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Smoothness is not an obstruction to realizability
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Abstract. A sequence of non-negative integers (φn)∞n=1 is said to be realizable if there is
a map T of a set X such that φn = #{x : T n x = x}. We prove that any realizable sequence
can be realized by a C∞ diffeomorphism of T2.

1. Introduction
There is a natural class of sequences of non-negative integers, called the realizable
sequences, that arise as the sequence of the number of periodic points of period n for some
dynamical system. This class of sequences was first introduced in the thesis of Puri [4],
part of which appears as [5]. An intriguing consequence of this class of sequences for
the Fibonacci recurrence can be found in [6] while further number theoretic consequences
appear in [1].

Definition. Let φ = (φn)∞n=1 be a sequence of non-negative integers. We say that φ is
realizable if there is a set X and a map T : X → X such that

φn = #{x ∈ X : T n x = x}

for all n ≥ 1. In this case, we say that T realizes (φn)∞n=1.

Puri and Ward [4, 5] observe that the sole obstruction to being realizable is the natural
restriction that the number of periodic orbits of length n is a non-negative integer, i.e.

φo
n :=

1
n

∑
d|n

µ(n/d)φd

is a non-negative integer for all n ≥ 1. Here µ is the Möbius µ-function.
Furthermore, they observed that the class of realizable sequences is unchanged if we

require T to be a homeomorphism of a compact metric space X . Puri [4] poses the
question of whether the class of realizable sequences changes if we require that T be a C∞

diffeomorphism of a smooth manifold M .
This question would seem to be harder because of the presence of non-trivial

obstructions coming from both the topological and smooth structures. Hunt and Kaloshin
[2, 3] prove that for a prevalent diffeomorphism the growth of periodic points is at most
stretched exponential.
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Depending on the manifold there may be restrictions arising from the Lefschetz fixed
point theorem. The choice of (φn)∞n=1 therefore restricts the choice of manifolds on which
even a homeomorphism could realize (φn)∞n=1. For example, every homeomorphism of the
sphere must have at least one point of period 2.

Given a realizable sequence (φn)∞n=1 we construct a diffeomorphism T of T2 which
realizes this sequence. For each period we introduce an invariant circle on which
the induced diffeomorphism has the appropriate rational rotation number. The only
complication is that these invariant circles must accumulate. They accumulate on another
invariant circle on which the induced diffeomorphism has an irrational rotation number.
All periodic points have index 0. The resulting diffeomorphism is not expansive and has
zero topological entropy.

MAIN RESULT. If (φn)∞n=1 is a realizable sequence of non-negative integers then there
exists T ∈ Diff∞(T2) which realizes the sequence.

2. Preliminaries
Our construction involves controlled perturbations in the space of C∞ diffeomorphisms
on T2, which we denote by Diff∞(T2). This can be made into a complete metric space in
the following manner:

d∞(S, T ) := max{d∞(S, T ), d∞(S−1, T −1)}

where d∞ is the complete metric on the space of C∞ mappings on T2, denoted by
C∞(T2, T2). This metric can be constructed by embedding C∞(T2, T2) in

∏
Ck(T2, T2).

It can also be computed directly as

d∞(S, T ) = sup
k1,k2≥0

min{d0((∂k1+k2/∂xk1
1 ∂xk2

2 )S, (∂k1+k2/∂xk1
1 ∂xk2

2 )T ), 1}

2k1+k2
,

where d0 is the appropriate C0 metric.

3. Construction
The main result is a corollary of a slightly more general theorem about maps of an annulus.
Let I := [0, 1] and T := R/Z.

THEOREM. Let ε > 0 be arbitrary and let (φn) be a realizable sequence of non-negative
integers. Define m = min{n : φn > 0}. Suppose that ϕ ∈ C∞(I, R+) satisfies:
(1) ϕ(0), ϕ(1) ∈ R\Q;
(2) osc ϕ := max ϕ − min ϕ > 1/m.
Define T ∈ Diff∞(T × I ) by

T (x, y) := (x + ϕ(y), y).

Then there is a T̃ ∈ Diff∞(T × I ) such that:
(1) d∞(T, T̃ ) < ε;
(2) the number of periodic points of period n is φn;
(3) T (x, 0) = T̃ (x, 0) and T (x, 1) = T̃ (x, 1);
(4) all periodic points are isolated and have index 0.
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This follows rather straightforwardly from a lemma about perturbations in a
neighborhood of an invariant circle. We show that a small perturbation can be made to
make the induced rational rotation have any given number of periodic orbits with all other
points asymptotic to a periodic orbit.

LEMMA. Let ε > 0 be arbitrary, φo
∈ Z+, and ϕ ∈ C∞([−δ, δ], R+) satisfy ϕ(0) = a/b

with (a, b) = 1. Define T ∈ Diff∞(T × [−δ, δ]) by

T (x, y) := (x + ϕ(y), y)

Then there is a transformation T̂ ∈ Diff∞(T × [−δ, δ]) such that:
(1) d∞(T̂ , T ) < ε;
(2) T̂ = T in a neighborhood of the boundary;
(3) T̂ (x, 0) has precisely φo orbits of prime period b and no other periodic points.

Proof. Indeed the transformation T̂ can be chosen with the form

T̂ (x, y) = (x + ϕ(y) + f (x, y), y) with f (x, y) = ξ(x)ζ(y).

The function ζ ∈ C∞([−δ, δ], R) is a scaled bump function which is zero in a
neighborhood of the boundary and positive at 0. We choose ξ ∈ C∞(T, R) to have the
following properties:
(1) ξ(x) ≥ 0;
(2) ξ(x) = 0 if and only if x = i/(φob) for some i ∈ Z.
The properties we have required depend only on the zeros and the sign of the function and
not on the magnitude. Hence, we may multiply the function f by any positive constant
and still get a function with all the required properties.

The map T̂ is invertible if we ensure that fx (x, y) > −1. Then by the inverse function
theorem we have that T̂ is a C∞-diffeomorphism. By controlling the Cn norm of f we
may ensure that d∞(T, T̂ ) < ε, as required.

Thus T̂ is a circle diffeomorphism. Let x̂ = i/(φob) for some i ∈ Z. Since f (̂x, 0) = 0
we have

T̂ j (̂x, 0) =

(
x̂ + j

a

b
, 0

)
mod 1 (1)

and x̂ is periodic of prime period b. Therefore, T̂ has rotation number a/b and any periodic
point must have period b. Now

T̂ b(x, 0) = (x + Sb f (x, 0), 0) mod 1

where

Sb(x, 0) =

b−1∑
i=0

f (T i (x, 0)).

If x 6= i/(φob) then

0 < Sb f (x, 0) <
1
φo ≤ 1

and thus x cannot be a periodic point. 2



1040 A. J. Windsor

Now we apply the lemma to a countable collection of invariant circles and then apply a
perturbation to ensure that only these periodic points persist.

Proof of the Theorem. Let φo
n be the corresponding sequence of the number of orbits

of prime period n. If φo
n > 0 then we choose a circle Cn := {(x, y) : y = yn} such that

ϕ(yn) = a/n with (a, n) = 1. This is always possible because of the hypothesis on the
oscillation of ϕ. We can choose yn such that yn increases to 1 as n → ∞.

For each such circle Cn we can find an annular neighborhood Nn of Cn such that the
collection of neighborhoods {Nn} is pairwise disjoint and disjoint from the boundary.
Applying the lemma to each neighborhood with εn decreasing to 0, we construct a new
diffeomorphism T̂ such that the required sequence of periodic points is realized by the
restriction of T̂ to the family of circles {Cn} and d∞(T, T̂ ) < ε/2.

In order to ensure there are no further periodic points we introduce a second perturbative
term. Define T̃ by

T̃ (x, y) = (x + ϕ(y) + f (x, y), y + g(y)).

The function g ∈ C∞(I, R) is chosen with the following properties:
(1) g(y) ≥ 0;
(2) g(y) = 0 if and only if y = yn , where yn defines one of our circles Cn , y = 0, or

y = 1.
For any n the map g can be chosen to have arbitrarily small Cn norm since we can multiply
by any positive constant. In addition, although it is not used here, we notice that we could
take g to be C∞ flat at y = 0 and y = 1.

This map is invertible provided fx (x, y) > −1 and gy(y) > −1. The estimate on f is
automatic as f comes from T̂ which is a diffeomorphism and we can choose g accordingly.
If we choose g with a sufficiently small Cn norm then we may ensure that d∞(T̃ , T̂ ) < ε/2.

On each circle Cn , and on the two boundary circles, we have T̃ = T̂ . On the two
boundary circles we have T̃ = T . Since the rotation induced by T on the boundary is
irrational these circles contain no periodic points. Since g(y) ≥ 0 the y-coordinate is non-
decreasing under the action of T̃ . If (x, y) is not on the boundary or one of the circles Cn

then g(y) > 0 and thus (x, y) cannot be periodic. Thus, the only periodic points occur on
the specified circles Cn and these periodic points realize the sequence φn . 2

Finally we state a corollary of the theorem and give a proof.

COROLLARY. If (φn)∞n=1 is a realizable sequence of non-negative integers then there exists
T ∈ Diff∞(T2) which realizes this sequence.

Proof. Choose α ∈ R\Q. Define m = min{n : φn > 0}. Choose ϕ ∈ C∞(I, R+) such that
ϕ(0) = ϕ(1) = α, ϕ is C∞ flat at y = 0 and y = 1, and osc ϕ > 1/m. Then apply the main
theorem to get a diffeomorphism T̃ , observing that the perturbation by g(y) respects the
C∞ flatness on the boundary. Thus we may identify the boundaries to get a diffeomorphism
of T2. 2
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