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Abstract. We augment the method of C∞ conjugation approximation with explicit
estimates on the conjugacy map. This allows us to construct ergodic volume
preserving diffeomorphisms measure-theoretically isomorphic to any a priori given
Liouville rotation on a variety of manifolds. In the special case of tori the maps
can be made uniquely ergodic.

1. Introduction
We call a diffeomorphism f of a compact manifold M that preserves a smooth
measure µ a smooth realization of an abstract system (X,T, ν) if they are measure-
theoretically isomorphic. A diffeomorphism of a compact manifold has finite
entropy with respect to any Borel measure. The natural question therefore becomes
whether every finite entropy automorphism of a Lebesgue space has a smooth
realization. This problem remain stubbornly intractable and there remain abstract
examples that have no known smooth realizations.

We seek to find smooth realizations of one of the simplest types of
automorphisms; aperiodic automorphisms with pure point spectrum with a group of
eigenvalues with a single generator. Such automorphisms are measure theoretically
isomorphic to irrational rotations of the circle. They therefore have a natural
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2 B.R Fayad, M. Saprykina, A. Windsor

smooth realization. We seek smooth realizations on manifolds other than T. Such
realizations are called non-standard smooth realizations.

We extend the conjugation approximation method of Anosov and Katok [1] to
construct non-standard smooth realizations of a given Liouville rotation on T on
a variety of manifolds M . Indeed, in the special case that the manifold is Td

for d ≥ 2, we can produce uniquely ergodic realizations of the given Liouville
rotation. The crucial new ingredient is an explicit construction of the conjugating
maps that allows us to estimate their derivatives. This allows us to ensure
that the construction converges for a predetermined Liouville number α. The
approach parallels that taken in [3]. The original paper of Anosov and Katok paper
constructed non-standard smooth realizations of a dense set of Liouville rotations.
However, without estimates, it was not possible to identify which Liouville rotations
could be realized.

Definition 1. A number α ∈ R\Q is a Liouville number if for all k > 0 we have

lim inf
q→∞ qk‖qα‖ = 0 (1)

where ‖qα‖ = infp∈Z |qα− p|.
Let Td := Rd/Zd denote the d-dimensional torus. Let Rθ : T → T be the rotation

of the circle, taken with the Haar probability measure, given by Rθ(x) = x + θ

mod 1.
Denote by Diff∞(M,µ) the class of C∞ diffeomorphisms of M that preserve a

C∞ smooth volume µ. Throughout this paper we will use λ for the probability
measure induced by the standard Lebesgue measure.

Theorem 1. Let M be a compact connected manifold of dimension d ≥ 2, possibly
with boundary, that admits an effective C∞ action of T preserving a C∞ smooth
volume µ. For every α ∈ R\Q Liouville there exists an ergodic T ∈ Diff∞(M,µ)
measure-theoretically isomorphic to the rotation Rα.

In the special case M = Td we can strengthen the result to obtain unique
ergodicity.

Theorem 2. For every Liouville α ∈ R\Q, and every d ≥ 2 there exists a uniquely
ergodic transformation T ∈ Diff∞(Td, λ) such that T is measure-theoretically
isomorphic to the rotation Rα.

It remains open whether there are C∞ realizations of Diophantine rotations on
any manifold other than T.

2. Construction
2.1. Outline The required measure preserving diffeomorphism T is constructed
as the limit of a sequence of periodic measure preserving diffeomorphisms Tn. For
each of the properties that we wish the limiting diffeomorphism T to possess, we
establish an appropriate finitary version possessed by the periodic diffeomorphism
Tn.
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Nonstandard Smooth Realizations of Liouville Rotations 3

Let S : T ×M → M denote an effective C∞ action of T on M that preserves
the volume and denote by Sα the diffeomorphism S(α, ·). The diffeomorphism Tn

is given by
Tn := HnSαnH

−1
n (2)

where αn ∈ Q and Hn ∈ Diff∞(M,λ).
We choose a sequence αn := p′n/q

′
n such that |αn − α| → 0 monotonically.

This choice defines a sequence of intermediate scales by qn = qd
n−1q

′
n satisfying

q′n < qn < q′n+1 which are geometrically natural for all the previous transformations.
Fixing qn determines Hn+1 via the iterative formula

Hn+1 = Hnhn,qn . (3)

Defining the family of maps hn,q and investigating their properties will form the
bulk of this paper.

2.2. Reduction Though Theorem 1 appears considerably more general than
Theorem 2 they follow from nearly identical arguments. We are able to reduce the
case of a generalM admitting a smooth C∞ action of T to the case ofM = Id−1×T,
where I = [0, 1] is the standard unit interval, with Sθ : Id−1 × T → Id−1 × T given
by

Sθ(x1, . . . , xd) = (x1, . . . , xd−1, xd + θ mod 1).

Let σ denote the effective T action on M . For q ≥ 1 we denote by Fq the
set of fixed points of the map σ(1/q, ·) and let B := ∂M ∪ ⋃

q≥1 Fq be the set of
exceptional points.

We quote the following proposition of [2] that is similar to other statements in
[1, 6]

Proposition 1. [2, proposition 5.2] Let M be an d-dimensional compact connected
C∞ manifold with an effective circle action σ preserving a smooth volume µ. Then
here exists a continuous surjective map Γ : Id−1 × T → M with the following
properties
1. The restriction of Γ to (0, 1)d−1 × T is a C∞ diffeomorphic embedding;
2. µ(Γ(∂(Id−1 × T)) = 0;
3. Γ(∂(Id−1 × T)) ⊃ B;
4. Γ∗(λ) = µ;
5. σ Γ = ΓS.

An application of Proposition 1 at each step allows us to conclude Theorem 1
from the special case M = Id−1 × T. Thus the construction need only be carried
out for two specific manifolds; M = Td or M = Id−1 × T. For both we take the
action Sθ : M →M given by

Sθ(x1, . . . , xd) = (x1, . . . , xd−1, xd + θ mod 1)

that preserves the smooth unit volume λ induced by the usual Lebesgue measure
on Rd.
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4 B.R Fayad, M. Saprykina, A. Windsor

2.3. Partitions and Measure-Theoretic Isomorphism The most difficult property
to define on a finite scale is that of measure-theoretic isomorphism to a circle
rotation. We use the abstract theory of Lebesgue spaces. Given an isomorphism
of measures space (M1,B1, µ1) and (M2,B2, µ2) there is a natural isomorphism of
the associated measure-algebras. If both the measure-spaces are Lebesgue spaces
then the converse is true; every isomorphism of the measure-algebras arises from a
point isomorphism of the measure spaces. This is the crucial observation that leads
to the following abstract lemma, which appears as [1, Lemma 4.1].

Given a partition ξ of a space M we write ξ(x) for the atom of the partition
which contains x. We say that a sequence of partitions ξn generates if there is a
set F of full measure such that for every x ∈ F we have

{x} = F ∩
∞⋂

n=1

ξn(x).

Lemma 1. Let M1 and M2 be Lebesgue spaces. Let (ξ(i)n )∞n=1 be a monotone
sequence of finite measurable partitions of Mi that generates. Let (T (i)

n )∞n=1 be
a sequence of automorphisms of Mi such that
1. (T (i)

n )∞n=1 converges in the weak topology to an automorphism T (i) of Mi.
2. T

(i)
n ξ

(i)
n = ξ

(i)
n .

Suppose that for each n there exists a measure-theoretic isomorphism Kn :
M1/ξ

(1)
n →M2/ξ

(2)
n of the probability vectors such that:

3. K−1
n T

(2)
n

∣∣∣
ξ
(2)
n

Kn = T
(1)
n

∣∣∣
ξ
(1)
n

.

4. for all ∆ ∈ ξ
(1)
n−1

Kn∆ = Kn−1∆.

Then the automorphisms T (1) and T (2) are measure-theoretically isomorphic.

Consider the partition of T given by

η̃q := {∆̃i,q : 0 ≤ i < qd} (4)

where ∆̃i,q := [iq−d, (i+ 1)q−d). This partition is preserved under the action Rp/q.
For any increasing sequence of qn the sequence of partitions η̃qn generates. Let
M2 = T, ξ(2)n = η̃qn and T (2)

n = Rαn . Since qn divides qn+1 we have η̃qn < η̃qn+1 .
Let πd : M → T denote the projection onto the last component of M . We obtain

a partition of M by
ηq = π−1

d η̃q = {∆i,q : 0 ≤ i < qd} (5)

where
∆i,q := {x : xd ∈ [iq−d, (i+ 1)q−d)},

see Figure 1. Since πd Sα = Rα πd the partition ηq is preserved under the action of
Sp/q and, moreover, the action of Sp/q on ηq is conjugated with that of Rp/q on η̃q.
Unfortunately the sequence of partitions ηqn does not generate.

Let M1 = M and define the sequence of partitions

ξ(1)n := Hn+1ηqn = Hnhn,qnηqn . (6)
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Nonstandard Smooth Realizations of Liouville Rotations 5

πd

∆1,3∆̃1,3

∆9,3∆̃9,3

Figure 1. The partition η3 of either I × T or T
2 and the partition η̃3 of T.

Unlike the sequence ηqn , the sequence ξ(1)n can be made to generate. We construct
hn,q as a diffeomorphism of π−1

d [0, q−1] and extend it to all of M by requiring that
it commute with Sq−1 . Then
1. Since qd

n−1 divides qn we have for 0 ≤ i < qd
n−1

hn,qn∆i,qn−1 = ∆i,qn−1 .

2. Since q′n divides qn we have

hn,qn Sαn = Sαn hn,qn .

As ηqn−1 < ηqn we haveHn+1ηqn−1 < Hn+1ηqn . By the first of our two properties we
have that Hn+1ηqn−1 = Hnηqn−1 and hence ξ(1)n−1 < ξ

(1)
n . Thus {ξ(1)n } is a monotone

sequence of partitions as required by Lemma 1. The second property ensures that
Tnξ

(1)
n = ξ

(1)
n . Define the map

Kn = πd H
−1
n+1.

Using the two properties we have that

Kn T
(1)
n = T (2)

n Kn

Kn(Hn∆i,qn−1) = Kn−1(Hn∆i,qn−1)

as required by Lemma 1.
This completes the proof of the main theorem except for the proof that the

sequence Tn converges in Diff∞(M,λ) and the proof that ξ(1)n generates.

2.4. Construction of the Conjugating Maps. We will carry out the constructions
for M = Td and M = Id−1 × T simultaneously. The proof of unique ergodicity in
the case M = Td will appear in a later section.

Lemma 2. Let n > 2d and q ∈ N . There exists a map hn,q ∈ Diff∞(M,λ) and a
set En,q ⊂M such that:
1. hn,qSq−1 = Sq−1hn,q and hn,q

(
π−1

d [0, q−1]
)

= π−1
d [0, q−1].

2. λ(En,q) > 1 − 4 d−1
n2 .

3. for each 0 ≤ i < qd,

diamhn,q(∆i,q ∩ En,q) <
√
dq−1.
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6 B.R Fayad, M. Saprykina, A. Windsor

2.4.1. Heuristic Construction. In order to motivate the construction of the family
of conjugacy maps we first construct a family of measure-preserving discontinuous
maps h̃q such that h̃q commutes with Sq−1 and carries each ∆i,q into a d-dimensional
cube with side-length q−1.

∆1,3

∆2,3

∆3,3

∆4,3

∆5,3

∆6,3

∆7,3

∆8,3

∆9,3

φ̃3∆1,3 φ̃3∆2,3 φ̃3∆3,3

φ̃3∆4,3 φ̃3∆5,3 φ̃3∆6,3

φ̃3∆7,3 φ̃3∆8,3 φ̃3∆9,3

φ̃3

Figure 2. Action of φ̃3 = h̃3 on the partition η3.

Let φ̃q be defined on [0, 1] × [0, q−1] by letting it act on the interior by

φ̃q(x, y) := (qy, q−1(1 − x))

and extend it to all of [0, 1]× [0, 1] by requiring φ̃q(x, y+ q−1) = φ̃q(x, y)+ (0, q−1).
Define φ̃(i)

q by

[φ̃(i)
q ]j(x1, . . . , xd) =




[φ̃q]1(xi, xi+1) j = i

[φ̃q]2(xi, xi+1) j = i+ 1

xj otherwise

(7)

The map h̃q is defined by
h̃q := φ̃(1)

q · · · φ̃(d−1)
q .

Each ∆i,q is mapped, by h̃q, into a cube of side-length q−1. The map h̃q commutes
with Sq−1 since φ̃(d−1)

q commutes with Sq−1 by construction and the other φ̃(i)
q do

not affect xd, see Figure 2.

2.4.2. Proof of Lemma 2 Our family of conjugating maps hn,q is constructed
using the same process as h̃q above. Clearly control of some of the space must be
relinquished in order to be able to produce a C∞ volume preserving map. One
additional complication arises ensuring that we retain sufficient control over every
orbit. Let ϕn denote a C∞ map of the unit square satisfying
1. ϕn = Id on a neighborhood of the boundary.
2. ϕn acts as a pure rotation by π

2 on

�n =
[ 1
n2
, 1 − 1

n2

] × [ 1
n2
, 1 − 1

n2

]
.

3. ϕn preserves Lebesgue measure.
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Nonstandard Smooth Realizations of Liouville Rotations 7

To construct such a map we observe that the unit square can be mapped to the
unit circle by

A(x, y) =
(
(2x− 1)

√
1 − (2y − 1)2

2
, (2y − 1)

√
1 − (2x− 1)2

2
)
.

This map is continuous and is a diffeomorphism on the interior. Moreover the map
is equivariant under rotation by π

2 . The image of �n under A is compact and hence
we can find radii r1 < r3 < 1 such that the image is contained in the interior of
the disk of radius r1. We consider the restriction of the measure A∗λ to the disk
of radius r3. This is a smooth manifold with boundary endowed with a smooth
measure. Using polar coordinates and the method of [1, Theorem 1.2] we can find
a radius r2 with r1 < r2 < r3 and a diffeomorphism S(r, θ) = (g(r, θ), θ) such that

S∗A∗λ =

{
A∗λ r ≤ r1

λ r2 ≤ r ≤ r3.

Since the measure A∗λ is invariant under rotation by π
2 we may choose g so that

that g(r, θ + π
2 ) = g(r, θ) and thus S commutes with rotation by π

2 . Thus the
measure S∗A∗λ is invariant under rotation by π

2 . Let ρ : [0, r3] → [0, π
2 ] be a C∞

smooth function that is 0 is a neighborhood of r3 and π
2 on [0, r2]. Now we consider

the smooth map on the disk of radius r3 defined by

B(r, θ) = (r, θ + ρ(r))

Since the measure on the disk of radius r2 is invariant under rotation by multiples of
π
2 , and the measure on the annulus r2 ≤ r ≤ r3 is Lebesgue and therefore invariant
under all rotations, this map is measure preserving. Since S−1B S is identity in a
neighborhood of the boundary of the disk of radius r3 we can extend it by identity
to a map of the whole unit disk. Now ϕn = A−1 S−1B S A is the required map of
the square. By symmetry of ϕn we see that |||ϕn|||k = |||ϕ−1

n |||k.
Let Cq(x, y) := (x, q−1y) and define φn,q on [0, 1] × [0, q−1] by

φn,q := CqϕnC
−1
q . (8)

Extend φn,q to the entire unit square by requiring that

φn,q(x, y + q−1) = φn,q(x, y) + (0, q−1).

This agrees with φ̃q on a set of volume (1 − 2/n2)2 which we estimate from below
by 1 − 4/n2. Analogously to our earlier definition of φ̃(i)

q we define φ(i)
n,q.

[φ(i)
n,q]j(x1, . . . , xd) =




[φn,q]1(xi, xi+1) j = i

[φn,q]2(xi, xi+1) j = i+ 1

xj otherwise
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8 B.R Fayad, M. Saprykina, A. Windsor

Figure 3. The set Enq for the case M = I × T (left) and for the case M = T
2 (right).

2.4.3. M = Id−1 × T Case. We define the conjugating map hn,q : Id−1 × T →
Id−1 × T by

hn,q := φ(1)
n,q · · ·φ(d−1)

n,q .

This map agrees with h̃q on a set En,q given by

Ec
n,q =

d−1⋃
i=1

π−1
i

([
0,

1
n2

) ∪ (
1 − 1

n2
, 1

]) ∪
d−1⋃
j=1

qj⋃
k=1

π−1
d (

k

qj
− 1
n2qj

,
k

qj
+

1
n2qj

), (9)

see Figure 2.4.4. Treating the sets on the right as disjoint we can estimate

λ(En,q) > 1 − 4
d− 1
n2

. (10)

2.4.4. M = Td Case. In order to produce a unique ergodic diffeomorphism T it
is necessary to control all orbits. The set En,q constructed above for the case of
M = Id−1 × T excludes entire orbits. In order to rectify this requires one more
map. Let ψq : Td → Td denote the translation

ψq(x1, . . . , xd−1, xd) := (x1, . . . , xd−1, xd) + xd(q, . . . , q, 0) mod 1. (11)

Obviously ψq commutes with Sq−1 and preserves the Lebesgue measure.
Furthermore, since ψq does not affect the last coordinate, it preserves each ∆i,q.
For the uniquely ergodic case we define

hn,q := φ(1)
n,q · · ·φ(d−1)

n,q ψq (12)

Exactly as for the ergodic case hn,q agrees with h̃q on a set En,q with

λ(En,q) > 1 − 4
d− 1
n2

.

The map ψq ensures that En,q contains most of every orbit, see Figure 2.4.4.

2.5. Analytic Properties
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Nonstandard Smooth Realizations of Liouville Rotations 9

2.5.1. Notation All of our diffeomorphisms h : Id−1 × T → Id−1 × T are the
identity in a neighborhood of the boundary and hence can be identified with a
diffeomorphism h : Td → Td. Defining a topology on Diffk(Td,Td) defines a
topology on the closure of the space of diffeomorphisms h : Id−1 × T → Id−1 × T

that are the identity in a neighborhood of the boundary.
Let f, g ∈ C0(Td,Td). We define

d̂0(f, g) = max
x∈M

d
(
f(x), g(x)

)
.

Let f ∈ Ck(Rd,R). Given a ∈ Nd we denote |a| := a1 + · · · + ad and

Daf :=
∂|a|f

∂xa1
1 . . . ∂xad

d

.

Using this we can define

|||f |||k = max
1≤|a|≤k

max
x∈M

|Daf(x)|.

For f ∈ Ck(Rd,Rd) we define

|||f |||k = max
1≤i≤d

max
1≤|a|≤k

max
x∈M

|Dafi(x)|.

For h : Td → Td we can define a natural lift ĥ : Rd → Rd. Now given
f, g ∈ Ck(Td,Td) we define

d̂k(f, g) = max{d0(f, g), |||f̂ − ĝ|||k}

Finally, for f, g ∈ Diffk(Td,Td) we define

dk(f, g) = max{d̂k(f, g), d̂k(f−1, g−1)}

The metric defined in this way is equivalent to the usual one defined via the
operator norms but is easier to work with for explicit estimates. For further details
consult [5].

2.5.2. Estimates

Lemma 3. We have the following estimate:

|||hn,q|||k < C1q
dk |||h−1

n,q|||k < C1q
dk (13)

where C1 depends on d, k, and n but is independent of q.

Proof: By direct computation we obtain

|||φ(i)
n,q |||k < qk|||ϕn|||k, |||(φ(i)

n,q)
−1|||k < qk|||ϕ−1

n |||k (14)

and
|||ψq|||k < q, |||ψ−1

q |||k < q. (15)
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10 B.R Fayad, M. Saprykina, A. Windsor

We claim that partial derivatives with |a| = k consist of sums of products of at
most (d− 1)k terms of the form(

Db[φ(i)
n,q]j

)
(φ(i+1)

n,q . . . φ(d−1)
n,q ψq) (16)

with |b| ≤ k and at most k terms of the form

Dc[ψq]j (17)

with |c| = 1. This is true for |a| = 1 by computation and, by the product and
chain rules, if it is true for |a| = k then it is true for |a| = k + 1. By induction it is
therefore true for all k.

Now suppose that each summand in the expression for Da[hn,q]j satisfies an
estimate of the form (13) for 1 ≤ j ≤ d and for |a| = k. We will then show that
each summand in the expression for Da[hn,q]j for 1 ≤ j ≤ d and |a| = k+1 satisfies
an estimate of the form (13). The estimate (13) for follows from the estimate on
the summands.

We use our structure theorem for k. Differentiating a term of the form (16) we
get a sum of products of d + 1 − i terms. The first is of the form (16) but with
the power of the derivative raised by 1. The next d − 1 − i terms are first partial
derivatives of φ(i+1)

n,q , . . . , φ
(d−1)
n,q . The final term is a first partial derivative of ψq.

Applying the estimates (14) we see that the required power of q has been increased
by at most d. Differentiating (17) gives zero since ψq is linear.

The same considerations give us the estimate for h−1
n,q since it has the same

structure and we have the same estimates on the constituent maps.
�

By an application of Faà di Bruno’s formula we obtain the following corollary.

Corollary 1. We have the following estimate

|||Hnhn,q|||k < C2q
kd |||h−1

n,qH
−1
n |||k < C2q

kd (18)

where C2 depends on d, Hn, n, and k but is independent of q.

2.6. Completing the Construction Having now constructed the family of maps
hn,q from which the maps Hn are assembled it remains only to explain how we
choose the sequence qn. The choice of qn determines αn as the best approximation
to α with denominator qn.The choices of q1, ..., qn−1 completely determines Hn. We
show how given Hn we choose qn so that Tn has the desired properties.

In the original Anosov and Katok method of construction the choice of αn in
the definition of Tn (2) determined the distance between the already determined
Tn−1 and Tn in Diffn. The observation there was that if αn could be chosen
arbitrarily close to αn−1 then the transformation Tn could be made arbitrarily
close to Tn−1. The advantages of this approach are that no estimates on the maps
Hn are required. Unfortunately this approach is inconsistent with ensuring that the
sequence αn converges to an a priori given number α. In the approach we take the
choice of qn (and hence of αn) determines the distance between Tn and, the as-yet
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Nonstandard Smooth Realizations of Liouville Rotations 11

undetermined transformation, Tn+1. Since the choice of qn fixes the conjugacy map
Hn+1 the only undetermined quantity in Tn+1 is the choice of αn+1. Supposing
only that the choice of αn+1 will be a better approximation to α than αn we are
able to estimate the distance between Tn and Tn+1 knowing only the choice of αn.

Lemma 4. Let k ∈ N. For all h ∈ Diffk+1(M) and all α, β ∈ R we obtain

dk(hSα h
−1, h Sβ h

−1) ≤ C3 max{|||h|||k+1
k+1, |||h−1|||k+1

k+1} |α− β|
where C3 depends only on k.

This estimate is wasteful. It ignores the trade-off between the order of the
derivatives that appear and their number. Since we just have to control derivatives
on a polynomial size the estimate is sufficient.

Proof: For k = 0 we have the estimate

d0(hSα h
−1, h Sβ h

−1) ≤ |||h|||1|α− β|
by the mean value theorem. We claim that for a ∈ Nd with |a| = k the partial
derivative

Da[hi Sα h
−1 − hi Sβ h

−1]

will consist of a sum of terms with each term being the product of a single partial
derivative (

Dbhi

)
(Sαh

−1) − (
Dbhi

)
(Sβh

−1) (19)

with |b| ≤ k, and at most k partial derivatives of the form

Dbh
−1
j (20)

with |b| ≤ k. For k = 1 we have

∂

∂xj
[hi Sα h

−1 − hi Sβ h
−1] =

d∑
l=1

(∂hi

∂xl
Sα h

−1 − ∂hi

∂xl
Sβ h

−1
)∂h−1

l

∂xj
.

We proceed by induction. By the product rule we need only consider the effect of
differentiating (19) and (20). Differentiating (19) with respect to xj we obtain

d∑
l=1

(∂Dbhi

∂xl
Sα h

−1 − ∂Dbhi

∂xl
Sβ h

−1
)∂h−1

l

∂xj
.

which increases the number of terms of the form (20) by 1. Differentiating (20) we
get another term of the form (20) but with |b| ≤ k + 1.

We estimate

‖Dahi Sα h
−1 −Dahi Sβ h

−1‖0 ≤ |||h||||a|+1|α− β|
‖Dah

−1
l ‖0 ≤ |||h||||a|

These estimates together with claimed structure of the partial derivatives, and the
fact that the inverse maps have the same structure, completes the proof. The
constant C3 is the number of terms in the sum which depends only on k and not
on the map h. �
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12 B.R Fayad, M. Saprykina, A. Windsor

Define Fn := Hn+1(En,qn) and let F := lim infn→∞ Fn. The Borel-Cantelli
Lemma states that if

∑∞
n=1 µ(F c

n) < ∞ then µ(F ) = µ(lim infn→∞ Fn) = 1. From
Lemma 2 we have ∞∑

n=1

µ(F c
n) <

∞∑
n=1

4(d− 1)
n2

<∞

so by the Borel-Cantelli Lemma µ(F ) = 1. We will show that any point in F has
a unique coding relative to the sequence of partitions ξn.

Proposition 2. Let εn be a summable sequence of positive numbers. There is a
choice of {q′n} such the transformations Tn defined by (2) satisfy
1. dn(Tn, Tn+1) < εn.
2. for A ∈ ξn

diam(A ∩ Fn) < εn

Proof: By the definition of a Liouville number for any C > 0 and m ∈ N we can
find q′n > qn−1 such that αn := p′n/q′n is a better approximation to α than αn−1

and such

C (q′n)m
∣∣p′n
q′n

− α
∣∣ < εn

Recall that we define qn = qd
n−1q

′
n. Since qn < (q′n)d+1 we have that for any C > 0

and m ∈ N we can find find q′n such that αn := p′n/q
′
n is a better approximation to

α than αn−1 and such

C qm
n

∣∣p′n
q′n

− α
∣∣ < εn

Now combining (18) and Lemma 4 there exists C > 0 and m ∈ N such that

dn(Tn, Tn+1) < C qm
n |αn − αn+1|

< 2C qm
n |αn − α|.

This is the crucial estimate for us, it enable us to capture all Liouville rotations. In
[1] no such estimate exists and convergence is guaranteed by making |αn − αn+1|
arbitrarily small. This would not be compatible with convergence to α.

Similarly for Hn+1∆i,qn ∈ ξn we have

diam(Hn+1∆i,qn ∩ Fn) = diam(Hnhn,qn(∆i,qn ∩ En,qn))

≤ ‖Hn‖1 diamhn,qn(∆i,qn ∩En,qn)

≤ ‖Hn‖1

√
dq−1

n

using Lemma 2. Similar estimates appear in [1]. This depends only on the size of
qn which can be chosen arbitrarily large. Thus we see that we can choose αn such
that the required two properties hold. �

Since εn is summable we have that {Tn} is a Cauchy sequence in Diff∞(M,λ)
and hence converges to some T ∈ Diff∞(M,λ). For any x ∈ F we have x ∈ Fn for
all but finitely many n. Thus, by Proposition 2, we have for all x ∈ F

∞⋂
n=1

ξn(x) ∩ F = {x}.
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This shows that {ξn} is a generating partition and hence completes the proof of
Theorem 1.

3. Unique Ergodicity
When M = Td we wish to prove unique ergodicity. We will use the following
abstract lemma, also used in [6].

Lemma 5. Let qn be an increasing sequence of natural numbers and Tn : X → X

a sequence of transformations which converge uniformly to a transformation T .
Suppose that for each continuous function ϕ from a dense set of continuous
functions Φ there is a constant c such that

1
qn

qn−1∑
i=0

ϕ(T i
nx) −−−−→n→∞ c uniformly (21)

and
d(qn)(Tn, T ) := max

x
max

0≤i<qn

d(T i
nx, T

ix) → 0 (22)

Then T is uniquely ergodic

Proof: Condition (22) implies that

‖ 1
qn

qn−1∑
i=0

ϕ(Tnx) − 1
qn

qn−1∑
i=0

ϕ(Tx)‖0 → 0

and then condition (21) becomes the standard result that if the Birkhoff sums
converge uniformly then the map is uniquely ergodic [4]. �

To establish condition (21) it is insufficient to know only that En,q has large
measure, we also need to know that most of every Sθ orbit intersects En,q.

For each x ∈ Td define σx : T → Td by σxθ = Sθx.

Lemma 6. Let q > dn2. For each x ∈ Td there is a set J (x)
n,q ⊂ Td, measurable with

respect to ηq, with measure

λ(J (x)
n,q ) > 1 − 4d

n2
(23)

such that if ∆i,q ⊂ J
(x)
n,q then

σ−1
x (∆i,q ∩ Ec

n,q) = ∅, (24)

λ(∆i,q ∩ En,q) >
(
1 − 2(d− 1)

n2

)
λ(∆i,q). (25)

Proof: It is immediate that

(E′
n,q)

c =
d−1⋃
i=1

π−1
i

(− 1
n2
,

1
n2

) ∪
d−1⋃
j=1

qj⋃
k=1

π−1
d (

k

qj
− 1
n2qj

,
k

qj
+

1
n2qj

) (26)
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14 B.R Fayad, M. Saprykina, A. Windsor

σx(T)

Figure 4. The orbit of x ∈ T
2, indicated by the arrow on the left, combines with En,q, indicated

by the shaded region on the left, to produce the set J
(x)
n,q , indicated by the shaded region on the

right.

Let x be arbitrary. We compute σ−1
x ψq(E′

n,q)
c using (26) and (11).

σ−1
x ψ−1

q π−1
i

(− 1
n2
,

1
n2

)
=

q⋃
l=1

( l
q
− 1
n2q

− xd − xi

q
,
l

q
+

1
n2q

− xd − xi

q

)

σ−1
x ψ−1

q π−1
d

( k
qj

− 1
n2qj

,
k

qj
+

1
n2qj

)
=

( k
qj

− 1
n2qj

− xd,
k

qj
+

1
n2qj

− xd

)
This excluded set of τ consists of at most (d − 1)q + qd−1 intervals. Expanding

these intervals to make them measurable with respect to σ−1
x ηq excludes an

additional set of measure at most
2
qd

(
(d− 1)q + qd−1

)
<

4
n2
.

Let E denote the smallest set that is measurable with respect to the algebra
generated by the partition σ−1

x ηq and contains σ−1
x Ec

n,q. We have λ(E) = 4d/n2.

Define the set J (x)
n,q to be the ηq measurable set satisfying

σ−1
x J (x)

n,q = Ec,

see Figure 4. �

Note that the proportion in (23) is lower than the proportion in (10). We have
had to give up control over parts of each orbit in order to gain control over all
orbits. The set J (x)

n,q consists of those atoms of ηq where we have control over the
behavior of all of Sθx under hn,q.

Using the geometric information contained in these lemmas we can prove a
distribution result.

Proposition 3. Let ε > 0, q ∈ N, and ϕ be a (
√
dq−d, ε)-uniformly continuous

function, i.e
ϕ(B√

dq−d(x)) ⊂ Bε(ϕ(x)).
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For all q′ ∈ N and for all x ∈ Td,∣∣∣∣ 1
q′

q′−1∑
i=0

ϕ(hn,qS
i
1/q′x) −

∫
ϕdλ

∣∣∣∣ < 14d
n2

‖ϕ‖0 +
2qd

q′
‖ϕ‖0 + 2ε. (27)

Proof: For x, y ∈ ∆i,q ∩ En,q we have

d(hn,qx, hn,qy) ≤ diamhn,q(∆i,q ∩ En,q) ≤
√
dq−d.

By the hypothesis on ϕ we have |ϕ(hn,qx) − ϕ(hn,qy)| < 2ε. Averaging over all
y ∈ ∆i,q ∩ En,q we obtain for any x ∈ ∆i,q ∩ En,q,∣∣∣∣ϕ(hn,qx) − 1

λ(∆i,q ∩ En,q)

∫
hn,q(∆i,q∩En,q)

ϕdλ

∣∣∣∣ < 2ε. (28)

Let O(x) consist of 
 q′

qd �qd points of the orbit of x under S1/q′ that are
equidistributed among the atoms of the partition ηq. There are at most qd

exceptional points outside of O(x).
By (24) for ∆i,q ⊂ J

(x)
n,q the number of points from O(x) in ∆i,q ∩ En,q is 
 q′

qd �.
Let I := {0 ≤ i < q′ : Si

1/q′x ∈ J
(x)
n,q ∩ O(x)} be the equidistributed points in good

atoms. Using this count and (28) we obtain∣∣∣∣ 1
q′

∑
i∈I

ϕ(hn,qS
i
1/q′x)

− 1
q′

∑
∆i,q⊂J

(x)
n,q

⌊
q′

qd

⌋
1

λ(∆i,q ∩ En,q)

∫
hn,q(∆i,q∩En,q)

ϕdλ

∣∣∣∣ < 2ε.

The remaining estimates just formalize the observation that since J (x)
n,q is nearly full

measure and since I is nearly all of the orbit the above estimate implies (27).
Since there are at most qd points in the orbit of S1/q′ but outside O(x) we obtain∣∣∣∣ 1

q′
∑

∆i,q⊂J
(x)
n,q

⌊
q′

qd

⌋
1

λ(∆i,q ∩ En,q)

∫
hn,q(∆i,q∩En,q)

ϕdλ

−
∑

∆i,q⊂J
(x)
n,q

1
qd

1
λ(∆i,q ∩ En,q)

∫
hn,q(∆i,q∩En,q)

ϕdλ

∣∣∣∣ < qd

q′
‖ϕ‖0

∣∣∣∣ 1
q′

q′−1∑
i=0

ϕ(hn,qS
i
1/q′x) − 1

q′
∑

i∈O(x)

ϕ(hn,qS
i
1/q′x)

∣∣∣∣ < qd

q′
‖ϕ‖0

Second we produce estimates using the fact that O(x) is equidistributed among the
elements of ηq and using (23) and (24)∣∣∣∣ 1

q′
∑

i∈O(x)

ϕ(hn,qS
i
1/q′x) − 1

q′
∑
i∈I

ϕ(hn,qS
i
1/q′x)

∣∣∣∣ < 4d
n2

‖ϕ‖0,

∣∣∣∣
∫

hn,qJ
(x)
n,q

ϕdλ −
∫
ϕdλ

∣∣∣∣ < 4d
n2

‖ϕ‖0
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16 B.R Fayad, M. Saprykina, A. Windsor

Finally we produce estimates using (25)∣∣∣∣
∫

hn,q(J
(x)
n,q∩En,q)

ϕdλ −
∫

hn,qJ
(x)
n,q

ϕdλ

∣∣∣∣ < 2(d− 1)
n2

‖ϕ‖0,∣∣∣∣ 1
qdλ(∆i,q ∩ En,q)

∫
hn,q(J

(x)
n,q∩En,q)

ϕdλ−
∫

hn,q(J
(x)
n,q∩En,q)

∣∣∣∣ < 4(d− 1)
n2

‖ϕ‖0.

Combining these estimates gives us exactly (27) as required. �

Proof of Theorem 2: Let Φ = {ϕn} be a set of Lipshitz functions that is dense in
C0(Td,R). Let Ln be a uniform Lipshitz constant for ϕ1Hn, . . . , ϕnHn.

At step n we can choose q′n so that
1. qd

n > n2 Ln

√
d,

2. q′n > n2 qd
n−1.

Both of these depend solely on the size of q′n which we are free to make arbitrarily
large and so these conditions are compatible with the proof of Proposition 2.
The first of our two size conditions implies that ϕHn, . . . , ϕnHn are uniformly
(
√
dq−d

n , n−2)-continuous. Therefore we can apply Proposition 3 with q = qn and
q′ = qn+1 and ε = n−2 to conclude that for 1 ≤ k ≤ n and for all x ∈ Td

∣∣∣∣ 1
q′n+1

q′
n−1∑
i=0

ϕkHn(hn,qnS
i
1/q′

n+1
x) −

∫
ϕkHndλ

∣∣∣∣ < 14d
n2

‖ϕk‖0 +
2qd

n

q′n+1

‖ϕk‖0 +
2
n2
.

Using the fact that Hn is measure-preserving, replacing x by Hn+1x, and reordering
the orbit we obtain for 1 ≤ k ≤ n and for all x ∈ Td

∣∣∣∣ 1
q′n+1

q′
n+1−1∑
i=0

ϕk(T i
n+1x) −

∫
ϕkdλ

∣∣∣∣ < 16d
n2

‖ϕk‖0 +
2
n2
.

This establishes (21) from Lemma 5. To establish (22) from 5 observe that there
exist C > 0 and m ∈ N such that

d(q′
n)(Tn, Tn+1) ≤ |||Hn+1|||1q′n|αn − αn+1|

≤ C qm
n |αn − α|

and hence we can choose q′n so that d(q′
n)(Tn, Tn+1) < 1/n2. By the triangle

inequality we immediately obtain that d(q′
n)(Tn, T ) < 2/n. In actual fact this

estimate is weaker than those that arise in the proof of Proposition 2 and so is
automatic.

This verifies the hypotheses of Lemma 5 and hence we conclude that T is uniquely
ergodic. �
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