequality. The bound of 1√

2
is used precisely in the verification of the

triangle inequality. The rôle that finite local complexity plays is summarized by
the following theorem of Rudolph [15].

Lemma 2. Any tiling space XT endowed with d1 is complete. If XT has finite
local complexity under translation then XT endowed with the metric d1 is compact.
Moreover, the action of R

d on XT by translation is continuous.

2.4.2. Finite Local Complexity under the Euclidean Group. We will define a metric
d2 on a tiling space with finite local complexity under the full Euclidean group that
makes two tilings close if after a small isometry they agree on a large ball about
the origin.

We define a metric on the group of direct isometrics of R
d

Ed := {T�p = A�p +�b : A ∈ SO(d),�b ∈ R
d}

by
dEd(A1�p +�b1, A2�p +�b2) := max{‖A1 − A2‖, ‖�b1 −�b2‖}.

Using a common abuse of notation we can write

Br(Ed) = {T ∈ Ed : dEd(T, Id) < r} = {T�p = A�p +�b : ‖A − Id‖ < r, ‖�b‖ < r}.
Using these notations we define a metric in a fashion similar to d1.

Definition 7. We define a metric on the tiling space XT by

d2(x, y) = inf
(
{ 1√

2
} ∪ {0 < r <

1√
2

: ∃x′ ∈ x[[B 1
r
]],

y′ ∈ y[[B 1
r
]], T ∈ Br(Ed), such that T x′ = y′}

)
.

The proof that this is a metric follows almost exactly the proof in [13] for d1.
Under this definition any tiling space is complete and the action of translations

is continuous. If the tiling space has finite local complexity under the Euclidean
group then the tiling space endowed with the metric d2 is compact. The argument
is the same as that sketched for d following Lemma 1.

2.4.3. Tilings without Finite Local Complexity. If the tiling space does not have
finite local complexity then metrics which focus on motions of the whole tiling will
not give compactness of the tiling space. In this case we define two tilings to be
close if they agree on a large ball about the origin after a small motion of each
individual tile.

Definition 8. We define a metric on the tiling space XT by

d3(x, y) = inf
({ 1√

2

}
∪

{
0 < r <

1√
2

: ∃{ti}m
i=1 ∈ x[[B 1

r
]],

{si}m
i=1 ∈ y[[B 1

r
]], {Ti}m

i=1 ⊂ Br(Ed), such that Ti ti = si for i = 1, . . . , m
})

.

Under this definition any tiling space is compact and the action of translations is
continuous. The proof that this is a metric follows almost exactly the proof in [13]
for d1.
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3. Topological Multiple Recurrence and its Application to Tiling Theory.
The following is the Multiple Birkhoff Recurrence Theorem for commuting home-
omorphisms [4, Proposition 2.5]. The same result holds for commuting continuous
maps and can be obtained from this one by passing to the natural extension, but
for our applications, we only require the version for homeomorphisms.

Theorem 1. Let X be a compact metric space and T1, . . . , Tl commuting homeo-
morphisms of X. Then there exists a point x ∈ X and a sequence nk → ∞ such
that T nk

i x → x simultaneously for i = 1, . . . , l.

Furstenberg’s original application of this theorem was to prove Gallai’s extension
of the Van der Waerden’s theorem to higher dimensions [9].2

Our proof follows the same scheme as Furstenberg’s proof of Gallai’s theorem [4,
Theorem 2.7] though the structure of our topological spaces is quite different.

Theorem 2 (Main Theorem for Tilings with Finite Local Complexity under Trans-
lation). Let XT be an R

d-tiling space with finite local complexity under translation,
and let x ∈ XT be an arbitrary tiling. Given ε > 0 and a finite subset F ⊂ R

d there
exists an n ∈ N, and a patch p contained in x such that

1. supp(p) contains a ball of radius 1
ε (not necessarily centered at the origin),

2. for each �u ∈ F there exists a vector �c with ‖�c‖ < ε such that

Tn�u+�c p ⊂ x.

Proof. Consider the set
X = {T�v x : �v ∈ Rd}

where the closure is taken according to the topology induced by the metric d1. X
is a translation invariant compact subset of XT . Let F = {�u1, . . . , �ul} and consider
the l commuting homeomorphisms of X given by Ti = T−�ui

.
By Theorem 1 there exists a point y ∈ X and a sequence nk → ∞ such that

T nk
i y → y for 1 ≤ i ≤ l. In particular for large enough nk we have d1(T nk

i y, y) < ε.
Since y ∈ X is either a translation of x or the limit of translations of x we can find
�v ∈ R

d such that d1(T−nk�ui−�v x, T−�v x) < ε. By definition of the metric there exists
x′ ∈ (T−nk�ui−�v x)[[B 1

ε
]], pi ∈ (T−�v x)[[B 1

ε
]], and a vector �ci ∈ R

d with ‖�ci ‖ < ε

such that T−�ci
x′ = pi. Now consider p′ to be the connected component of ∩l

i=1pi

that contains the origin. Since each pi has B 1
ε
⊂ supp pi we see that B 1

ε
⊂ supp p′.

Now we define p = T�v p′. By construction p ⊂ T−nk�ui−�ci
x and thus we get

Tnk �ui+�ci
p ⊂ x

as required.

The only things we have used crucially are the compactness of the space and
the continuity of the action by translation. For completeness we give proofs for the
remaining two cases though we emphasize that the crucial step is the same in all
the proofs.

Theorem 3 (Main Theorem for Tilings with Finite Local Complexity under the
Euclidean Group). Let XT be an R

d-tiling space of finite local complexity, and let
x ∈ XT be an arbitrary tiling. Given ε > 0 and a finite subset F ⊂ R

d there exists
an n ∈ N, a point �v ∈ R

d, and a patch p contained in x such that

2Gallai is also known as Grünwald.
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1. B 1
ε
(�v) ⊂ supp(p),

2. for each �u ∈ F there exists an S ∈ Bε(Ed) such that

Tn�u+�v S T−�v p ⊂ x.

Proof. Consider the set
X = {T�v x : �v ∈ Rd}

where the closure is taken according to the topology induced by the metric d2. X
is a translation invariant compact subset of XT . Let F = {�u1, . . . , �ul} and consider
the l commuting homeomorphisms of X given by Ti = T−�ui

.
By Theorem 1 there exists a point y ∈ X and a sequence nk → ∞ such that

T nk

i y → y for 1 ≤ i ≤ l. In particular for large enough nk we have d2(T nk

i y, y) < ε.
Since y ∈ X is either a translation of x or the limit of translations of x we can
find �v ∈ R

d such that d2(T−nk�ui−�v x, T−�v x) < ε. By definition of the metric there
exists x′ ∈ (T−nk�ui−�v x)[[B 1

ε
]], pi ∈ (T−�v x)[[B 1

ε
]], and an isometry Si ∈ Bε(Ed)

such that S−1
i x′ = pi. Now consider p′ to be the connected component of ∩l

i=1pi

that contains the origin. Since each pi has B 1
ε
⊂ supp pi we see that B 1

ε
⊂ supp p′.

Now we define p = T�v p′. By construction

Si T−�v p = Si p′ ⊂ Si pi = x′

and thus we get
Tnk �ui+�v Si T−�v p ⊂ Tnk �ui+�v x′ ⊂ x

as required.

Theorem 4 (Main Theorem for Tilings without Finite Local Complexity). Let XT
be an R

d-tiling space with T finite and let x ∈ XT be an arbitrary tiling. Given
ε > 0 and a finite subset F ⊂ R

d there exists an n ∈ N, �v ∈ R
d, and a patch

p = {ti}m
i=1 contained in x such that

1. B 1
ε
(�v) ⊂ supp(p),

2. for each �u ∈ F and 1 ≤ i ≤ m there exists Si ∈ Bε(Ed) such that

Tn�u+�v Si T−�v ti ∈ x.

Proof. Consider the set
X = {T�v x : �v ∈ Rd}

where the closure is taken according to the topology induced by the metric d3. X
is a translation invariant compact subset of XT . Let F = {�u1, . . . , �ul} and consider
the l commuting homeomorphisms of X given by Ti = T−�ui

.
By Theorem 1 there exists a point y ∈ X and a sequence nk → ∞ such that

T nk

i y → y for 1 ≤ i ≤ l. In particular for large enough nk we have d3(T nk

i y, y) < ε.
Since y ∈ X is either a translation of x or the limit of translations of x we can
find �v ∈ R

d such that d3(T−nk�ui−�v x, T−�v x) < ε. By definition of the metric there
exists x′ = {si,j}mi

j=1 ∈ (T−nk�ui−�v x)[[B 1
ε
]], pi = {tj}j∈Ji ∈ (T−�v x)[[B 1

ε
]], and

isometries {Si,j}j∈Ji ∈ Bε(Ed) such that S−1
i si,j = tj . Now consider p′ to be the

connected component of ∩l
i=1pi that contains the origin. Thus p′ = {tj}j∈J for

some J ⊂ ∩l
i=1Ji. Since each pi has B 1

ε
⊂ supp pi we see that B 1

ε
⊂ supp p′. Now

we define p = T�v p′ = {τj}j∈J ⊂ x. By construction

Si,j T−�v τj = Si,j tj = si,j
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and thus we get

Tnk �ui+�v Si T−�v τj = Tnk �ui+�v si,j ∈ x

as required.

3.1. IP-Sets and Dilation Factors. There is a refinement of our main theorems
that allows some control over the dilation factors that appear. Unfortunately it
does not give any information on the size of the dilation required.

Definition 9. A set of positive integers R is called an IP-set if there exists a
sequence (pi)∞i=1 of natural numbers such that R consists of the numbers pi together
with all finite sums

pi1 + pi2 + · · · + pik

with i1 < i2 < · · · < ik.

IP-sets appear naturally in situations where recurrence plays a central rôle [5] [2].
The dilation factor n in our proofs arises from an application of the Birkhoff Multi-
ple Recurrence Theorem, Theorem 1. It is shown in [4, Theorem 2.18], that one can
restrict the sets of numbers that appear in the conclusion of the Birkhoff Multiple
Recurrence Theorem 1 to an a priori given IP-set. Hence Theorem 2, Theorem 3,
and Theorem 4 hold true when we restrict the number n to lie in some a priori
specified IP-set without any modification of the proofs.

4. An informal pictorial illustrations of the results. For example, given a
tiling with finite local complexity (of either type), a finite set of points in R

n, e.g.,

1

�

�

•
•
•
•

• •
•
•
•

•
•
•

• • •

a size R, and a ε > 0. We can find a patch containing a ball of radius R

and a number N , such that the configuration
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N

�

�

appears somewhere in the tiling up to an isometry of size less than ε. The appear-
ance of this configuration may be very far from the origin.
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