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Abstract. The celebrated Livšic theorem [Liv71] [Liv72a], states that given M a
manifold, a Lie group G, a transitive Anosov diffeomorphism f on M and a Hölder
function η : M 7→ G whose range is sufficiently close to the identity, it is sufficient
for the existence of φ : M 7→ G satisfying η(x) = φ(f(x))φ(x)−1 that a condition —
obviously necessary — on the cocycle generated by η restricted to periodic orbits
is satisfied.

In this paper we present a new proof of the main result. These methods allow
us to treat cocycles taking values in the group of diffeomorphisms of a compact
manifold. This has applications to rigidity theory.

The localization procedure we develop can be applied to obtain some new results
on the existence of conformal structures for Anosov systems.

1. Introduction
The goal of this paper is to give a unified presentation – sometimes involving sharper
technical conclusions – of the existence of solutions to coboundary equations over
Anosov systems.

We will give precise definitions in Section 3 but we anticipate that the main
concern will be whether, given an Anosov diffeomorphism on a manifold M , and
function η : M → G, where G is a group (either a Lie group or a group of
diffeomorphisms), there exists a function φ : M → G such that

φ ◦ f = η · φ. (1)
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(We will also discuss the flow case, but we omit a preliminary discussion of it).
In the standard terminology, if we can find a solution to equation (1) then we say

that the cocycle generated by η is a coboundary. There are many other variations
of this question. For example, instead of taking G to be a Lie group, it is possible
to consider G to be a Banach algebra [BN98] or a bundle map. We will omit other
important variations, such as when (M,f) is a subshift. We will mention in Section
6 the situation when φ are conformal structures and η is natural map induced by
the tangent map. The study of such Livšic theorems in more geometric contexts
seems fruitful and will be pursued in further papers.

Cocycles arise naturally in many situations. They are intrinsic to the definitions
of special flows and skew products. In the study of dynamical systems, the chain rule
indicates that the derivative is a cocycle. The coboundary equation is geometrically
natural and hences arises naturally in a number of situations. In particular, (1)
appears naturally in the linearization of more complicated equations, for example,
it appears in the linearization of conjugacy equations. Hence, cocycle equations
are basic tools for the rigidity program [Zim84, GS97, BI02]. Cocycle equations
appear also in the study of the asymptotic growth properties of dynamical systems.
Diffeomorphism valued cocycles appear when considering the behavior of a system
relative to its behavior on a factor. The study of (1) with M a shift space,
appears naturally in thermodynamic formalism when one tries to decide whether
two potentials give rise to the same Gibbs state [Sin72, Bow75].

Note that, when fn(p) = p, the existence of a solution to (1) implies that

η(fn−1p) · · · η(fp) · η(p) = Id .

If this necessary condition holds for all periodic points p ∈M then we say that the
periodic orbit obstruction vanishes.

It is natural to ask whether the converse is true. Namely, if given an η such that
the periodic orbit obstruction vanishes, whether there is a φ solving (1). Another
natural question – especially for applications to geometry – is whether the solutions
of (1) are regular.

In this paper, we will concentrate in the existence question, but since we will
also study the case when G is a group of Cr diffeomorphisms, some regularity
considerations will come in.

The question of the existence of solutions to (1) was first studied by Livšic in
[Liv71] and [Liv72a], when f is a topologically transitive Anosov system, and in
[Bow75] when f was a subshift of finite type. We will refer as Livšic theorems to
theorems that guarantee the existence of solutions of (1) under the hypothesis that
f is a topologically transitive Anosov system or flow.† These papers showed that
when f is transitive and η is Hölder, then the periodic obstruction is sufficient for
the existence of a Hölder φ. (Continuity of η is definitely not enough and there are
counterexamples).

† Some references use also the spelling Livshitz. We prefer to maintain the spelling used in
[Liv71, Liv72a] and in much of the subsequent literature.
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There is a considerable literature on Livšic theorems in various contexts. [LS72]
shows that for real-valued Hölder cocycles the existence of L∞ solution to the
coboundary equation with a Hölder η implies the existence of a Hölder solution -
in the literature this is often called the measurable Livšic theorem. We note that
the main difficulty of measurable Livšic theorems is that (1) is not assumed to hold
everywhere, but only on a set of full measure. Hence restricting to a periodic orbit –
or to the stable manifold of a periodic point do not make sense. The interpretation
of the periodic orbit obstruction is far from obvious.

This was extended in the non-commutative case to certain Lp spaces using
Sobolev regularity techniques in [dlL01] though interestingly the case of L1

solutions remains open in the non-commutative case. A version of the measurable
Livšic theorem for cocycles taking values in semi-simple Lie groups without any
integrability assumptions appears in [NP01] though they need to assume additional
bunching conditions on the cocycle. Similarly a version of the measurable Livšic
theorem for cocycles taking values in compact Lie groups appears in [PP97].
This was extended, under some additional hypotheses, to the case of cocycles
taking values in connected Lie groups [PW01]. Similar results for hyperbolic flows
appear in [Wal00b]. That some additional hypotheses are necessary is proved by
a counterexample with a cocycle taking values in a solvable Lie group in [Wal00a].
Extensions of the measurable Livšic theorem to more general dynamics appear in
[PY99, Dol05]. Analogues for Markov maps or for systems with discontinuities,
appear in [NS03, Pol05, BHN05]. The study of the equation for skew-products
appears in [PP06, Dol05]. Cohomology equations over higher dimensional actions
were studied in [NT03, NT02, FM03]. In general the vanishing of the periodic
orbit obstruction can be difficult to verify though in some cases it is implied by
spectral data [DG75]. If we can verify that the periodic orbit obstruction vanishes
on periodic orbits of period less than T for some T then we may still obtain
approximate solutions to the cohomology equation [Kat90].

When M is a quotient of a group by a lattice and f is an automorphism,
the equation (1) can be studied using group representation techniques. For
example, [Liv72a] considered the case M = T2 = R2/Z2 and [CEG84] considered
M = PSL(2,R)/Γ and f a geodesic flow. A more general study of (1) using
representation techniques is in [Moo87]. The representation theory methods yield
information on the regularity questions also and the first results on regularity
appeared in [Liv72a]. The representation theory methods need to assume that f
has an algebraic structure, but not that it is Anosov [Vee86, FF07]. Of course, the
representation theory methods also lead to obstructions. Though the representation
theory obstructions must be equivalent to the periodic orbit obstructions, the
connection is mysterious.

For the particular case of geodesic flows further geometric information on the
solutions of the coboundary equation is obtained in [GK80a] for surfaces, and
in [GK80b] for n-dimensional manifolds with a pinching condition. The method of
these papers uses harmonic analysis in some directions of the problem and obtains,
not only regularity, but also several other geometric properties of the solutions (e.g.
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that they are polynomial in the angle variables).
The regularity theory for the case when G is commutative and f is any Anosov

system appeared in [dlLMM86], the technique did not use any representation
theory. The main idea was to show that the solutions are regular along the
stable/unstable leaves of an Anosov system and then, show that this implies
regularity. There are a number of approaches for obtaining regularity of the solution
from the regularity of the solution along transverse foliations. Besides the original
one using elliptic regularity theory, we can mention Fourier series [HK90], Morrey-
Campanato spaces [Jou88], Sobolev embedding [dlL04a] and Whitney regularity
[dlL92, NT07]. Higher regularity for the non-commutative case was studied very
thoroughly in [NT98].

In the case of cocycles taking values in a commutative group, two cocycles are
cohomologous if and only if their difference is a coboundary. This does not extend
to non-commutative groups and thus in this case it is natural to ask whether
there is a criteria on periodic orbits to determine whether two given cocycles are
cohomologous. This has been addressed in [Par99, Sch99, NT98].

We will discuss the existence of solutions in the context of cocycles taking values
in Lie groups and cocycles taking values in diffeomorphism groups. Our result
on cocycles taking values in a diffeomorphism group extends the earlier results of
[NT95] on Diffr(Tn) to Diffr(N) for any compact manifoldN . A different approach
for higher rank actions appears in [KN07].

The proof we present for the finite dimensional case is not very different from
the proof of [Liv72b], but we rearrange some of the terms in the cancellations
in a slightly different way so that as many of the terms are geometrically natural
– only objects in the same fiber of the tangent bundle are compared. We make
sure that the only comparisons which are not geometrically natural happen only in
points which are very close. Our presentation clearly illustrates the rôle played by
localization assumptions. These localizations assumptions depend on the nature of
group. They are always implied by η taking values in a small enough neighborhood
of the identity, but they are also automatic if the group is commutative, compact
or nilpotent. The behavior of non-commutative cocycle equations in the absence
of such localization assumptions depends on the global geometry of the group and
remains an open problem. In particular one of Livšic’s original theorems [Liv72a,
Theorem 3] is not justified. Resolving whether localization is necessary was posed
as an open problem by Katok during the Clay Mathematics Institute and MSRI
Conference on Recent Progress in Dynamics, 2004. After this paper was originally
submitted, [Kal08] contains a result that removes the localization assumption for
all matrix groups (more precisely, that the localzation assumption is implied by the
periodic orbit obstruction). See also [KS09]

The rearrangement of the terms so that they are geometrically natural is not
crucial in the case of Lie groups – there are many other alternative rearrangements
which work – but it becomes important in the case that the group G is a
diffeomorphism group. In the pioneering work [NT95], the authors needed to
assume that the manifolds were essentially flat. In Section 5, we remove this
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assumption. The paper [NT95] also contains applications of the results on
cohomology equations to rigidity of partially hyperbolic actions. If one inserts
the improvements presented here on the arguments of the the argument in
[NT95, NT01] one can also extend the results of those papers.

2. Some preliminaries on Anosov systems
2.1. Definitions Our cocycles will be over Anosov diffeomorphisms and Anosov
flows. These exhibit the strongest form of hyperbolicity, namely uniform
hyperbolicity on the entire manifold.

Definition 2.1 (Anosov Diffeomorphism) Let M be a compact Riemannian
manifold. A diffeomorphism f ∈ Diffr(M) for r ≥ 1 is called an Anosov
diffeomorphism if there exist C > 0 and λ < 1 and a splitting of the tangent
bundle

TM = Es ⊕ Eu

such that
i. For all v ∈ Esx \ {0} and for all n > 0

‖Dfnx v‖ < Cλn‖v‖.

ii. For all v ∈ Eux \ {0} and for all n < 0

‖Dfnx v‖ < Cλ|n|‖v‖.

If f is an Anosov diffeomorphism with constants C > 0 and λ < 1 then we will call
f λ-hyperbolic.

Remark 2.2. Note that in the definition of Anosov diffeomorphism the metric
enters explicitly. For a compact manifold M , if a diffeomorphism is Anosov in one
metric, then it is Anosov in all metrics, and one can even take the same λ for all
the metrics. The constant C, however, depends both on the metric and on the λ

that we choose. If f is λ-hyperbolic then it is possible to choose a metric, as smooth
as M , such that f is λ′-hyperbolic with constant C = 1 for any λ′ with λ < λ′ < 1.
Furthermore the metric may be chosen such that the sub-bundles Es and Eu are
orthogonal. Such a metric is sometimes called an “adapted metric” [Mat68].

Definition 2.3 (Anosov Flow) Let M be a compact Riemannian manifold. A
flow f t : M → M is called an Anosov flow if there exist C > 0 and λ > 0 and a
splitting of the tangent bundle

TM = Es ⊕ E0 ⊕ Eu

such that
i. At each x ∈M the subspace E0

x is one dimensional and

d

dt
f t(x)

∣∣
t=0
∈ E0

x \ {0}.
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ii. For all v ∈ Esx \ {0} and for all t > 0

‖Df txv‖ < Ce−λt‖v‖.

iii. For all v ∈ Eux \ {0} and for all t < 0

‖Df txv‖ < Ce−λ|t|‖v‖.

If f t is an Anosov flow with constants C > 0 and λ > 0 then we will call f t

λ-hyperbolic.

2.2. Anosov Foliations The sub-bundles Es, Eu ⊂ TM from the definition of
Anosov diffeomorphisms and flows are called the stable and unstable bundles
respectively. There are foliations W s and Wu associated to Es and Eu such that
TxW

s(x) = Esx and TxW
u(x) = Eux . These foliations can be characterized by:

W s(x) = {y ∈M : dM (fn(x), fn(y))→ 0}
= {y ∈M : dM (fn(x), fn(y)) ≤ Cx,yλn, n > 0}

Wu(x) = {y ∈M : dM (fn(x), fn(y))→ 0

= {y ∈M : dM (fn(x), fn(y)) ≤ Cx,yλ|n|, n < 0}

(2)

Similarly for flows one may define the center stable and center unstable bundles
Ecs and Ecu by Ecsx = E0

x ⊕ Esx and Ecux = E0
x ⊕ Eux . These are again integrable

and have associated foliations W cs and W cu respectively.
The global structure of the stable and unstable manifolds may be quite bad – they

are only immersed sub-manifolds. Moreover, though the leaves of the foliation are
as smooth as the map or flow the holonomy between leaves is generally less regular
than the map (the regularity is limited by ratios of contraction exponents). There
are many excellent sources for the theory of invariant manifolds – see for example
[HPS77] for an exposition of the Hadamard approach and see [BP06] for an
exposition of the Perron approach. The original method of Poincaré was reexamined
in modern language and extended in [CFdlL03]. A more comprehensive survey is
[Pes04].

2.3. The Anosov Closing Lemma For us the most crucial property of Anosov
systems is the following shadowing lemma, often called the Anosov closing lemma.

Lemma 2.4 (Anosov Closing Lemma for Flows) Let f t be an Anosov flow
on a compact Riemannian Manifold M . There exist ε > 0, C > 0, and T0 > 0 such
that if for some T > T0

dm(fTx, x) < ε

then there exists a unique periodic point p of period T + ∆ with

|∆| < CdM
(
x, fTx

)
such that

dM
(
f tp, f tx

)
< CdM

(
x, fTx

)
Prepared using etds.cls
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PSfrag replacements

z

x
fT z

fTx
Wu(fTx)

p = fT+∆p

fT p
Wu(x)
W s(p)

W s(fT p)

Figure 1. Illustration of the closing lemma, Lemma 2.4

and
W s

loc(p) ∩Wu
loc(x) = {z}.

Furthermore, we have
dM
(
z, x
)
< CdM

(
x, fTx

)
.

Remark 2.5. The statement of Lemma 2.4 is more involved than the corresponding
one for diffeomorphisms, Lemma 2.6, because all the points in a periodic orbit are
periodic, so that, in the case of flows, the set of periodic points of a given period,
that lie in a neighborhood, is not discrete. The shadowing periodic orbit is unique.
However the periodic point p is unique only if some additional condition, like our
condition on the unstable and stable manifolds, is imposed. This is not needed in
the case of diffeomorphisms, since periodic points of a fixed period are isolated.
Similarly, in the case of diffeomorphisms, since the set of periods is discrete, we do
not have to consider the ∆ that changes the period.

Lemma 2.6 (Anosov Closing Lemma for Diffeomorphisms) Let f be an
Anosov diffeomorphism on a compact Riemannian manifold M . There exist ε > 0,
K > 0, and λ > 0 such that if for some n ∈ Z

dM
(
fnx, x

)
< ε

we can find a unique periodic point p of period n satisfying

dM
(
f ix, f ip

)
< CdM

(
x, fnx

)
, for 0 ≤ i ≤ n.
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Furthermore, there is a unique point z satisfying

W s
loc(p) ∩Wu

loc(x) = {z}

and
dM
(
x, z
)
< CdM

(
x, fnx

)
.

This follows directly from the version of Anosov Closing Lemma [KH95,
Theorem 6.4.15] and local product structure [KH95, Proposition 6.4.13]. The
version presented for flows can be obtained in the same manner as that for
diffeomorphisms by considering the Poincaré map for a transverse section.

2.4. Cocycles

Definition 2.7. Let G be a group. A G-valued cocycle over a homeomorphism
f : M →M is a map Φ : M × Z→ G that satisfies

Φ(x,m+ n) = Φ(fnx,m) · Φ(x, n) (3)

for all x ∈M , and m,n ∈ Z. Here · denotes the group operation.

Definition 2.8. Let G be a group. A G-valued cocycle over a flow f t : M → M

is a map Φ : M × R→ G that satisfies

Φ(x, s+ t) = Φ(f tx, s) · Φ(x, t). (4)

where x ∈M , and s, t ∈ R. Here · denotes the group operation.

Remark 2.9. These are special cases of the more general definition of a cocycle
over a group action.

Any cocycle Φ over a homeomorphism f is determined entirely by its generator
η : M → G given by η(x) = Φ(x, 1). The cocycle Φ is reconstructed by

Φ(x, n) =


η(fn−1x) · · · η(x) n ≥ 1

Id n = 0

η−1(fnx) · · · η−1(f−1x) n ≤ −1

.

In the flow case the duality is not as complete. However if G is a Lie group with
Lie algebra g, f t is a smooth flow on M , and Φ is smooth then Φ is determined by
its infinitesimal generator η : M → g given by

η(x) =
d

dt
Φ(x, t)

∣∣∣
t=0

.

The cocycle can the be reconstructed as the unique solution to

d

dt
Φ(x, t) = DRΦ(x,t)η(f tx), Φ(x, 0) = Id

where RΦ(x,t) : g 7→ g · Φ(x, t) is the operation of right multiplication by Φ(x, t),
and hence DRΦ(x,t) : g→ TΦ(x,t)G.
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3. Livšic Theory for Lie Group Valued Cocycles
Let G be a Lie group endowed with a Riemannian metric. Let dG be the length
metric on the path-connected component of the identity in G. If G is non-compact
the group operation need not be Lipshitz but it is Lipshitz on any compact path-
connected domain. As G is a Lie group the multiplication operator is smooth.
Hence for every g ∈ G the operators Lh : g 7→ h · g and Rh : g 7→ g · h are smooth.

For F ∈ C1(G,G) define

|F |r := max{‖DgF‖ : g ∈ B(Id, r)}

This gives us the following estimates

if dG
(
gh−1, Id

)
< r then dG

(
g, h
)
≤ |Rh|r dG

(
gh−1, Id

)
. (5)

In general, without some localization, we cannot relate dG
(
gh−1, Id

)
and dG

(
g, h
)

but in the case of a continuous function η : M → G on a compact manifold M

there exists K > 0 such that

dG
(
η(x)η−1(y), Id

)
< K dG

(
η(x), η(y)

)
dG
(
η−1(x)η(y), Id

)
< K dG

(
η(x), η(y)

) (6)

since η(M) is a compact subset of G.

Theorem 3.1. Let M be a compact Riemannian manifold, f : M → M be a C1

topologically transitive λ-hyperbolic Anosov diffeomorphism, and G be a Lie group.
Let Φ ∈ Cα(M × Z, G) be a cocycle. For x, y ∈M define ∆n

x,y : G→ G by

∆n
x,y(g) = Φ−1(x, n) gΦ(y, n).

Suppose there exists ρ > 1 such that for all x, y ∈M and all n ∈ Z

|∆n
x,y|ρ−|n| ≤ Kρ|n|. (7)

Suppose that that for the the pair (f,Φ):
i. The periodic orbit obstruction vanishes:

If fnp = p then Φ(p, n) = Id.

ii. The hyperbolicity condition is satisfied:

ρλα < 1 (8)

then there exists φ ∈ Cα(M,G) that solves

Φ(x, n) = φ(fnx)φ−1(x). (9)

Moreover, if φ̂ is any other continuous solution to (9) then

φ̂ = φ · g

for some g ∈ G

Prepared using etds.cls
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Remark 3.2. Condition 7 will be examined in greater detail in Section 4. If
the group is a commutative Lie matrix group endowed with a matrix norm, or
a commutative Lie group endowed with an invariant metric then no localization
condition is required.

Proof Rearranging (9) we obtain

φ(fnx) = Φ(x, n) · φ(x) (10)

Thus we see that fixing φ(x) immediately determines φ on the entire orbit of x. Since
f is topologically transitive there exists a point x∗ with a dense orbit, O(x∗). Fixing
φ(x∗) therefore defines a function φ : O(x∗)→ G. This shows that any continuous
solution φ̂ to (9) is uniquely determined by φ̂(x∗). Thus choosing g = φ−1(x∗)·φ̂(x∗)
we get

φ̂(x) = φ(x) · g.

It remains to show that the φ : O(x∗) → G defined by (10) can be extended
to a Cα function φ : M → G. Standard arguments show that we can extend
φ : O(x∗)→ G provided it is uniformly Cα on O(x∗), i.e. there exists a δ > 0 and
K > 0 such that

if dM (fn+Nx∗, fnx∗) < δ then

dG
(
φ(fn+Nx∗), φ(fnx∗)

)
< KdM (fn+Nx∗, fnx∗)α. (11)

We have the following basic estimate from (5)

if dG
(
Φ(fnx∗, N), Id

)
< 1 then

dG
(
φ(fn+Nx∗), φ(fnx∗)

)
≤ |Rφ(fnx∗)|1 dG

(
Φ(fnx∗, N), Id

)
. (12)

First we show that the following Hölder condition on Φ,

if dM (fn+Nx∗, fnx∗) < δ then

dG
(
Φ(fnx∗, N), Id

)
< KdM (fn+Nx∗, fnx∗)α (13)

is equivalent to the Hölder condition (11).
Choose 0 < δ′ ≤ δ so that K(δ′)α < 1. The collection {B(fnx∗, δ′)}n∈Z

is an open cover of M and therefore by compactness we have a finite sub-cover
{B(fnix∗, δ′)}mi=1. Let

L = max
i=1,...,m

|Rφ(fnix∗)|1

and

O = max
i=1,...,m

dG
(
φ(fnix∗), Id

)
.
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Given an arbitrary n ∈ Z we choose 1 ≤ i ≤ m such that dM (fnx∗, fnix∗) < δ′.
From (13) we get dG

(
Φ(fnix∗, n− ni), Id

)
< 1 and hence can use (5)

dG
(
φ(fnx∗), Id)

≤ dG
(
φ(fnx∗), φ(fnix∗)

)
+ dG

(
φ(fnix∗), Id

)
≤ |Rφ(fnix∗)|1 dG

(
Φ(fnix∗, n− ni), Id

)
+ dG

(
φ(fnix∗), Id

)
≤ O + L.

Now that we know that φ
(
O(x∗)

)
is a precompact subset of G we have

L = sup
n∈Z
|Rφ(fnx∗)|1 <∞.

and hence from (12)

if dG
(
Φ(fnx∗, N), Id

)
< 1 then

dG
(
φ(fn+Nx∗), φ(fnx∗)

)
≤ LdG

(
Φ(fnx∗, N), Id

)
. (14)

Then applying (13) we obtain (11). Thus to prove the theorem it suffices to prove
(13).

Applying the Anosov Closing Lemma, Lemma 2.6, we obtain p with fNp = p

and dM (fnx∗, p) ≤ KdM (fn+Nx∗, fnx∗) and z ∈W s(p) ∩Wu(fnx∗).
We will compare the cocycle Φ along two trajectories that converge exponentially

in forward time. Let CF (m) := Φ−1(p,m) · Φ(z,m). We have for m ∈ N.

CF (m+ 1) = Φ−1(p,m)η−1(fmp) · η(fmz)Φ(z,m)

= ∆m
p,z

(
η−1(fmp) · η(fmz)

)
We have for dM (fn+Nx∗, fnx∗) sufficiently small

dG
(
η−1(fmp) · η(fmz), Id

)
≤ C1 dG

(
η(fmp), η(fmz)

)
(6)

≤ C2 dM (fmp, fmz)α η ∈ Cα(M,G)

≤ C3 λ
αm dM (p, z)α z ∈W s(p)

≤ C4 λ
αm dM (fn+Nx∗, fnx∗)α

≤ C4 λ
αm δα.

so we can choose δ > 0 sufficiently small that for m ≥ 0

dG
(
η−1(fmp) · η(fmz), Id

)
< λαm < ρ−m

and hence we can apply (7) to obtain

dG
(
CF (m+ 1), CF (m)

)
≤ dG

(
∆m
p,z

(
η−1(fmp) · η(fmz)

)
,∆m

p,z

(
Id
))

≤ |∆m
p,z|ρ−m dG

(
η−1(fmp) · η(fmz), Id

)
Thus

dG
(
CF (m+ 1), CF (m)

)
≤ |∆m

p,z|ρ−m C4 λ
αm dM (fn+N , fnx∗)α

≤ C5 (ρλα)m dM (fn+Nx∗, fnx∗)α

Prepared using etds.cls
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By using the hyperbolicity assumption (8) we get the following bound

dG
(
CF (m), Id

)
≤ C5

1− ρλα
dM (fn+Nx∗, fnx∗)α.

In particular, since Φ(p,N) = Id, we have CF (N) = Φ(z,N) and hence obtain

dG
(
Φ(z,N), Id

)
≤ C5

1− ρλα
dM (fn+Nx∗, fnx∗)α. (15)

This means that dG
(
Φ(z,N), Id

)
is uniformly bounded and consequently |RΦ(z,N)|1

is uniformly bounded.
Now we compare Φ along two trajectories that converge exponentially in

backwards time. For m ∈ N we define

CR(m) = Φ−1(fn+Nx∗,−m) · Φ(fNz,−m)

= ∆−m
fn+Nx∗,fNz

(Id)

From the definition of the cocycle we obtain

CR(m+ 1) = ∆−m
fn+Nx∗,fNz

(
η(fn+N−m−1x∗)η−1(fN−m−1z)

)
.

Exactly as before, we are able to estimate

dG
(
CR(m+ 1), CR(m)

)
≤ C5 (ρλα)m dM (fn+Nx∗, fnx∗)α.

By the localization assumption we have ρλα < 1 and hence,as before, we get the
following bound, uniform in m

dG
(
CR(m), Id

)
≤ C5

1− ρλα
dM (fn+Nx∗, fnx∗)α.

In particular, for m = N

dG
(
CR(N), Id

)
≤ C5

1− ρλα
dM (fn+Nx∗, fnx∗)α. (16)

From the cocycle property we obtain

Φ(fNz,−N) = Φ−1(z,N)

and

Φ−1(fN+nx∗,−N) = Φ(fnx∗, N).

Thus

dG
(
Φ(fnx∗,N), Id

)
≤ dG

(
Φ−1(fn+Nx∗,−N)Φ(fNz,−N)Φ(z,N),Φ(z,N)

)
+ dG(Φ(z,N), Id)

≤ |RΦ(z,N)|1 dG
(
CR(N), Id

)
+ dG

(
Φ(z,N), Id

)
.

From (15), the fact |RΦ(z,N)|1 is uniformly bounded, and (16) we get

dG
(
Φ(fnx∗, N), Id

)
≤ K dM (fn+Nx∗, fnx∗)α

for some K > 0. This establishes (13) and hence completes the proof. 2
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12 R. de la Llave and A. Windsor

Remark 3.3. The localization condition (7) we require is stronger than what we
actually use. We could make do with the more complicated condition: there exists
ρ > 1 such that
i. for all x ∈M , all y ∈W s(x), and all n ≥ 0

|∆n
x,y|ρ−n ≤ Kρn.

ii. for all x ∈M , all y ∈Wu(x), and all n ≤ 0

|∆n
x,y|ρn ≤ Kρ−n.

This more complicated localization condition is useful in the case of commutative
groups endowed with matrix norms.

We now give a similar proof for Lie group valued cocycles over Anosov flows.

Theorem 3.4. Let M be a compact Riemannian manifold, f t : M → M be a
C1 topologically transitive λ-hyperbolic Anosov flow, and G be a Lie group. Let
η ∈ Cα(M, g).

Define the cocycle Φ : M × R→ G by

d

dt
Φ(x, t) = DRΦ(x,t)η(f tx), Φ(x, 0) = Id

and let ∆t
x,y : g→ TΦ−1(x,t)Φ(y,t)G be given by

∆t
x,y = DLΦ−1(x,t)DRΦ(y,t).

Assume the following localization condition; there exist K, ρ > 0 such that for all
x, y ∈M

‖∆t
x,y‖ ≤ Keρ|t| (17)

where ‖ · ‖ is the standard operator norm. Suppose that for the pair f t and η:
i. The periodic orbit obstruction vanishes:

If f tp = p then Φ(p, t) = Id.

ii. The localization condition is satisfied:

ρ− λα < 0. (18)

Then there exists φ ∈ Cα(M,G) that solves

Φ(x, t) = φ(f tx)φ−1(x). (19)

Proof Let x∗ ∈ M be a point with a dense orbit O(x∗). If we fix φ(x∗) then, by
(19), we can define φ on O(x∗) by

φ(f tx∗) = Φ(x∗, t)φ(x∗).

Exactly as in the previous case, it suffices to show that there exist δ > 0 and K > 0
such that

if dM (f t+Tx∗, f tx∗) < δ then

dG
(
Φ(f tx∗, T ), Id

)
< KdM (f t+Tx∗, f tx∗)α. (20)
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Applying the Anosov Closing Lemma, Lemma 2.4, with dM (f t+Tx∗, f tx∗) < δ we
obtain a periodic point p ∈M with fT+∆p = p and a point z ∈W s(p)∩Wu(f tx∗).
The periodic point satisfies:
i. |∆| < K dM (f t+Tx∗, f tx∗).
ii. dM (f t+Tx∗, p) ≤ K dM (f t+Tx∗, f tx∗).
Let CF (s) := Φ−1(p, s) ·Φ(z, s). Using the chain rule for functions of two variables
we obtain

d

ds
CF (s) = DLΦ−1(p,s)DRΦ(z,s)

[
η(fsz)− η(fsp)

]
(21)

CF (0) = 0

From the definition of ∆p,z we obtain

d

ds
CF (s) = ∆s

p,z

[
η(fsz)− η(fsp)

]
and hence, for s > 0, we have the estimate∥∥∥ d

ds
CF (s)

∥∥∥ ≤ ‖∆s
p,z‖ ‖η(fsz)− η(fsp)‖

≤ C1 e
ρs‖ η(fsz)− η(fsp)‖ (17)

≤ C2 e
ρs dM (fsz, fsp)α η ∈ Cα(M, g)

≤ C3 e
(ρ−λα)s dM (z, p)α z ∈W s(p)

≤ C4 e
(ρ−λα)s dM (f t+Tx∗, f tx∗)α Lemma 2.4

As CF (0) = Id, using the localization assumption (18), and the fact dG is a length
metric we can integrate to get the following bound

dG
(
CF (s), Id) ≤ C4

λα− ρ
dM (f t+Tx∗, f tx∗)α (22)

and in particular

dG
(
CF (T ), Id) = dG

(
Φ−1(p, T )Φ(z, T ), Id)

≤ C4

λα− ρ
dM (f t+Tx∗, f tx∗)α

As the periodic orbit obstruction is satisfied we have Φ(p, T + ∆) = Id. By the
cocycle property

Φ(p, T ) = Φ(p,−∆)

From the Anosov Closing Lemma, Lemma 2.4, we have |∆| < K dM (f t+Tx∗, f tx∗)
and hence ∆ is bounded. By compactness we can uniformly bound

|LΦ(p,T )|1 = |LΦ(p,−∆)|1 < C

Now we estimate
dG
(
Φ(z, T ), Id

)
≤ dG

(
Φ(p, T ) · Φ−1(p, T ) · Φ(z, T ),Φ(p, T )

)
+ dG

(
Φ(p, T ), Id

)
≤ |LΦ(p,T )|1 dG

(
CF (T ), Id

)
+ dG

(
Φ(p, T ), Id

)
≤ C dM (f t+Tx∗, f tx∗)α.

(23)
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14 R. de la Llave and A. Windsor

Since dG
(
Φ(z, T ), Id

)
is bounded we can find a uniform estimate for |RΦ(z,T )|1.

Let CR(s) := Φ−1(f t+Tx∗,−s)Φ(fT z,−s). We have

d

ds
CR(s) = DLΦ−1(ft+T x∗,−s)DRΦ(fT z,−s)

[
η(f t+T−sx∗)− η(fT−sz)

]
= ∆−s

ft+T x∗,fT z

[
η(f t+T−sx∗)− η(fT−sz)

]
For s > 0, we have∥∥∥ d

ds
CR(s)

∥∥∥ ≤ ‖∆−sft+T x∗,fT z‖ ‖η(f t+T−sx∗)− η(fT−sz)‖

≤ C1 e
ρs‖ η(f t+T−sx∗)− η(fT−sz)‖ (17)

≤ C2 e
ρs dM (f t+T−sx∗, fT−sz)α η ∈ Cα(M, g)

≤ C3 e
(ρ−λα)s dM (f t+Tx∗, fT z)α fT z ∈Wu(f t+Tx∗)

≤ C4 e
(ρ−λα)s dM (f t+Tx∗, f tx∗)α Lemma 2.4.

By the localization assumption we have ρ− λα < 0 and hence we get the following
bound, uniform in s

dG
(
CR(s), Id

)
≤ C4

λα− ρ
dG(f t+Tx∗, f tx∗)α.

In particular, for s = T

dG
(
CR(T ), Id

)
≤ C4

λα− ρ
dG(f t+Tx∗, f tx∗)α. (24)

Using the cocycle property we can rewrite CR(T ) in the form

CR(T ) = Φ−1(fT+tx∗,−T )Φ(fT z,−T )

= Φ(f tx∗, T )Φ−1(z, T )

Finally using the triangle inequality, (23), and (24) we get

dG
(
Φ(f tx∗, T ), Id

)
≤ dG

(
Φ(f tx∗, T )Φ−1(z, T )Φ(z, T ),Φ(z, T )

)
+ dG

(
Φ(z, T ), Id

)
≤ |RΦ(z,T )|1 dG

(
CR(T ), Id

)
+ dG

(
Φ(z, T ), Id

)
≤ C dM (f t+Tx∗, f tx∗)α.

This completes the proof of Theorem 3.4. 2

One may deduce a version of the result for Anosov diffeomorphisms, Theorem
3.1, from the one for Anosov flows, Theorem 3.4, by a suspension trick.

Remark 3.5. The localization condition (17) we require is stronger than what we
actually use. We could make do with the more complicated condition: there exists
ρ > 1 such that
i. for all x ∈M , all y ∈W s(x), and all t ≥ 0

‖∆t
x,y‖ ≤ Keρt
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ii. for all x ∈M , all y ∈Wu(x), and all t ≤ 0

‖∆t
x,y‖ ≤ Ke−ρt

This more complicated localization condition is useful in the case of commutative
groups endowed with matrix norms.

4. Verifying Localization
The localization conditions (7) and (17) are formulated without any assumptions
on the metric. This has the advantage that the arguments apply equally well
to matrix norms, useful in computations in matrix Lie groups, and to the left-
invariant (or right-invariant) metrics so useful in geometric computations. Finally
these arguments also shed light on cases such as diffeomorphism groups where
the natural metric lacks the special properties of either matrix norms or invariant
metrics.

In the case of matrix norms and invariant metrics we can easily relate the
localization conditions (7) and (17) to properties of the generating map or vector
field.

4.1. Localization in Matrix Norms

4.1.1. Diffeomorphism Case Let G be a matrix Lie group endowed with a matrix
norm. We will use only the multiplicative property

‖AB‖ ≤ ‖A‖ ‖B‖.

The operator ∆n
x,y(g) satisfies

‖∆n
x,y(g)‖ = ‖Φ−1(x, n) gΦ(y, n)‖

≤ ‖Φ−1(x, n)‖ ‖Φ(y, n)‖ ‖g‖

and hence we have

|∆n
x,y| ≤ ‖Φ−1(x, n)‖ ‖Φ(y, n)‖.

If we let ρ2 = maxx∈M{‖η(x)‖, ‖η−1(x)‖} then we have

‖Φ(x, n)‖ ≤ ρ 1
2 |n| ‖Φ−1(x, n)‖ ≤ ρ 1

2 |n|

and hence
|∆n

x,y(g)| ≤ ρ|n|.

4.1.2. Flow Case Similarly, the operator ∆t
x,yv satisfies

‖∆t
x,yv‖ = ‖DLΦ−1(x,t)DRΦ(y,t)v‖

≤ ‖Φ−1(x, t)‖ ‖Φ(y, t)‖ ‖v‖
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16 R. de la Llave and A. Windsor

and hence we have

‖∆t
x,y‖ ≤ ‖Φ−1(x, t)‖ ‖Φ(y, t)‖.

If we let 2ρ = maxx∈M{‖η(x)‖, ‖η−1(x)‖} then we have

‖Φ(x, t)‖ ≤ e
ρ
2 |t| ‖Φ−1(x, t) | ≤ e

ρ
2 |t|

and hence
|∆t

x,yv| ≤ eρ|t|

4.1.3. Commutative Matrix Groups In the case of a commutative matrix group
no localization assumption is required. First observe that for commutative matrix
groups we have

|∆n
x,y| ≤ ‖Φ−1(x, n)Φ(y, n)‖, ‖∆t

x,y‖ ≤ ‖Φ−1(x, t)Φ(y, t)‖.

Thus the key is to estimate the quantity ‖Φ−1(x, n)Φ(y, n)‖ in the case of an Anosov
diffeomorphism, or the quantity ‖Φ−1(x, t)Φ(y, t)‖ in the case of an Anosov flow.

In the case of a cocycle over an Anosov diffeomorphism we have the evolution
equation

‖Φ−1(x, n+ 1)Φ(y, n+ 1)‖ ≤ ‖η−1(fnx)η(fny)‖ ‖Φ−1(x, n)Φ(y, n)‖.

For x ∈M , y ∈W s(x), and n ≥ 0 we have

‖η−1(fnx)η(fny)‖ ≤ 1 +Dλαn.

You can easily verify by induction that in this case for all n ≥ 0 we have

‖Φ−1(x, n)Φ(y, n)‖ ≤ eD
1−λ(αn)

1−λα

and hence |Φ−1(x, n)Φ(y, n)‖ < e
D

1−λ . A similar computation works when x ∈ M ,
y ∈Wu(x), and n ≤ 0.

In the case of flows we have the following evolution equation

d

dt
‖Φ−1(x, t)Φ(y, t)‖ ≤ ‖η(f ty)− η(f tx)‖ ‖Φ−1(x, t)Φ(y, t)‖.

For x ∈M , y ∈W s(x), and t > 0 we have

‖η(f ty)− η(f tx)‖ < D e−αλ t.

Check that in this case a version of the Gronwall inequality gives us

‖Φ−1(x, t)Φ(y, t)‖ ≤ e D
αλ e

−αλ t

and hence ‖Φ−1(x, t)Φ(y, t)‖ ≤ e
D
αλ . A similar computation works when x ∈ M ,

y ∈Wu(x), and t ≤ 0.
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4.2. Localization in Right Invariant Norms A metric dGon a topological group G
is called right invariant if for all f, g, h ∈ G, dG(f ·h, g ·h) = dg(f, g). First observe
that the local Lipshitz constant of the left multiplication operator, and the operator
norm of the differential map of the left multiplication operator, are independent of
the base point since the metric is invariant under right multiplication and left and
right multiplication commute.

4.2.1. Diffeomorphism Case If we let

ρ = max
x∈M

max{|Lη(x)|1, |Lη−1(x)|1}

then by definition of Φ(x, n) we can write

|LΦ(x,n)|ρ−|n| =


|Lη(fn−1x) ◦ · · · ◦ Lη(x)|ρ−|n| n > 0

1 n = 0

|Lη(fnx) ◦ · · · ◦ Lη(f−1x)|ρ−|n| n < 0

≤


|Lη(fn−1x)|1 · · · |Lη(x)|1 n > 0

1 n = 0

|Lη−1(fnx)|1 · · · |Lη−1(f−1x)|1 n < 0

≤ ρ|n|.

Since Rg is an isometry the same estimate holds for our operator ∆n
x,y so

|∆n
x,y|ρ−|n| ≤ ρ|n|.

4.2.2. Flow Case Observe that since the metric is right invariant

‖∆t
x,y‖ = ‖DeLΦ−1(x,t)‖.

If we let
ρ := max

x∈M
max

t∈[−1,1]
log ‖DLΦ−1(x,t)‖

then
‖∆t

x,y‖ ≤ eρd|t|e ≤ eρeρ|t|.

4.2.3. Commutative Group In a commutative group a right invariant metric is
simply invariant and hence the operators ∆n

x,y and ∆t
x,y are isometries. Hence we

can take ρ = 0 and the localization conditions are automatically satisfied.

5. Livšic Theory in Diffeomorphism Groups
5.1. Preliminaries on Diffeomorphism Groups .

We consider cocycles taking values in the group of Cr diffeomorphisms of a
compact Riemannian manifold N . The group operation is composition. As it is
well known, the group operation is continuous but not differentiable [dlLO99].
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18 R. de la Llave and A. Windsor

Hence the previous results do not apply directly. Nevertheless, we will see that the
rough lines of the technique can be applied, but we get some lower regularity of the
solutions.

We start by recalling some standard material on global analysis on
diffeomorphism groups, see for example [Ban97].

The group of Cr diffeomorphisms of a compact Riemannian manifold (with a
C∞ metric), N has the structure of a Banach manifold modeled on the space
ThC

r(N,N), defined by

ThC
r(N,N) = {v ∈ Cr(N,TN) : πN ◦ v = h}.

An standard chart is obtained using the exponential map. If f is a Cr

diffeomorphism, then, to any g in a suffiently small neighborhood, we can assign a
unique vector field v defined by g(x) = expf(x) v(x) (and v sufficiently small).

In Section 5.2, we will endow Diffr(N) with a length metric induced from the
Riemannian structure on N . This is useful for us since it we may need to study
diffeomorphisms which do not lie in the same chart. On the other hand, the metric
will be equivalent with the distance introduced by the Banach space structure. In
particular, C(M) with the length metric will be complete.

Given h ∈ Diffr(N) and y ∈ N there exists a neighborhood U ⊂ TyN sufficiently
small that a local representative h̃y : U → Th(y)N is uniquely defined by

h
(
expy v

)
= exph(y)

(
h̃y(v)

)
.

Since h̃y is defined between Banach spaces we can differentiate it in the usual
manner. We will always use D to denote differentiation in the manifold N .

We thus obtain

Dnh(y) := Dnh̃(0) : (TyN)⊗n → Th(y)N.

The derivative produced in this fashion coincides with the usual notion of covariant
derivative defined by the Levi-Civita connection.

When dealing with a smooth curve h : R→ Diffr(N) we modify this idea slightly.
For any s ∈ R and any y ∈ N there exists a neighborhood V of s and 0 ∈ U ⊂ TyN
such that for any t ∈ V the local representative h̃(t)y : U ⊂ TyN → Th(s)(y)N is
defined uniquely by

h(t)
(
expy v

)
= exph(s)(y)

(
h̃(t)y(v)

)
.

Using the standard identification of the tangent space to a linear space with the
linear space itself we obtain

Dnh̃(t)y : TyN⊗n → Th(s)(y)N

This a curve in a fixed linear space and we may consequently differentiate with
respect to t . We declare

d

ds
Dn
yh(s) :=

d

dt
Dnh̃(t)y

∣∣∣
t=s

(0).
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5.2. Metric on Diffr(N) Let p : [0, 1]→ Diffr(N) be a function such that d
dsD

nps
is piecewise continuous in s for each 0 ≤ n ≤ r. We will call p a piecewise C1 path
in Diffr(N). We can define the length of such a piecewise C1 path by

`r(p) = max
0≤n≤r

max
y∈N

∫ 1

0

‖ d
ds
Dn
y ps‖ ds

where the norm is the appropriate operator norm induced by the Riemannian
metric. If we compute the length of only a part of the path then we write

`r(p; t) = max
0≤n≤r

max
y∈N

∫ t

0

‖ d
ds
Dn
y ps‖ ds

In our calculations, we will need to estimate d
ds‖D

k
yps‖. Even if this is a natuaral

object, we will find it useful to estimate it in terms of using local coordinates
systems (since several of the calculations are done in local patches). Let p ∈ N

be an arbitrary point and q close enough to p that we may consider the lift of q
to the neighborhood U ⊂ TpN on which the local representative is defined. More
precisely, if q = expp(w) then

D expp(w) : TpN → TqN

where we use the usual identification of the tangent space of a linear space with
itself. Using this map we can define a norm on TpN coming from the norm on TqN .
We define ‖ · ‖q on TpN by

‖v‖q := ‖D expp(w)v‖

where ‖ · ‖ is the norm coming from the Riemannian metric.
Since the Riemannian metric is smooth we can find a globally defined constant

κ > 0, depending on the Riemannian metric, such that

‖ · ‖q ≤ ‖ · ‖p + κ ‖ · ‖p dN (q, p). (25)

In fact we will only need the infinitesimal version of this.
Notice

`0(p) = max
y∈N

∫ 1

0

‖ d
ds
ps(y)‖ps(y) ds

is precisely the maximum over all y ∈ N of the usual length of the path ps(y) in
N . We use this length structure on Diffr(N) to induce a metric by defining

dr(g, h) := inf
p∈P

max{`(p), `(p−1)} (26)

where
P =

{
p ∈ C1

pw

(
[0, 1],Diffr(N)

)
, p0 = g, p1 = h

}
.

Notice that our definition has the symmetry property

dr(g, h) = dr(g−1, h−1).
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It is worth noticing that for paths which connect a diffeomorphism f to the identity
`0(p) = `0(p−1). Furthermore, if f and g are sufficiently C1 close there is a standard
way of producing an interpolating path, namely

ps(y) := expf(y)

(
s exp−1

f(y) g(y)
)
.

Since geodesics are locally distance minimizing for f and g sufficiently close this
path is the path along which d0 is minimized. In this case, we have

d0(f, g) = max
{

max
y∈N

dN
(
f(y), g(y)

)
,max
y∈N

dN
(
f−1(y), g−1(y)

)}
.

If f and g are not sufficiently close then this is no longer necessarily true.
Our first lemma gives explicit estimates on the size of derivatives in an

interpolating path.

Lemma 5.1. For all piecewise C1 paths p : R → Diffr(N), all 1 ≤ k ≤ r, and all
s > 0

‖Dkps‖ ≤ eκ `0(p;s)
(
`k(p; s) + ‖Dkp0‖

)
where the norms are the operator norms for Dkps, D

kp0 : (TN)⊗k → TN , and κ

is the constant from (25). In particular

‖Dps‖r−1 ≤ eκ `0(p;s)
(
`r(p; s) + ‖Dp0‖r−1

)
Proof Let 0 ≤ k ≤ r. Let y ∈ N and v ∈ (TyN)⊗k be arbitrary. The estimate (25)
gives us

‖Dk
ypt+εv‖pt+ε(y) ≤ ‖Dk

ypt+εv‖pt(y) + κ ‖Dk
ypt+εv‖pt(y) dN

(
pt+ε(y), pt(y)

)
and hence

‖Dk
ypt+εv‖pt+ε(y) − ‖Dk

yptv‖pt(y) ≤ ‖Dk
ypt+εv‖pt(y) − ‖Dk

yptv‖pt(y)

+ κ ‖Dk
ypt+εv‖pt(y) dN

(
pt+ε(y), pt(y)

)
.

Since the terms on the right hand side have the same base point the triangle
inequality applies

‖Dk
ypt+εv‖pt(y) − ‖Dk

yptv‖pt(y) ≤ ‖Dk
ypt+εv −Dk

yptv‖pt(y)

Dividing by ε and taking the limit we obtain

d

dt
‖Dk

yptv‖pt(y) ≤ ‖
d

dt
Dk
yptv‖pt(y) + κ ‖Dk

yptv‖pt(y)‖
d

dt
pt(y)‖pt(y).

The classical Gronwall inequality therefore gives us

‖Dk
ypsv‖ps(y) ≤ eκ

R s
0 ‖

d
dtpt(y)‖pt(y) dt

(∫ s

0

‖ d
dt
Dk
yptv‖pt(y) dt+ ‖Dk

yp0v‖p0(y)

)
≤ eκ `0(p;s)

(
`k(p; s) + ‖Dk

yp0v‖p0(y)

)
Finally we take a supremum over all v ∈ (TyN)⊗k with ‖v‖y = 1 and then a
supremum over y ∈ N . 2

Prepared using etds.cls
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Our second lemma contains the central part of a version of the mean value
theorem for our metric.

Lemma 5.2. Let p ∈ C1
(
[0, 1],Diffr−1(N)

)
and let h ∈ Diffr(N). Then,

`r−1(h ◦ ps) ≤ C ‖Dh‖r−1 (1 + max
s∈[0,1]

‖Dps‖r−2)r−1 `r−1(ps).

Let p ∈ C1
(
[0, 1],Diffr(N)

)
and let h ∈ Diffr(N). Then,

`r(ps ◦ h) ≤ C max
k1,··· ,kr

‖D1h‖k1 · · · ‖Drh‖kr `r(ps)

where the max is taken over all k1, . . . , kr ≥ 0 such that

k1 + 2k2 + · · ·+ rkr ≤ r.

Crudely, this may be estimated by

`r(ps ◦ h) ≤ C (1 + ‖Dh‖r−1)r `r(ps).

In each case, the constant C depends on r.

Proof To determine `r(ps ◦ h) we need to compute d
dsD

n[ps ◦ h] for 0 ≤ n ≤ r. We
apply the Faà di Bruno formula to ps ◦ h to obtain

Dn[ps ◦ h] =
∑

k1,...,kn

Ck1,...,kn D
kps ◦ h · [D1h⊗k1 ⊗ · · · ⊗Dnh⊗kn ]

where k = k1 + · · · + kn and the sum is taken over all k1, . . . , kn such that
k1 + 2k2 + · · · + nkn = n. We use ◦ to denote composition in the base space
N and · to indicate composition (multiplication) in the space of linear operators.
Differentiating with respect to s, we obtain

d

ds
Dn[ps ◦ h] =

∑
k1,...,kn

Ck1,...,kn
d

ds
Dkps ◦ h ·

[
D1h⊗k1 ⊗ · · · ⊗Dnh⊗kn

]
.

We have the following estimate∥∥D1h⊗k1 ⊗ · · · ⊗Dnh⊗kn
∥∥ = ‖D1h‖k10 · · · ‖Dnh‖kn0

≤ (1 + ‖Dh‖n−1)n

≤ (1 + ‖Dh‖r−1)r.

Since ∫ 1

0

‖ d
ds
Dkps ◦ h‖ ds ≤ `k(ps) ≤ `n(ps) ≤ `r(ps)

we combine our estimates to obtain

`r(ps ◦ h) ≤ C (1 + ‖Dh‖r−1)r`r(ps).

The constant C depends only on r.
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To determine `r−1(h ◦ ps) we need to compute d
dsD

n[h ◦ ps] for 0 ≤ n ≤ r − 1.
We apply the Faà di Bruno formula to h ◦ ps to obtain

Dn[h ◦ ps] =
∑

k1,...,kn

Ck1,...,kn D
kh ◦ ps · [D1p⊗k1s ⊗ · · · ⊗Dnp⊗kns ]

where k = k1 + · · · + kn and the sum is taken over all k1, . . . , kn such that
k1 + 2k2 + · · ·+ nkn = n. Differentiating with respect to s, we obtain

d

ds
Dn[h ◦ ps] =

∑
k1,...,kn

Ck1,...,kn
[
Dk+1h ◦ ps · [

d

ds
ps ⊗D1p⊗k1s ⊗ · · · ⊗Dnp⊗kns ]+

Dkh ◦ ps ·
d

ds
[D1p⊗k1s ⊗ · · · ⊗Dnp⊗kns ]

]
The term

d

ds
[D1p⊗k1s ⊗ · · · ⊗Dnp⊗kns ]

consists of k terms, each of which has a single term of the form d
dsD

lps and thus
can be estimated by

‖D1ps‖k1 · · · ‖Dlps‖kl−1 · · · ‖Dnps‖kn
∥∥ d
ds
Dlps

∥∥.
As above we can estimate

‖D1ps‖k1 · · · ‖Dlps‖kl−1 · · · ‖Dnps‖kn

≤ (1 + max
s∈[0,1]

‖Dps‖n−1)n ≤ (1 + max
s∈[0,1]

‖Dps‖r−2)r−1

and ∫ 1

0

∥∥ d
ds
Dlps

∥∥ ds ≤ `r−1(ps)

for 0 ≤ l ≤ r − 1. Finally

‖Dk+1h ◦ ps‖, ‖Dkh ◦ ps‖ ≤ ‖Dh‖r.

Combining these estimates we get the required result. 2

Finally we can combine these two to give a more convenient form for the mean
value theorem.

Lemma 5.3. Let C > 0 and r ∈ N be arbitrary. Suppose h ∈ Diffr(N) and
g1, g2 ∈ Diffr−1(N). There exists a constant C ′ > 0 such that if

dr(h, Id) < C, dr−1(g1, Id) < C, dr−1(g2, Id) < C

then

dr−1(h ◦ g1, h ◦ g2) < C ′ dr−1(g1, g2),

dr−1(g1 ◦ h, g2 ◦ h) < C ′ dr−1(g1, g2).

The constant C ′ depends on C, r, and the manifold N .
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Proof Since dr−1(g1, g2) < 2C we may take a path ps joining g1 to g2 with
`r−1(ps) < 2C and `r−1(p−1

s ) < 2C. Using Lemma 5.1 we see that there exists
C1 > 0 with ‖Dps‖r−2 < C1 and ‖Dp−1

s ‖r−2 < C1. Again by Lemma 5.1 since
dr(h, Id) < C there exists C2 > 0 such that ‖Dh‖r−1 < C2. Now by Lemma 5.2
there exists C3 > 0, depending only on r, such that

`r−1(h ◦ ps) ≤ C3 ‖Dh‖r−1 (1 + ‖Dps‖r−2)r−1 `r−1(ps),

`r−1(p−1
s ◦ h−1) ≤ C3

(
1 + ‖Dh−1‖r−2

)r−1
`r−1(p−1

s ).

All these quantities are bounded so we have a C ′ > 0 such that

`r−1(h ◦ ps) ≤ C ′ `r−1(ps),

`r−1(p−1
s ◦ h−1) ≤ C ′ `r−1(p−1

s ).

Taking infimums we obtain

dr−1(h ◦ g1, h ◦ g2) ≤ C ′dr−1(g1, g2).

The other direction is an immediate consequence of the symmetry of our metric. 2

5.3. Preliminary Estimates for the Flow Case Let Xr(N) denote the space of Cr

vector fields on N .

Lemma 5.4. Let η ∈ C0(M,Xr(N)) and define

ρ0 = max
x∈M

max
y∈N
‖ηx(y)‖

ρ1 = max
x∈M

max
y∈N
‖Dyηx‖.

Define the cocycle Φ : M × R→ Diffr(N) by

d

ds
Φ(x, s) = ηfsx ◦ Φ(x, s), Φ(x, 0) = Id .

Then we have the following estimates for n ≤ r

d0(Φ(x, s), Id) ≤ ρ0 |s|, ‖DnΦ(x, s)‖ ≤ C en(ρ1+κ ρ0)|s|

where C is a constant that depends only on r and κ is the geometric constant
introduced above.

Proof To aid in readability we will write Φs for Φ(x, s) since x plays no rôle in this
lemma. We immediately have ∥∥∥ d

ds
Φs(y)

∥∥∥
Φs(y)

≤ ρ0 (27)

which, upon integrating, establishes the first estimate.
We proceed by induction to establish the remaining estimates. For fixed y ∈ N

and v ∈ TyN we have

d

ds
DyΦs(y) v = DΦs(y)ηfsx ·DyΦs v, DΦ(x, 0) = Id
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and thus

‖ d
ds
DyΦs v‖Φs(y) ≤ ‖DΦsηfsx‖ ‖DyΦs v‖Φs(y) ≤ ρ1 ‖DyΦs v‖Φs(y) (28)

Exactly as in Lemma 5.1, using (25) yields the following estimate,

d

ds
‖DyΦs v‖Φs(y) ≤ ‖

d

ds
DyΦs v‖Φs(y) + κ ‖DyΦs v‖Φs(y) ‖

d

ds
Φs(y)‖Φs(y).

Using (27) and (28) we get

d

ds
‖DyΦs v‖Φs(y) ≤ ρ1‖DyΦs v‖Φs(y) + κ ρ0 ‖DyΦs v‖Φs(y)

The Gronwall inequality gives

‖DyΦs v‖ ≤ e(ρ1+κ ρ0)|s|

which establishes the base case.
Applying the Faà di Bruno formula to ηfsx ◦ Φs we obtain

d

ds
Dn
y [ηfsx ◦ Φs] =

∑
k1,...,kn

Ck1,...,kn D
k
Φs(y)ηfsx ·

(
DyΦs

)⊗k1 ⊗ · · · ⊗ (Dn
yΦs

)⊗kn
where k = k1 + · · · + kn and the sum is taken over all k1, . . . , kn such that
k1 + 2k2 + · · ·+ nkn = n.

Thus we obtain for any

‖ d
ds
Dn
yΦs‖ ≤

∑
k1,...,kn

Ck1,...,kn ‖Dk
Φs(y)ηfsx‖ ‖DyΦs‖k1 · · · ‖Dn

yΦs‖kn

Separating this into kn = 1 and kn=0 terms we obtain

‖ d
ds
Dn
yΦs‖≤‖DΦs(y)ηfsx‖ ‖Dn

yΦs‖

+
∑
kn=0

Ck1,...,kn−1 ‖Dk
Φs(y)ηfsx‖ ‖DyΦs‖k1 · · · ‖Dn−1

y Φs‖kn−1

≤ ρ1 ‖Dn
yΦs‖+ C en(ρ1+κ ρ0)|s|.

Again, as in Lemma 5.1, we obtain for any v ∈ (TyN)⊗n

d

ds
‖Dn

yΦs v‖Φs(y) ≤ ‖
d

ds
Dn
yΦs v‖Φs(y) + κ ‖Dn

yΦs v‖Φs(y) ‖
d

ds
Φs(y)‖Φs(y)

≤ ρ1 ‖Dn
yΦs v‖+ C en(ρ1+κ ρ0)|s| + κ ρ0 ‖Dn

yΦs v‖

Using a Gronwall-type inequality we then obtain

‖Dn
yΦs‖ ≤ C en(ρ1+κ ρ0)|s|

as required. 2
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5.4. Preliminary Estimates for the Diffeomorphism Case

Lemma 5.5. Let η ∈ Cα(M,Diffr(N)) and define

ρ0 = max
x∈M

d0(ηx, Id)

ρ1 = max
x∈M

max{‖Dηx‖, ‖Dη−1
x ‖}.

Define the cocycle Φ : M × Z→ Diffr(N) by

Φ(x, n) =


ηfn−1x ◦ · · · ◦ ηx n ≥ 1

Id n = 0

η−1
fnx ◦ · · · ◦ η

−1
f−1x n ≤ −1

.

The we have the following estimates for m ≤ r

d0(Φ(x, n), Id) ≤ ρ0|n| ‖DmΦ(x, n)‖ ≤ Cρm |n|1 .

Proof By the triangle inequality we have for n ≥ 1

d0(Φ(x, n), Id) ≤ d0

(
Φ(x, n),Φ(x, n− 1)

)
+ · · ·+ d0

(
Φ(x, 1), Id

)
≤ d0

(
ηfn−1x ◦ Φ(x, n− 1),Φ(x, n− 1)

)
+ · · ·+ d0

(
ηx, Id

)
≤ d0

(
ηfn−1x, Id

)
+ · · ·+ d0

(
ηx, Id

)
≤ nmax

x∈M
d0(ηx, Id).

Since d0(ηx, Id) = d0(η−1
x , Id) a similar argument works for n ≤ 0 too.

We have the following basic evolution equation

Φ(x, n+ 1) = ηfnx ◦ Φ(x, n)

and hence we have

DΦ(x, n+ 1) = Dηfnx ◦ Φ(x, n) ·DΦ(x, n).

Taking norms, we get

‖DΦ(x, n+ 1)‖ ≤ ‖Dηfnx‖ ‖DΦ(x, n)‖
≤ ρ1 ‖DΦ(x, n)‖.

Finally since Φ(x, 0) = Id, and hence ‖DΦ(x, 0)‖ = 1, we see that we have

‖DΦ(x, n)‖ ≤ ρn1

for all n ≥ 0. Observe that for n ≤ 0 we have the following evolution equation

Φ(x, n− 1) = η−1
fn−1x ◦ Φ(x, n)

so exactly as above we obtain

‖DΦ(x, n− 1)‖ ≤ ‖Dη−1
fn−1x‖ ‖DΦ(x, n)‖

≤ ρ1 ‖DΦ(x, n)‖.
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Hence we get
‖DΦ(x, n)‖ ≤ ρ|n|1

for n ≤ 0.
We now proceed by induction. Suppose that we have the estimate

‖DkΦ(x, n)‖ ≤ C ρk n1

for all k < m. We will now establish the estimate for m. Applying the Faà di
Bruno formula to our basic evolution equation we obtain

DmΦ(x, n+ 1) =
∑

k1,··· ,km

Ck1,...,km D
kηfnx ◦ Φ(x, n)

·
[(
D1Φ(x, n)

)⊗k1 ⊗ · · · ⊗ (DmΦ(x, n)
)⊗km]

where k = k1 + · · · km and the sum is taken over all k1, . . . , km ≥ 0 such that
k1 + 2k2 + · · ·+mkm = m. Either km = 0 or km = 1. We separate these terms

DmΦ(x, n+ 1) =

D1ηfnx ◦ Φ(x, n) ·DmΦ(x, n) +
∑

k1,··· ,km−1

Ck1,...,km−1 D
kηfnx ◦ Φ(x, n)

·
[(
D1Φ(x, n)

)⊗k1 ⊗ · · · ⊗ (Dm−1Φ(x, n)
)⊗km−1

]
.

Taking norms we obtain

‖DmΦ(x, n+ 1)‖ ≤ ‖D1ηfnx‖ ‖DmΦ(x, n)‖

+
∑

k1,··· ,km−1

‖Dkηfnx‖‖D1Φ(x, n)‖k1 · · · ‖Dm−1Φ(x, n)‖km−1

Now applying the inductive assumption we obtain

‖DmΦ(x, n+ 1)‖ ≤ ρ1 ‖DmΦ(x, n)‖+ C ρmn1

where C depends on m and on η. Using this we can check that if

‖DmΦ(x, n)‖ ≤ C

ρm1 − ρ1
ρmn

1

then
‖DmΦ(x, n+ 1)‖ ≤ C

ρm1 − ρ1
ρ
m (n+1)
1 .

Since the estimate is obviously true for n = 0 we have established it for all n ≥ 0.
Starting with the evolution equation

Φ(x, n− 1) = η−1
fn−1x ◦ Φ(x, n)

and applying the same estimates establishes the result for all n ≤ 0.
2
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5.5. Main Theorem for Diffeomorphism Valued Cocycles

Theorem 5.6. Let M be a compact Riemannian manifold with f t : M → M

be a C1 topologically transitive λ-hyperbolic Anosov flow. Let N be a compact
Riemannian manifold.

Given a η ∈ Cα
(
M,Xr(N)

)
define a cocycle Φ : M × R→ Diffr(N) by

d

dt
Φ(x, t) = η(f tx) ◦ Φ(x, t), Φ(x, 0) = Id .

Let

ρ0 = max
x∈M

max
y∈N
‖ηx(y)‖

ρ1 = max
x∈M

max
y∈N
‖Dyηx‖.

Suppose that for the pair f t and η:
i. The periodic orbit obstruction vanishes:

If f tp = p then Φ(p, t) = Id.

ii. The hyperbolicity condition is satisfied:

(2r − 1)(ρ1 + κρ0)− λα < 0. (29)

Then there exists φ ∈ Cα
(
M,Diffr−3(N)

)
that solves

Φ(x, t) = φ(f tx) ◦ φ−1(x). (30)

Remark 5.7. Using Hölder estimates it should be possible to show that the solution
φ ∈ Diffr−ε(N) [dlLO99]. A different argument, developed in [dlLW08], after the
present paper was submitted shows that one can take the results of this paper and
bootstrap the regulariy so that there is no loos of regularity (provided that the initial
regularity is at least 4). The main tool for the bootstrap of regularity in [dlLW08]
is a study of the regularity with respect to parameters in cohomology equations.

Proof Let x∗ ∈ M be a point with a dense orbit, O(x∗). If we fix φ(x∗) then, by
(30), we can define φ on all of O(x∗) by

φ(f tx∗) = Φ(x∗, t) ◦ φ(x∗).

First, we show that the following Hölder condition on Φ,

if dM (f t+Tx∗, f tx∗) < δ then

dr−2

(
Φ(f tx∗, T ), Id

)
< K dM (f t+Tx∗, f tx∗)α (31)

implies the following Hölder condition

if dM (f t+Tx∗, f tx∗) < δ then

dr−3

(
φ(f t+Tx∗), φ(f tx∗)

)
< K dM (f t+Tx∗, f tx∗)α. (32)
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Condition (32) is precisely the condition that ensures that φ defined on O(x∗) can
be extended to φ ∈ Cα

(
M,Diffr−3(N)

)
.

The collection {B(f tx∗, δ)}t∈R is an open cover of M and therefore by
compactness we have a finite sub-cover {B(f tix∗, δ)}mi=1. By finiteness there exists
a constant C > 0 such that dr(φ(f tix∗), Id) < C for 1 ≤ i ≤ m. Given an arbitrary
t ∈ R we choose 1 ≤ i ≤ m such that dM (f tx∗, f tix∗) < δ. From (31) we get
dr−2

(
Φ(f tix∗, t− ti), Id

)
< K δα. By Lemma 5.3 we have

dr−2

(
Φ(f tix∗, t− ti) ◦ φ(f tix∗), φ(f tix∗)

)
≤ C dr−2

(
Φ(f tix∗, t− ti), Id

)
≤ C K δα.

In particular dr−2

(
φ(f tx∗), φ(f tix∗

)
is bounded. However since

dr−2

(
φ(f tix∗), Id

)
is bounded we have that dr−2

(
φ(f tx∗), Id

)
is bounded.

Suppose that t and T are such that dM (f tx∗, f t+Tx∗) < δ. Assuming (31) we
then have dr−2

(
Φ(f tx∗, T ), Id

)
uniformly bounded. We can again apply Lemma

5.3 to obtain

dr−3

(
φ(f tx∗), φ(f t+Tx∗)

)
≤ C dr−3

(
Φ(f tx∗, T ), Id

)
.

Then applying (31) we obtain (32). Therefore to prove the theorem it suffices to
prove (31).

Suppose that dM (f t+Tx∗, f tx∗) < δ and apply the Anosov Closing Lemma,
Lemma 2.4, to obtain a periodic point p ∈ M with fT+∆p = p and a point
z ∈W s(p) ∩Wu(f tx∗). The periodic point satisfies:
i. |∆| < K dM (f t+Tx∗, f tx∗).
ii. dM (f t+Tx∗, p) ≤ K dM (f t+Tx∗, f tx∗).
Again we let CF (s) := Φ−1(p, s) ◦ Φ(z, s). Here we encounter our first difficulty;
even though Φ(p, s) and Φ(z, s) are differentiable as maps from R to Diffr(N) the
map CF (s) is not since the group operation is not differentiable. The solution is
to consider CF (s) in Diffr−1(N). The diffeomorphism CF (s) obeys the following
differential equation in T Diffr−1(N),

d

ds
CF (s) = DΦ−1(p, s) ◦ Φ(z, s) · [ηfsz ◦ Φ(z, s)− ηfsp ◦ Φ(z, s)],

CF (0) = Id .

This equation is exactly analogous to the equation obtained in the Lie group
case (21). However, rather than deal with the Banach manifold T Diffr−1(N) we
wish to use the familiar theory of differential equations on the compact manifold
N .

We wish to estimate CF (s) in Cr−1. Since Φ−1(p, s) = Φ(fsp,−s) we
can estimate DΦ−1(p, s) and Φ(z, s) using Lemma 5.4. The fact that η ∈
Cα(M,Diffr(N)) means that we have

‖Dnηfsz −Dnηfsp‖ ≤ C dM (fsz, fsp)α (33)

for 0 ≤ n ≤ r. Since z ∈W s(p) we have

dM (fsz, fsp) < e−λs dM (z, p).
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From our statement of the Anosov Closing Lemma, Lemma 2.4, we have

dM (z, p) ≤ CdM (f tx∗, f t+Tx∗).

Using Lemma 5.4, and (33), we estimate

‖DΦ−1(p, s) ◦ Φ(z, s) · [ηfsz ◦ Φ(z, s)− ηfsp ◦ Φ(z, s)]‖
≤ ‖DΦ−1(p, s)‖ ‖ηfsz − ηfsp‖

≤ C e(ρ1+κ ρ0−λα)s dM (f tx∗, f t+Tx∗)α

and

‖DΦ−1(z, s) ◦ Φ(p, s) · [ηfsp ◦ Φ(p, s)− ηfsz ◦ Φ(p, s)]‖
≤ ‖DΦ−1(z, s)‖ ‖ηfsp − ηfsz‖

≤ C e(ρ1+κ ρ0−λα)s dM (f tx∗, f t+Tx∗)α.

Integrating these estimates, and using (29), we obtain

d0

(
CF (s), Id

)
≤ C

λα− ρ
dM (f tx∗, f t+Tx∗)α.

It remains to estimate the derivatives DnCF (s) and DnC−1
F (s) for n ≤ r − 1.

Applying the Faà di Bruno formula to the differential equation for DnCF (s) we
obtain

d

ds
DnCF (s) = Dn

((
DΦ−1(p, s) · [ηfsz − ηfsp]

)
◦ Φ(z, s)

)
=

∑
k1,...,kn

Ck1,...,knD
k
(
DΦ−1(p, s) · [ηfsz − ηfsp]

)
◦ Φ(z, s)

· (DΦ(z, s))⊗k1 · · · (DnΦ(z, s))⊗kn

The general term consists of products of two types of factors:

DnΦ(z, s) and Dn
(
DΦ−1(p, s) · [ηfsz − ηfsp]

)
.

The term DnΦ(z, s) is estimated using Lemma 5.4. To estimate

‖Dn
[
DΦ−1(p, s) · [ηfsz − ηfsp]

]
‖

we apply the Leibniz rule to obtain

Dn
[
DΦ−1(p, s) · [ηfsz − ηfsp]

]
=

n∑
k=0

(
n

k

)
Dk+1Φ−1(p, s) · [Dn−kηfsz −Dn−kηfsp].

As above, we obtain

‖Dn
[
DΦ−1(p, s) · [ηfsz − ηfsp]

]
‖

≤ C e(n+1)(ρ1+κ ρ0)sdM (fsz, fsp)α

≤ C e(n+1)(ρ1+κ ρ0)s−λαsdM (z, p)α

≤ C e(n+1)(ρ1+κ ρ0)s−λαsdM (f tx∗, f t+Tx∗)α
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Using the estimate from Lemma 5.4, and our intermediate computation, we
obtain ∥∥ d

ds
DnCF (s)

∥∥ ≤ C e((2n+1)(ρ1+κ ρ0)−λα)s dM (f tx∗, f t+Tx∗)α.

Similarly, we get∥∥ d
ds
DnC−1

F (s)
∥∥ ≤ C e((2n+1)(ρ1+κ ρ0)−λα)s dM (f tx∗, f t+Tx∗)α.

Integrating, and using (29), we obtain the following estimate

dr−1

(
CF (s), Id

)
≤ C

λα− (2r − 1)(ρ1 + κ ρ0)
dM (f tx∗, f t+Tx∗)α.

Now we can write

dr−1

(
Φ(z, T ), Id

)
≤ dr−1

(
Φ(p, T ) ◦ Φ−1(p, T ) ◦ Φ(z, T ),Φ(p, T )

)
+ dr−1

(
Φ(p, T ), Id

)
From the cocycle property and the periodic orbit obstruction we have Φ(p, T ) =
Φ(p,−∆). From the Anosov Closing Lemma we have |∆| < C dM (f tx∗, f t+Tx∗)
and hence ∆ is bounded. Thus we immediately get

dr−1

(
Φ(p, T ), Id

)
≤ C |∆|.

Consider CF (s) for 0 ≤ s ≤ T as a path. Using Lemma 5.3, we estimate

`r−1

(
Φ(p, T ) ◦ CF (s)

)
≤ C ‖DΦ(p, T )‖r−1

(
1 + max

s∈[0,T ]
‖DCF (s)‖r−2

)r−1
`r−1

(
CF (s)

)
Since Φ(p, T + ∆) = Id and ∆ is bounded we have ‖DΦ(p, T )‖r−1 is uniformly
bounded. Since dr−1

(
CF (s), Id

)
is uniformly bounded we have by Lemma 5.1 that

maxs∈[0,T ] ‖DCF (s)‖r−2 is uniformly bounded. Similarly, using Lemma 5.3, we
estimate

`r−1

(
C−1
F (s) ◦ Φ−1(p, T )

)
≤ C (1 + ‖DΦ−1(p, T )‖r−2)r−1`r−1

(
C−1
F (s)

)
.

The term ‖DΦ−1(p, T )‖r−2 is uniformly bounded since ∆ is bounded. Thus we
finally obtain

dr−1

(
Φ(p, T ) ◦ Φ−1(p, T ) ◦ Φ(z, T ),Φ(p, T )

)
≤ C dr−1

(
CF (T ), Id

)
≤ C

λα− (2r − 1)(ρ1 + κ ρ0)
dM (f tx∗, f t+Tx∗)α

Combining these estimates, we get

dr−1

(
Φ(z, T ), Id

)
≤ C dM (f tx∗, f t+Tx∗)α (34)
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Now we compare the cocycle along orbits that converge in backward time. Let

CR(s) = Φ−1(f t+Tx∗,−s) ◦ Φ(fT z,−s).

The function CR(s) satisfies the differential equation

d

ds
CR(s) =

(
DΦ−1(f t+Tx∗,−s) · [ηft+T−sx∗ − ηfT−sz]

)
◦ Φ(fT z,−s). (35)

Differentiating the differential equation (35) n times, we obtain the differential
equation

d

ds
DnCR(s) = Dn

((
DΦ−1(f t+Tx∗,−s) · [ηft+T−sx∗ − ηfT−sz]

)
◦Φ(fT z,−s)

)
.

Now we apply the Faà di Bruno formula to the differential equation for DnCR(s)
to obtain

d

ds
DnCR(s) = Dn

((
DΦ−1(f t+Tx∗,−s) · [ηft+T−sx∗ − ηfT−sz]

)
◦ Φ(fT z,−s)

)
=
∑

Ck1,...,knD
k
(
DΦ−1(f t+Tx∗,−s) · [ηft+T−sx∗ − ηfT−sz]

)
·
[
DΦ(fT z,−s)⊗k1 ⊗ · · · ⊗DnΦ(fT z,−s)⊗kn

]
The general term in the sum consists of the product of two types of factors:

Dk
(
DΦ−1(f t+Tx∗,−s) · [ηft+T−sx∗ − ηfT−sz]

)
and DkΦ(fT z,−s).

Taking the n-th derivative

Dn
(
DΦ−1(f t+Tx∗,−s) · [ηft+T−sx∗ − ηfT−sz]

)
=

n∑
k=0

Dk+1Φ−1(f t+Tx∗,−s) · [Dn−kηft+T−sx∗ −Dn−kηfT−sz]

which we may estimate by∥∥Dn
(
DΦ−1(f t+Tx∗,−s)·[ηft+T−sx∗ − ηfT−sz]

)∥∥
≤ C e(n+1)(ρ1+κ ρ0)sdM (fT−sz, f t+T−sx∗)α

≤ C e((n+1)(ρ1+κ ρ0)−λα)s dM (fT z, f t+Tx∗)α

≤ C e((n+1)(ρ1+κ ρ0)−λα)s dM (f tx∗, f t+Tx∗)α

Using the estimate from Lemma 5.4, and our intermediate computation, we obtain∥∥ d
ds
DnCR(s)

∥∥ ≤ Ce((2n+1)(ρ1+κ ρ0)−λα)s dM (f tx∗, f t+Tx∗)α.

Using the analogous result for C−1
R we *** Integrating, and using (29), we obtain

dr−1

(
CR(T ), Id

)
≤ C

λα− (2r − 1)(ρ1 + κ ρ0)
dM (f tx∗, f t+Tx∗)α. (36)

Finally we need to combine these estimates to obtain the final result. First observe
that from the cocycle condition

CR(T ) = Φ−1(f t+Tx∗,−T ) ◦ Φ(fT z,−T )

= Φ(f tx∗, T ) ◦ Φ−1(z, T )
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Now

dr−1

(
Φ(f tx∗, T ), Id

)
≤ dr−1

(
Φ(f tx∗, T ) ◦ Φ−1(z, T ) ◦ Φ(z, T ),Φ(z, T )

)
+ dr−1

(
Φ(z, T ), Id

)
Using Lemma 5.3, and (34), gives

dr−2

(
Φ(f tx∗, T ) ◦ Φ−1(z, T ) ◦ Φ(z, T ),Φ(z, T )

)
≤ C dr−1

(
CR(T ), Id

)
.

Combining all our estimates yields

dr−2

(
Φ(f tx∗, T ), Id

)
≤ C dM (f tx∗, f t+Tx∗)α (37)

which hence completes the proof. 2

5.6. Cocycles over an Anosov Diffeomorphism A statement analogous to
Theorem 5.6 holds for diffeomorphism group valued cocycles over an Anosov
diffeomorphism. This can be obtained from the result on flows by observing that
the suspension of an Anosov diffeomorphism is an Anosov flow. Proceeding in this
fashion one needs to take a cocycle whose generator is very close to the identity.

Theorem 5.8. Let M be a compact Riemannian manifold with f : M → M be a
C1 topologically transitive λ-hyperbolic Anosov diffeomorphism. Let N be a compact
Riemannian manifold.

Let Φ ∈ Cα
(
M×Z,Diffr(N)

)
and define η(x) = Φ(x, 1). ρ = maxx∈M ‖Dη(x)‖.

Suppose that for the pair f t and η:
i. The periodic orbit obstruction vanishes:

If fnp = p then Φ(p, n) = Id.

ii. The hyperbolicity condition is satisfied:

ρ2r−1λα < 1. (38)

Then there exists φ ∈ Cα
(
M,Diffr−3(N)

)
that solves

Φ(x, n) = φ(fnx) ◦ φ−1(x). (39)

Proof Let x∗ ∈ M be a point with a dense orbit, O(x∗). If we fix φ(x∗) then, by
(39), we can define φ on all of O(x∗) by

φ(fnx∗) = Φ(x∗, n) ◦ φ(x∗).

Exactly as in the flow case, we have that the following Hölder condition on Φ,

if dM (fn+Nx∗, fnx∗) < δ then

dr−2

(
Φ(fnx∗, N), Id

)
< K dM (fn+Nx∗, fnx∗)α (40)

implies the Hölder condition

if dM (fn+Nx∗, fnx∗) < δ then

dr−3

(
φ(fn+Nx∗), φ(fnx∗)

)
< K dM (fn+Nx∗, fnx∗)α. (41)
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Condition (41) means that φ can be extended to φ ∈ Cα
(
M,Diffr−3(N)

)
.

In order to complete the proof it suffices to prove (40). Suppose that
dM (fn+Nx∗, fnx∗) < δ and apply the Anosov Closing Lemma, Lemma 2.4, to
obtain a periodic point p ∈ M with fNp = p and a point z ∈ W s(p) ∩Wu(fnx∗).
The periodic point satisfies dM (fn+Nx∗, p) ≤ K dM (fn+Nx∗, fnx∗) and the
messenger point satisfies dM (fn+Nx∗, z) ≤ K dM (fn+Nx∗, fnx∗).

Again we let CF (m) := Φ−1(p,m) ◦ Φ(z,m). The diffeomorphism obeys the
following equation

CF (m+ 1) = Φ−1(p,m) ◦ η−1
fmp ◦ ηfmz ◦ Φ(p,m).

Let ps be a path joining η−1
fmp ◦ ηfmz to Id. Since we are only interested in paths

that approach the optimal, and since dr−1(η−1
x ◦ ηx′ , Id) is uniformly bounded,

we may assume that `r−1(ps) and `r−1(p−1
s ) are uniformly bounded. Now using

Lemma 5.2 we have

`r−1(Φ−1(p,m) ◦ ps) ≤ C‖DΦ−1(p,m)‖r−1(1 + max
s∈[0,1]

‖Dps‖r−2)r−1 `r−1(ps)

Using Lemma 5.1 and Lemma 5.5 we obtain

`r−1(Φ−1(p,m) ◦ ps) ≤ C ρrm `r−1(ps)

where C is independent of m. Applying Lemma 5.3 we get

`r−1(Φ−1(p,m) ◦ ps ◦ Φ(z,m))

≤ C ρrm max
k1,...,kr−1

‖D1Φ(z,m)‖k1 · · · ‖Dr−1Φ(z,m)‖kr `r−1(ps)

which, after applying Lemma 5.5, yields

`r−1(Φ−1(p,m) ◦ ps ◦ Φ(z,m)) ≤ C ρrm ρ(r−1)m `r−1(ps).

By symmetry we get the same estimate for the inverse. Thus we have

dr−1

(
CF (m+ 1), CF (m)

)
≤ C ρ(2r−1)m dr−1(η−1

fmp ◦ ηfmz, Id).

Notice that by compactness there exists a C > 0 so that dr(ηx, Id) < C for all
x ∈M . Thus by Lemma 5.3 there exists a K > 1 so that

1
K
dr−1(ηx, ηx′) ≤ dr−1(ηx ◦ η−1

x′ , Id) ≤ K dr−1(ηx, ηx′),

1
K
dr−1(ηx, ηx′) ≤ dr−1(η−1

x ◦ ηx′ , Id) ≤ K dr−1(ηx, ηx′).

Since η ∈ Cα
(
M,Diffr(N)

)
and z ∈W s(p) we have

dr−1

(
CF (m+ 1), CF (m)

)
≤ C ρ(2r−1)m λαm dM (p, z)α.

In particular

dr−1

(
CF (m+ 1), CF (m)

)
≤ C ρ(2r−1)m λαm dM (fn+Nx∗, fnx∗)α.
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Thus for m ≥ 0 we have the estimate

dr−1

(
CF (m), Id

)
<

C

1− ρ2r−1λα
dM (fn+Nx∗, fnx∗)α.

Finally we observe that CF (N) = Φ(z,N) since Φ(p,N) = Id by the vanishing of
the periodic orbit obstruction. Thus

dr−1

(
Φ(z,N), Id

)
<

C

1− ρ2r−1λα
dM (fn+Nx∗, fnx∗)α, (42)

and hence Φ(z,N) is uniformly bounded.
Similar computations for CR(m) = Φ−1(fn+Nx∗,−m) ◦ Φ(fNz,−m) give the

same result that for m ≥ 0

dr−1

(
CR(m), Id

)
<

C

1− ρ2r−1λα
dM (fn+Nx∗, fnx∗)α. (43)

Finally we observe that by the triangle inequality

dr−1

(
Φ(fnx∗, N), Id

)
≤ dr−1

(
Φ(fnx∗, N) ◦ Φ−1(z,N) ◦ Φ(z,N),Φ(z,N)

)
+ dr−1

(
Φ(z,N), Id

)
.

Since dr−1

(
Φ(z,N), Id

)
is uniformly bounded by (42) we get

dr−2

(
Φ(fnx∗, N), Id

)
≤ C dr−1

(
Φ(fnx∗, N) ◦ Φ−1(z,N), Id

)
+ dr−2

(
Φ(z,N), Id

)
.

Observe that

Φ(fnx∗, N) = Φ−1(fn+Nx∗,−N) and Φ−1(z,N) = Φ(fNz,−N)

so
dr−1

(
Φ(fnx∗, N) ◦ Φ−1(z,N), Id

)
= dr−1

(
CR(N), Id

)
.

Combining (42) and (43) with our previous estimate we get

dr−2

(
Φ(fnx∗, N), Id

)
<

C

1− ρ2r−1λα
dM (fn+Nx∗, fnx∗)α

which hence completes the proof. 2

An alternative proof by suspension is also possible though the smallness
conditions are much less explicit.

Proof Let M̃ denote the usual suspension manifold

M̃ =
M × [0, 1]
∼

(x, 1) ∼ (f(x), 0) (44)

and define a flow f̃ t : M̃ → M̃ by f̃ t(x, s) = (x, s + t). This flow is a C1

topologically transitive λ-hyperbolic Anosov flow. It remains to show that we may
select η̃ : M̃ → Xr(N) such that the cocycle Φ̃ : M̃ × R→ Diffr(N) defined by

d

dt
Φ̃
(
(x, s), t

)
= η̃

(
f̃ t(x, s)

)
◦ Φ̃
(
(x, s), t

)
, Φ̃

(
(x, s), 0

)
= Id
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satisfies Φ̃
(
(x, 0), 1

)
= η(x) and that the hyperbolicity condition for Φ̃ is the same

as for η. Provided η(x) is sufficiently C1 close to the identity then we can define
p : M × [0, 1]→ Diffr(N) by

p(x,s)(y) = expy
[
m(s) exp−1

y ηx(y)
]

where m ∈ C∞
(
[0, 1], [0, 1]

)
is C∞ flat at both s = 0 and s = 1, and has

0 ≤ m′(s) ≤ 1 + ε. We have p(x,0) = Id and p(x,1) = ηx. We may differentiate
to obtain

d

ds
p(x,s) = η̃(x,s) ◦ p(x,s), p(x,0) = Id

Now we can apply the flow version of the Livšic theorem to conclude that there
exists φ̃ ∈ Cα

(
M̃,Diffr−3(N)

)
such that

Φ̃
(
(x, s), t

)
= φ̃

(
f̃ t(x, s)

)
◦ φ̃(x, s).

If we take s = 0 and t = n we obtain

Φ̃
(
(x, 0), n

)
= φ̃(fnx, 0) ◦ φ̃(x, 0).

However we know that Φ̃
(
(x, 0), n

)
= Φ(x, n) by construction and hence defining

φ(x) = φ̃(x, 0) we obtain a solution to the coboundary equation. 2

6. Existence of invariant conformal structures on the stable and unstable bundles
In this section we will consider possibility of defining metrics on the stable and
unstable bundles of Anosov systems that make the mapping conformal.

Of course, the existence of expanding and contracting directions in an Anosov
map, makes it impossible to have metrics defined on the whole tangent bundle
which make the map conformal. The conformal structures we consider in this
section correspond to sub-Riemannian metrics on the manifold, not to Riemannian
ones. In order to be able to do analysis on the manifold, we will assume that the
manifold is equipped with a Riemannian metric, which we will assume analytic and
which we will refer to as background metric.

Nevertheless, the existence of conformal metrics on the stable and unstable
bundles is a useful tool in the study of rigidity questions. In [dlL02, dlL04b]
it was shown that for conformal Anosov systems, the only obstructions to smooth
conjugacy were the eigenvalues at periodic orbits (the paper above included an
extra assumption about the existence of global frames of reference in the manifold,
which we now remove). One motivation for the papers above was to understand
geometrically the paper [CM97], which studied related problems for analytic
families on the torus. The papers [KS03, Sad05] went further in the study of
geometric properties and showed that conformal Anosov systems are smoothly
equivalent to algebraic ones. Particularly interesting systems of conformal Anosov
systems are the geodesic flows on some manifolds [Yue96]. For these systems, the
results mentioned above give a very strong rigidity of the manifolds.

Of course, conformal metrics have played an important role in the theory of
rigidity of manifolds. Thus, the study in this section provides a link between the
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dynamical rigidity of Anosov systems and the geometric rigidity [Mos68, Mos73].
Indeed, once the existence of a metric on the stable bundle that makes the mapping
conformal is established, the arguments of [dlL02] are very similar to those of
[Mos68, Mos73]. Indeed [Jen02] gave a proof of some particular cases of the
results in [Mos68, Mos73] using methods from the theory of differentiable rigidity.

The main result of this section will be Theorem 6.6 which gives necessary and
sufficient conditions conditions for the existence of families of conformal structures
on the stable and unstable bundles. The conditions involve the spectrum of the
derivative of the return maps at periodic orbits.

The proof of Theorem 6.6 that we will present is remarkably similar to our proof
of Theorem 3.1. We leave to the reader the task of formulating the corresponding
result on existence of conformal metrics invariant under Anosov flows. The proof
follows along extremely similar lines. We also note that similar arguments can be
used in the study of other geometric structures.

Putting together Theorem 6.6 and the global results of [KS03, Sad05], we
obtain that the global structure of the manifold is determined by the eigenvalues at
periodic orbits. In the case of geodesic flows, it is well known that the eigenvalues at
periodic orbits are determined by the spectrum of the Laplacian [GK80a] (provided
that the length spectrum is simple).

We also note that in [dlLS05], one can find the result that if there is an invariant
conformal structure that is in Lp for p sufficiently large, then there is a smooth
conformal structure.

6.1. Definitions and some elementary results We start by briefly reviewing the
theory of quasi-conformal maps and setting the notation. All the results in this
section are rather standard. Sources that we have found useful are [GP] and
[Väi71].

Define the distortion of a differentiable map f at a point x with respect to a
metric g, denoted Kg(f, x), by

Kg(f, x) :=
max |v|=1

v∈TxM
|Df(x)v|g

min |v|=1
v∈TxM

|Df(x)v|g
(45)

or, equivalently,
Kg(f, x) := ‖Df(x)‖ · ‖Df−1

(
f(x)

)
‖ (46)

Of course Kg(f, x) ≥ 1. We say that the map is conformal with respect to g if
Kg(f, x) = 1 for all x. Note that (46) makes it clear that

Kg(f, x) = Kg(f−1, f(x)), (47)

and in particular, f is conformal if and only if f−1 is conformal.
If we take the sup and inf in (45) when v ranges over a sub-bundle E of TM , we

obtain the distortion along the sub-bundle E, which we will denote by Kg,E(f, x).
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Since any two metrics in a compact manifold are equivalent we have for some
constant Cg,g̃ > 0

C−1
g,g̃Kg̃,E(f, x) ≤ Kg,E(f, x) ≤ Cg,g̃Kg̃,E(f, x) (48)

where Cg,g̃ depends on the metrics g and g̃ but not on the map f or the sub-bundle
E.

The distortion and distortion along bundles satisfy a sub-cocycle property

Kg,E(f1 ◦ f2, x) ≤ Kg,Df2E(f1, f2(x))Kg,E(f2, x). (49)

This follows from the chain rule and sub-multiplicativity of the operator norm.
We define Kg,E(f) = maxx∈M Kg,E(f, x).
In particular, when E is an invariant sub-bundle Df(x)Ex ⊂ Ef(x) we have:

Kg,E(fn) ≤ [Kg,E(f)]n. (50)

Hence, taking logarithms in (49) and using an elementary sub-additive argument

KE(f) = lim
n→∞

(
Kg,E(fn)

)1/n
exists. By (48), KE(f) is independent of the metric. It can be seen, but we will
not use it here, that the distortion along a bundle is closely related to the spectral
properties of the weighted shift operator along the bundle.

We also recall the following easy results about distortions of linear operators on
a normed space, which we will use later to study the derivatives at fixed points. By
analogy with the more general definition we define K(A) for A : V → V by

K(A) =
max|v|=1

v∈V
‖Av‖

min|v|=1
v∈V
‖Av‖

Since ‖Av‖2 = 〈v,A∗Av〉, we have ‖A‖2 = max spec(A∗A), ‖A−1‖−1 =
min spec(A∗A). Hence

K(A)2 =
max spec(A∗A)
min spec(A∗A)

.

Proposition 6.1. If K(A) = 1, then Â =
1

det(A)1/n
A ∈ O(n), the orthogonal

group corresponding to the metric.

Proof
Since K(A) = 1 there is a constant C > 0 such that ‖Av‖ = C‖v‖ for all v ∈ Rn.

Since det Â = 1 we must have C = 1. The standard polarization argument shows
that preserving the norm is only possible by preserving the metric. 2

Proposition 6.2.

‖A‖ ≤ | det(A)|1/ dimVK(A) (51)
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Proof The desired result (51) is obvious for diagonal operators and, hence for
diagonalizable, in particular symmetric operators.

To prove the general case, we note that

‖A‖2 = ‖A∗A‖ ≤ det(A∗A)1/ dimVK(A∗A) ≤ det(A)2/ dimVK(A)2.

expressed in terms of the eigenvalues.
2

6.2. Results and their proofs In this subsection we formulate and prove
Theorem 6.3 which shows that the conformal properties of a transitive Anosov
system are determined by the behavior at periodic orbits. Theorem 6.6 shows that,
some spectral conditions on the periodic orbits are enough to obtain the existence
of invariant conformal structures.

Similar theorems were proved in [dlL02] under some extra hypothesis about the
manifold, in particular the existence of some trivialization of the bundle. The proof
presented here is much more geometric. Indeed, it is remarkably similar to the proof
of Theorem 3.1. We will consider the propagation of the structure and we will use
the properties of the map to show that the behavior at periodic orbits controls what
happens on a dense orbit. In some auxiliary lemmas, to obtain the equivalence of
the hypothesis on the behavior at periodic orbits with other hypothesis, we will
need to use the specification property of transitive Anosov systems.

Theorem 6.3. Let M be a compact Riemannian manifold. Let f be a C1+α

(0 < α ≤ Lip) topologically transitive λ-hyperbolic Anosov diffeomorphism on M .
Let E be a sub-bundle of the stable bundle Es, which is invariant under f .

Assume:

i) There exists a constant Cper such that, whenever fN (x) = x, with N the
minimal period of x, we have

Kg,E(fN , x) ≤ Cper .

ii) KE(f) ≤ ρ with ρ λα < 1.

Then, there exists C > 0 such that for all n ∈ N, we have

Kg,E(fn) ≤ C.

Of course, an identical result holds for the unstable bundle.

Remark 6.4. There is a version of Theorem 6.3 for flows. We leave the
straightforward formulation as well as the proof to the reader.

The proof of the result for flows requires only minor modifications of the proof
we present here. The required modifications can be read off the corresponding
modifications made to the proof of Theorem 3.1 to get the proof of Theorem 3.4.
The only difference lies in the version of Anosov Closing Lemma that we use and
the fact that for flows we have a term corresponding to the change in period to
control.

Prepared using etds.cls
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Proof We will show that for all n ∈ N, we have Kg,Es(fn) ≤ C. We recall that by
the specification property of transitive Anosov systems [KH95, Theorem 18.3.12],
given ε > 0 sufficiently small we can find L ∈ N such that for every x ∈ M and
n ∈ N, there exists a period point p with minimal period n+ ` with 0 ≤ ` ≤ L that
satisfies

dM
(
f i(x), f i(p)

)
≤ ε 0 ≤ i ≤ n .

We will choose one such ε > 0 that will remain fixed for the rest of the proof. This
ε will have to satisfy a finite number of smallness conditions which we will make
explicit when we need them.

By the local product structure [KH95, Proposition 6.4.21] we have

W s
loc(p) ∩Wu

loc(x) = {z}

with d(x, z) < ε and d(p, z) < ε. We may suppose that

dM
(
f iz, f ix

)
≤ ε 0 ≤ i ≤ n.

We note that

Kg,Es(fn, p) ≤ Kg,Es(fn+`, p)Kg,Es(f−`, p)

≤ CperKg,Es(f−`)
(52)

with Cper the constant in assumption i). Since 0 ≤ ` ≤ L the distortion Kg,Es(f−`)
is bounded and thus it suffices to argue that it is possible to control Kg,Es(fn, x)
in terms of Kg,Es(fn, p).

6.2.1. Some local coordinates We will find it convenient to use matrix notation so
we introduce a coordinate patch about each point of the orbit of x. It is important
to note that these coordinate patches do not need to agree in the regions where they
overlap. Hence, they do not impose any restriction on the manifold M . Similar
constructions happen in [HPPS70].

One convenient way of choosing these coordinate systems is picking a linear
coordinate system ψi : Tfi(x)M → RdimM with

〈u, v〉g(fi(x)) = 〈ψiu, ψiv〉2

and then setting
Ψi(y) = ψi ◦ exp−1

fi(x)(y)

where the domain Ui chosen as balls of radius 1/2 the injectivity radius of the
metric. We neither assume, nor require, that the Ui are disjoint. Notice, however
that these coordinate patches, centered around each point in the orbit include balls
of radius bounded uniformly from below. Furthermore, the coordinate functions are
Cr diffeomorphisms and they are uniformly Cr. So that, to show that a geometric
object is Cr it suffices to show that its coordinates representations are uniformly
Cr. Furthermore, the Cr norm of a geometric object will be equivalent to the
supremum of the Cr norms of the coordinate representations.
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Once we choose a system of coordinates, we can identify Df(y), for y ∈
Ui ∩ f−1(Ui+1), with the matrix

ηi(y) = DΨi+1(f(y))Df(y) (DΨi(y))−1. (53)

We have chosen the notation ηi by analogy with that of the proof of Theorem 3.1.
We can now proceed in a way very similar to the proof of Theorem 3.1. For

y ∈ U0 we define

Φ(y,m) = ηm−1(fm−1y) · · · η0(y),

= DΨm

(
fmy

)
·Dfmy · (DΨ0(y))−1 m ≥ 1

and for y ∈ Un we define

Φ(y,−m) = η−1
n−m(f−my) · · · η−1

n−1(f−1y),

= DΨn−m
(
f−my

)
·Df−my · (DΨn(y))−1 m ≥ 1

where these products are defined. Considering the distortions we obtain

K
(
Φ(y,m)

)
≤ K

(
DΨm

(
fmy

))
·K
(
Dfmy

)
·K
(
(DΨ0(y))−1

)
≤ CgK

(
Dfmy

)
.

Similarly

K
(
Φ(y,−m)

)
≤ K(

(
DΨn−m

(
f−my

))
·K
(
Df−my

)
·K
(
(DΨn(y))−1

)
≤ CgK

(
Df−my

)
.

Our geometric construction means that these constants Cg can be chosen to be
independent of the choice of points x and y and to depend only on the metric g.

Our goal is to show K
(
Φ(x, n)

)
< C. By compactness, and our choice

of geometrically natural coordinate systems, showing that the distortion of the
coordinate representation of the derivative cocycle is uniformly bounded suffices to
show that the distortion of the derivative cocycle itself is uniformly bounded.

If y, z are points whose orbits are converging in forward time so that f i(z) is
always in the coordinate neighborhood of f i(y), we can use the same coordinate
patch.

Remark 6.5. The point of introducing coordinates is to avoid unnecessary
complication with connections. Intrinsically CF (m) : TzM → TpM defined
by Df−m(fm(p))SDfm(z) where S is an identification between Tfm(z)M and
Tfm(p)M . Note that, because the orbits of z and p are converging, we can always
define the comparisons. Intuitively, as the points converge, the identifications
become less important. Using the identifications between the end points is a possible
alternative setup. These are what are called connectors in [HPPS70].

Define CF (m) by
CF (m) = Φ−1(p,m)Φ(z,m).
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We have the recurrence:

CF (m+ 1) = Φ−1(p,m)η−1(fmp)η(fmz)Φ(z,m)

= Φ−1(p,m)
[
η−1(fmp)η(fmz)− Id

]
Φ(z,m) + CF (m)

(54)

In order to facilitate comparison of the distortion and the matrix norms we
normalize the matrices. We write ηi(y) = Vi(y) η̂i(y) where

η̂i(y) =
1

(det ηi(y))
1

dimM

ηi(y) Vi(y) = (det ηi(y))
1

dimM .

We extend this normalization to the products

Φ(y,m) = V (fm−1y) · · ·V (y)Φ̂(y,m).

For the normalized matrices we have the useful comparison:

1 ≤ ‖Φ̂(y,m)‖, ‖Φ̂−1(y,m)‖ ≤ K
(
Φ̂(y,m)

)
For ε > 0 sufficiently small we can choose ρ̃ > 0 and σ > 0 such that σρ̃2λα < 1

and, using hypothesis ii) obtain

K
(
Dfmy

)
≤ Cρ̃ρ̃|m| for dM (y, f ix) < ε,

and

Vi(y1)
Vi(y2)

≤ σ for dM (y1, f
ix) < ε and dM (y2, f

ix) < ε.

The recurrence (54) can be written as:

CF (m+ 1) =
Vm(fmz)
Vm(fmp)

· · · V0(z)
V0(p)

· Φ̂−1(p,m)
(
η̂−1
m (fmp)η̂m(fmz)− Id

)
Φ̂(z,m) + CF (m).

Since f ∈ C1+α we have η̂i ∈ Cα. Thus, since z ∈W s(p)

‖η̂−1
m (fmp)η̂m(fmz)− Id ‖ ≤ C2(λα)m.

Thus, by Proposition 6.2,

‖CF (m+ 1)− CF (m)‖ < C3

(
σρ̃2λα

)m
.

Thus ‖CF (m)‖ is uniformly bounded. Similarly we obtain ‖C−1
F (m)‖ is uniformly

bounded. Thus
‖Φ(z, n)‖ ≤ ‖Φ(p, n)‖ ‖CF (n)‖,

‖Φ−1(z, n)‖ ≤ ‖Φ−1(p, n)‖ ‖C−1
F (n)‖.

(55)

Now we perform the same computations along orbits converging exponentially
in backwards time. It is necessary to recall that by Let CR(m) =
Φ−1(fnx,−m)Φ(fnz,−m) and perform the same computations to obtain ‖CR(m)‖
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and ‖C−1
R (m)‖ are uniformly bounded. Finally observe that we have the pseudo-

cocycle property

Φ−1(fnx,−n) = Φ(x, n)

Φ(fnz,−n) = Φ−1(z, n)

and so
‖Φ(x, n)‖ ≤ ‖CR(n)‖ ‖Φ(z, n)‖

‖Φ−1(x, n)‖ ≤ ‖Φ−1(z, n)‖ ‖C−1
R (n)‖.

(56)

Replacing the norms ‖Φ(z, n)‖ and ‖Φ−1(z, n)‖ in (56) with their estimates from
(55) and taking the product we obtain

K
(
Φ(x, n)

)
≤ K

(
CF (n)

)
K
(
CR(n)

)
K
(
Φ(p, n)

)
. (57)

We have shown that K
(
CF (n)

)
and K

(
CR(n)

)
are uniformly bounded. By our

remarks at the outset we have K
(
Φ(p, n)

)
is uniformly bounded due to assumption

i). 2

Now we come to the second main result in this section, which characterizes the
existence of conformal structures by the behavior at periodic orbits.

Theorem 6.6. Let M be a compact d-dimensional Riemannian manifold endowed
with a Riemanian metric g. (We refer to such a metric as the background metric.)
Let f be a C1+α topologically transitive λ-hyperbolic Anosov diffeomorphism. (0 <
α ≤ Lip).

i) Assume whenever fN (x) = x, then

DfN |Es = γs,N (x) Id

for some real numbers γs,N (x)

ii) Assume that
KEs(f) ≤ ρ

with ρ2λα < 1.

Then there exists a Cα metric gs on Es such that f is conformal on the stable
leaves with respect to gs.

Analogous results hold also for unstable bundles and for Anosov flows.

Of course the metrics are highly non-unique since we can multiply by an arbitrary
function.

Remark 6.7. Note that if we fix the conformal structure at one point x∗, the fact
that f is conformal, determines it at fx∗. If we choose x∗ so that its orbit is dense,
the conformal structure at x∗ determines it in the whole manifold. Hence, there is
at most a finite dimensional family of invariant conformal structures. The proof
of Theorem 6.6 is done by choosing a conformal structure at x∗, propagating the
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conformal structure along the dense orbit of x∗, and then, using the hypothesis on
the spectrum of the periodic orbits showing it extends to the whole manifold.

Note that then, we prove that, under the hypothesis on periodic orbits, we get that
there is a family of invariant conformal structures with the dimension of the space
of conformal structures at one point. Conversely, if there is family of conformal
structures invariant under the map whose dimension is the dimension of conformal
structures at one point, then the derivative at a fixed point has to be the a multiple
of the identity.

Remark 6.8. A result very similar to Theorem 6.6 was proved in [dlL02] but
the proof required the existence of a global frame in the manifold. It was shown
in [dlL02] that if the map f is Cr, continuous invariant conformal structures are
actually Cr−1−ε, r ∈ N∪{∞, ω}. The proof of the bootstrap of regularity in [dlL02]
is very geometric and works without extra assumptions on the existence of frames.
So, we will just refer to that paper. In [dlLS05], it was shown that if an invariant
conformal structures is in Lp for p large enough, then it is continuous and, therefore
differentiable.

The papers [KS03, Sad05, KS09] show that the existence of a conformal
structure on the stable and the unstable foliations for an Anosov systems, implies
also some global properties of the manifold.

Proof Let x∗ be a point with a dense orbit. We will define the desired metric along
the orbit of x∗ and show it extends to the whole manifold in a Hölder fashion.

We consider the bundle isomorphism f# on the bundle of quadratic forms on
Es. Denoting the space of quadratic forms on Esx by Qx we define f# : Qx → Qf(x)

by
f#q = (detDfs(x))2/dq(Df−1

s (f(x)))⊗2

where Dfs denotes the derivative of f restricted to Es and d is the dimension of
the stable bundle. The determinant is measured with respect to the background
metric g.

We note that we can use the background metric g to measure the norm of f#.
We claim that, by assuming that Kg,Es(f) is sufficiently close to one, we can

ensure that ‖f#‖ is as close to 1 as we want. Hence, using assumption ii) we can
assume in the proof that ‖f#‖ is sufficiently close to 1.

Indeed, if we choose coordinates in Esx, Esf(x) in such a way that gx, gf(x) are
represented by the identity matrix, the operator f# reduces to the operator

L(S) = AtSA/det(A)2/d

acting on the space of symmetric matrices, where A is the coordinate representation
of Df−1(f(x)).

Applying Proposition 6.2 we obtain ‖A/|detA|1/d‖ ≤ K(A) from which the
claim follows.

The hypothesis that we will need in the rest of the argument is

ii′) ‖f `#‖ ≤ Cρ` (58)
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with ρ2λα < 1.
The rest of the proof is very similar to the proof of Theorem 3.1 and Theorem 6.3.

We pick a metric on gsx∗ on Esx∗ and define

gsfnx∗ := fn#g
s
x∗ .

To check that the metric gs defined along the orbit of x∗ extends in a Hölder fashion
to the whole of M we recall that by the Anosov Closing Lemma, Lemma 2.6, there
exists ε > 0 such that if d(fnx∗, fn+Nx∗) ≤ ε, then there is a periodic point p with
fNp = p such that

d(fn+ix∗, f ip) ≤ ε

We will estimate fN# restricted to Qfnx∗ using that, by hypothesis i), fN# restricted
to Qp is the identity. The estimates will depend only on ε but will be uniform in
N .

¿From the Anosov Closing Lemma, Lemma 2.6 we obtain a “messenger” point
z ∈ Wu

loc

(
fn(x∗)

)
∩ W s

loc(p). We can take local coordinate systems defined on
neighborhoods Ui around fn+i(x∗) for 0 ≤ i ≤ N , in such a way that f i(p) is
contained in the coordinate patch Ui.

We realize that f# is Cα in the whole manifold. Denote by ηi(y) the coordinate
representation of f# acting on Qy for y ∈ Ui. Showing that the metric fn+N

# gx∗ on
Esfn+Nx∗ is close enough to the metric fn#gx∗ on Esfnx∗ reduces to estimating

[η(fN (q)) · · · η(q)]−1η(fn+Nx∗) · · · η(fn(x∗))− Id

As in the previous results we proceed to estimate

[η(fN (z)) · · · η(z)]−1η(fn+N (x∗)) · · · η(fnx∗)− Id

[η(fN (q)) · · · η(q)]−1η(fN (z)) · · · η(z)− Id

The proof is exactly the same as in Theorem 3.1 and we refer to the proof of
this result for the details. 2
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