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Abstract.
Let M be the four-dimensional compact manifold M = T 2×S2 and let k ≥ 2. We

construct a C∞ diffeomorphism F : M → M with precisely k intermingled minimal
attractors A1, . . . , Ak. Moreover the union of the basins is a set of full Lebesgue
measure. This means that Lebesgue almost every point in M lies in the basin of
attraction of Aj for some j, but every non-empty open set in M has a positive
measure intersection with each basin.

We also construct F : M → M with a countable infinity of intermingled minimal
attractors.

1. Introduction
Let M be a topological space with a Borel probability measure m. Let k ≥ 2.
Measurable sets B1, . . . , Bk ⊂ M are intermingled if they are measure-theoretically
dense in each other. In other words, if one of the Bj meets an open set U in a set
of positive measure then U meets each of the Bj in a set of positive measure.

An attractor A is a compact invariant set such that the basin of attraction
b(A) = {x : ω(x) ⊂ A} has positive Lebesgue measure and such that there is no
strictly smaller compact invariant set set A′ such that b(A)\b(A′) has zero Lebesgue
measure [6]. An invariant set A is minimal if ω(x) = A for all x ∈ A.

We will say that attractors A1, . . . , Ak for a dynamical system are intermingled
if the basins of attraction are intermingled. Similarly, we can speak of countably
many intermingled sets/attractors.

† This research was supported in part by EPSRC Grants GR/S11862/01 and GR/R40807/01.
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Numerical evidence for the existence of intermingled attractors was first
presented in Alexander et al. [2] for a certain class of non-invertible maps of the
plane. A proof is presented in [1]. They do not verify that the basins occupy a set
of full measure but do show that the regular parts of the basin (those characterized
by typical Lyapunov exponents) are intermingled for a set of parameters with
positive measure. van Strien [7, Lemma 2.2] gives an example of a transitive
polynomial interval map with two intermingled attractors. In the invertible context,
Kan [5] announced the existence of an open set of Ck diffeomorphisms on the
three-dimensional manifold with boundary M = T 2 × [0, 1] with two intermingled
attractors (unfortunately the details do not appear in print).

Recently, Fayad [4] gave a new simpler construction of a C∞ diffeomorphism
F : T 3 → T 3 that has two intermingled attractors. This was based on the following
result of Windsor [8] (though related results implicit in Anosov and Katok [3]
are sufficient for these purposes.) We use a variation on Fayad’s idea for our
construction.

Theorem 1.1. For each k ≥ 2 there exists a minimal C∞ diffeomorphism f : T 2 →
T 2 preserving Haar measure that has exactly k ergodic measures each of which is
absolutely continuous. Similarly, there exists a minimal C∞ diffeomorphism f :
T 2 → T 2 preserving Haar measure that has countably many absolutely continuous
ergodic measures the union of whose basins has full measure.

In this paper, we construct examples of diffeomorphisms on the four-dimensional
compact manifold M = T 2 × S2 with arbitrarily many (even countably infinitely
many) intermingled attractors.

Theorem 1.2. Let k ≥ 2. There exists a C∞ diffeomorphism F : T 2 ×S2 → T 2 ×
S2 with precisely k intermingled minimal attractors A1, . . . , Ak with Leb(

⋃
b(Aj)) =

1. Moreover, ω(q) = Aj for some j = 1, . . . , k, for almost every q ∈ T 2 × S2.

Theorem 1.3. There exists a C∞ diffeomorphism F : T 2 × S2 → T 2 × S2

with a countable infinity of intermingled minimal attractors A1, A2, . . . with
Leb(

⋃
b(Aj)) = 1. Moreover, ω(q) = Aj for some j ≥ 1 for almost every

q ∈ T 2 × S2.

Remark 1.4. When k = 2, the construction in this paper can clearly be made
to work on T 3 (giving an alternative to [4, 5]). It is an interesting open
problem to construct three or more intermingled attractors for a three-dimensional
diffeomorphism.

The proofs of Theorems 1.2 and 1.3 are given in Section 2, except that a technical
detail regarding smoothness is postponed to Appendix A. For completeness, the
proof of Theorem 1.1 is outlined in Appendix B.

2. The construction of F : T 2 × S2 → T 2 × S2

First, we describe the construction for finite k. Let f : T 2 → T 2 be as in
Theorem 1.1. Denote the k absolutely continuous ergodic measures by µ1, . . . , µk.
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Let φ : T 2 → R
2 be a C∞ map and define vj =

∫
φdµj ∈ R

2. Then 1
N

∑N−1
j=0 φ ◦ f j

converges almost everywhere with each pointwise limit lying in the set {v1, . . . , vk}.
We choose φ so that vj �= 0 for each j, and such that the k unit vectors wj = vj/|vj|
are distinct. (An open and dense set of C∞ maps φ satisfies these properties.)

Let D = {z ∈ R
2 : |z| < 1} and D = {z ∈ R

2 : |z| ≤ 1}. Choose p : R
2 → D

to be a direction-preserving diffeomorphism (that is, arg p(z) = arg z). Define
F : T 2 × D → T 2 × D by

F (x, z) =
(
fx, p[ p−1(z) + φ(x)]

)
.

Extend F to a homeomorphism on T 2 × D by setting F (x, z) = (fx, z) for all
(x, z) ∈ X × ∂D.

Lemma 2.1. The homeomorphism F : T 2 × D → T 2 × D has precisely k

intermingled minimal attractors Aj = T 2×{wj}, j = 1, . . . , k. Moreover, ω(p) = Aj

for some j = 1, . . . , k, for almost every p ∈ T 2 × D.

Proof. Since f : T 2 → T 2 is minimal, it is immediate from the definitions that Aj

is a minimal set for each j. Let (x, z) ∈ T 2 × D such that 1
N

∑N−1
j=0 φ(f jx) → vj .

We show that ω(x, z) = Aj . Note that

FN (x, z) =
(
fNx, p[ p−1(z) +

∑N−1
j=0 φ(f jx)]

)
=

(
fNx, p[ Nvj + o(N)]

)
.

Now |Nvj + o(N)| → ∞ and arg(Nvj + o(N)) → arg vj . Since p : R
2 → D is a

direction preserving diffeomorphism, it follows that p[Nvj + o(N)] → wj . Also, f

is minimal, so ωf (x) = T 2. Hence ω(x, z) = Aj as required. �

Lemma 2.2. The diffeomorphism p : R
2 → D can be chosen (independent of f

and φ) in such a way that F − Id is C∞ flat at the boundary ∂D.

Proof. The key here is to choose p decaying sufficiently slowly at infinity. It
turns out that polynomial decay is too fast, but logarithmic decay suffices. The
calculations are given in Appendix A. �

Proof of Theorem 1.2. Glue two copies of F : T 2 × D → T 2 × D together at
the equator, to obtain a homeomorphism F : T 2 × S2 → T 2 × S2. The dynamical
properties required of F follow from Lemma 2.1. Clearly, F is a C∞ diffeomorphism
away from the equator. By Lemma 2.2, F − Id is C∞ flat at the equator, so F is
C∞ everywhere. Since

F−1(x, z) =
(
f−1x, p[ p−1(z) − φ(f−1x)]

)
has the same structure as F , it follows that F is a C∞ diffeomorphism. �

Proof of Theorem 1.3. The proof is identical, except that we start with a minimal
diffeomorphism f : T 2 → T 2 with a countable infinity of absolutely continuous
ergodic components (again using [8]), and we choose φ so that each of the time-
averages vj is nonzero, and such that the unit vectors wj = vj/|vj |, j ≥ 1, are
distinct. Moreover, the construction of f is such that for Haar almost every point
in T 2, the time average is vj for some j. �
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A. The diffeomorphism p : R
2 → D

In this appendix, we prove Lemma 2.2, constructing a direction-preserving
diffeomorphism p : R

2 → D with the desired properties at infinity. To illustrate
the issues involved, we begin with the one-dimensional analogue, taking φ(x) ≡ β

constant.

One dimension Let p1 : R → (−1, 1) be an odd orientation preserving
diffeomorphism. For s near +∞ we take p1(s) = 1 − 1/ ln s.

Proposition A.1. Let β ∈ R. Define G1 : (−1, 1) → (−1, 1) by G1(r) =
p1(p−1

1 (r) + β). Then G1(r) − r is C∞ flat at ±1.

Proof. Near r = 1, we have p−1
1 (r) = e1/(1−r). Let G̃1(r) = G1(r) − r, so

G̃1(r) = (1 − r) − 1/ ln[e1/(1−r) + β]. Define H(y) = G̃1(1 − y). We show that
H is C∞ flat at y = 0 as y → 0+. A calculation yields

H(y) =
y2 ln[1 + βe−1/y]

1 + y ln[1 + βe−1/y]
.

Now e−1/y is flat, and ln(1+ g) is flat whenever g is flat. Also, flatness is preserved
after multiplication by a smooth function (or dividing by a non-vanishing smooth
function). Hence H is flat as required. �

Remark. It is important that p1(s) → 1 sufficiently slowly as s → ∞. If the decay
is polynomial (p1(s) = 1 − 1/sα say), then G1(r) − r is only Ck flat where k is
finite. Indeed, for Ck-flatness we require that α < 1/(k − 1).

Two dimensions Suppose that p1 : R → (−1, 1) is as above, and additionally
that p1(s) ≡ s for s close to 0. We use (r, θ) for polar coordinates on D, and (s, θ)
for polar coordinates on R

2. Define p : R
2 → D by setting p(s, θ) = (p1(s), θ).

Let (s, θ) 
→ tφ(x)(s, θ) be the transformation corresponding to translation by
φ(x) = (φ1(x), φ2(x)) ∈ R

2.

Proposition A.2. Define G : X × D → D by G = p ◦ tφ ◦ p−1. Then
G(x, r, θ) − (r, θ) is C∞ flat at ∂D.

Proof. We have G(x, r, θ) = (p1(ŝ), θ̂), where

ŝ2 = [p−1
1 (r)]2 + 2p−1

1 (r)(φ1(x) cos θ + φ2(x) sin θ) + φ1(x)2 + φ2(x)2,

θ̂ = arctan
( p−1

1 (r) sin θ + φ2(x)
p−1
1 (r) cos θ + φ1(x)

)
.

Define G̃(x, r, θ) = G(x, r, θ) − (r, θ) and H(x, y, θ) = G̃(x, 1 − y, θ). By rotation
symmetry, it suffices to show that H is flat at y = 0 (as y → 0+).

Write H = (H1, H2) and compute that

H1(x, y, θ) =
y2 ln[1 + g(x, y, θ)]

2 + y ln[1 + g(x, y, θ)]
, H2(x, y, θ) = arctan

( sin θ + φ2(x)e−1/y

cos θ + φ1(x)e−1/y

)
− θ,
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4 I. Melbourne and A. Windsor

where g(x, y, θ) = 2e−1/y(φ1(x) cos θ + φ2(x) sin θ) + e−2/y(φ1(x)2 + φ2(x)2).
As in the one-dimensional case, we argue that flatness of H1 follows from flatness

of g. Since the arctangent of a flat function is flat, it suffices to verify flatness of

tan(H2(x, y, θ)) = e−1/y
( φ2(x) cos θ − φ1(x) sin θ

1 + φ1(x)e−1/y cos θ + φ2(x)e−1/y sin θ

)
.

This is a product of the flat function e−1/y and a smooth function, and hence is
flat. �

B. Intermingled ergodic components
For the sake of completeness, in this appendix we sketch the proof of Theorem 1.1.
(The results in [8] are formulated for any compact manifold that admits a free circle
action. By specializing to T 2, we bypass many of the technicalities in [8].) The
argument could be made marginally simpler by dropping the requirement that the
diffeomorphism is area preserving (which is not required for our main results) but
the simplification does not seem worthwhile.

Let T 2 denote the 2-torus with normalized Haar measure µ and metric d. For a
measurable set E ⊂ T 2 with µ(E) > 0, let µ

∣∣
E

(A) := µ(A∩E)
µ(E) denote the normalized

restriction of the measure µ to E.
The required diffeomorphism is constructed using a variant of the fast

approximation-conjugation method pioneered by Anosov and Katok [3]. For t > 0,
let St : T 2 → T 2 be the translation defined by

St(x, y) := (x, y + t mod 1).

Let k denote the number of absolutely continuous ergodic measures desired. We
divide T 2 into k vertical strips Mi =

[
i−1
k , i

k

) × [0, 1), 1 ≤ i ≤ k, with associated
St-invariant probability measures µ(i) := µ

∣∣
Mi

.
The required diffeomorphism f : T 2 → T 2 is the limit of a sequence of periodic

diffeomorphisms fn given by

fn := H−1
n SωnHn

where ωn = pn/qn with (pn, qn) = 1, and Hn : T 2 → T 2 is an area preserving
diffeomorphism. (We construct ωn and Hn in Subsection (b) below.) Clearly fn

preserves the measures
µ(i)

n := H∗
nµ(i) = µ

∣∣
H−1

n Mi
.

The required ergodic measures appear as the limits µ
(i)
∞ = limn→∞ µ

(i)
n in the total

variation norm.

(a). Convergence Let εn be a summable sequence of positive real numbers
and let En =

∑∞
m=n εm. Let {ϕi}∞i=1 be a countable dense set of continuous

real-valued functions on T 2. Let ρn denote the standard metric on Cn

diffeomorphisms of T 2, ρn(f, g) = ρ̃n(f, g) + ρ̃n(f−1, g−1), where ρ̃n(f, g) =
maxj=0,1,...,n supx∈T 2 d((f (j)(x), g(j)(x)).

We construct the maps Hn such that the following properties are obtained:
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1. ρn(fn, fn+1) < εn.
2. supx max1≤i≤qn d(f i

nx, f i
n+1x) < εn.

3. fn is εn-minimal, every orbit meets every εn-ball.
4. For ϕ ∈ {ϕ1, . . . , ϕn} and for every x ∈ T 2, there exists νx

n−1 in the simplex
generated by the measures µ

(1)
n−1, . . . , µ

(k)
n−1 such that

∣∣∣ 1
qn

qn−1∑
i=0

ϕ(f i
nx) −

∫
T 2

ϕdνx
n−1

∣∣∣ < εn.

5. µ(H−1
n Mi�H−1

n+1Mi) < εn for 1 ≤ i ≤ k.
In the remainder of this subsection, we show how Theorem 1.1 follows from the
above conditions.

Condition 1 guarantees the convergence of the sequence fn to a C∞ area
preserving diffeomorphism f . Minimality of f is ensured by conditions 2 and 3 as
follows. Given ε > 0 consider n such that En < ε/2. The periodic diffeomorphism
fn is ε/2 dense and every point on the fn orbit of x can be approximated within
ε/2 by a point on the f orbit of x. Hence the f orbit of x meets every ε-ball. Since
ε was arbitrary f is minimal.

Condition 5 guarantees that for each 1 ≤ i ≤ k the sequence µ
(i)
n converges in

the variation norm to an invariant probability measure µ
(i)
∞ . Indeed µ(·�·) makes

the measure algebra into a complete metric space. The sequence of sets H−1
n Mi

is a Cauchy sequence in this metric and hence converges to a (unique modulo null
sets) measurable set. The limiting measure is the normalized restriction of µ to
this set. Since the Mi are mutually disjoint the limiting measures µ

(i)
∞ are mutually

singular.
If ν is an ergodic measure for f then there is a point x0 ∈ T 2 such that for every

continuous function ϕ,

lim
n→∞

1
n

n−1∑
i=0

ϕ(f ix0) =
∫

T 2
ϕdν.

However, by conditions 2 and 4,

lim
n→∞

1
qn

qn−1∑
i=0

ϕ(f ix0) = lim
n→∞

1
qn

qn−1∑
i=0

ϕ(f i
nx0) = lim

n→∞

∫
T 2

ϕdνx0
n−1,

and so ν is the weak limit of the sequence νx0
n . This means ν must be in the

simplex generated by µ
(1)
∞ , . . . , µ

(k)
∞ . Hence any ergodic measure must be one of

µ
(1)
∞ , . . . , µ

(k)
∞ . Since the µ

(i)
∞ are mutually singular they must all be ergodic.

(b). Construction of the Hn In this subsection, we complete the proof of
Theorem 1.1 by constructing the conjugacies Hn so that conditions 1–5 in
Subsection (a) are satisfied. Recall that fn = H−1

n SωnHn. The conjugating maps
Hn are constructed inductively

Hn := hn ◦ · · · ◦ h1
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6 I. Melbourne and A. Windsor

where each hn is a C∞ area preserving diffeomorphism on T 2.
We shall require that hn+1 commutes with Sωn . Then we can write

fn+1 = H−1
n Sωnh−1

n+1Sωn+1−ωnhn+1Hn.

Once the diffeomorphism hn+1 is fixed we may always choose ωn+1 sufficiently close
to ωn to ensure that conditions 1 and 2 hold.

In the following, �, m, N denote positive integers that will be chosen later
sufficiently large. We construct hn+1 on the horizontal strip ∆ := [0, 1) × [

0, 1
�qn

)
and extend it by requiring that hn+1 commute with S 1

�qn
. This naturally ensures

that hn+1 commutes with Sωn .
We partition ∆ into equally sized parallelograms Pi,j , 1 ≤ i ≤ kN , 1 ≤ j ≤ kmN

with sides horizontal and at 45 degrees, starting from (0, 0), see Figure 1. The
parallelograms have base 1

kN and height 1
�qnkmN . Let Pi,j denote the parallelogram

in the i’th column and j’th row.
Let M̃i denote the approximation to Mi by parallelograms, and µ̃(i) the

associated measures. Let ∆0 =
⋃

1≤j≤kN Pi,j and ∆1 =
⋃

kN<j≤kmN Pi,j denote
the lower and upper portions of ∆. Choosing m and N large enough, we can ensure
that ∆1 is arbitrarily close to full measure in ∆ and that M̃i is arbitrarily close to
Mi, so that condition 5 is satisfied.

For each i, j, we choose a core Ci,j ⊂ IntPi,j diffeomorphic to a closed disk.

C11 C21

C12 C22

C13 C23

Figure 1. Parallelograms and cores Cij

Let C = ∪i,jCi,j . Choose hn+1 to be an area preserving C∞ diffeomorphism
such that

hn+1Ci,j =

{
Cαj(i),j j ≤ kN

Cβj(i),j otherwise

where α and β are the permutations given by

α = (1 · · · kN), β =
(
1 · · · N

)(
N +1 · · · 2N

) · · · ((k−1)N +1 · · · kN
)
.
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Note that α acts on ∆0 and β acts on each M̃i∩∆1. This permutation is constructed
by by exhibiting a transposition of adjacent cores and then using the fact that any
permutation can be written as a product of transpositions.

Consider the partition of T 2 given by the columns of parallelograms Ka,b,c,
1 ≤ a ≤ kN , 1 ≤ b ≤ m, 0 ≤ c ≤ �qn − 1, where

Ka,b,c = S c
�qn

⋃bkN
j=(b−1)kN+1 Pa,j ,

with dimensions 1
kN × 1

�qnm .
We choose the cores Ci,j large enough so that every vertical line in T 2 intersects

every row of cores, and moreover there exists a column i0 such that the vertical line
intersects Ci0,j for each j ≥ 1. For every x, the orbit {h−1

n+1Stx ; t > 0} intersects
every column Ka,1,c and is uniformly distributed amongst {Ka,b,c ∩ C : Ka,b,c ⊂
M̃i ∩ ∆1} for each i. Hence for qn+1 large enough, the orbit {h−1

n+1S
j
ωn+1

x ; j ≥
1} intersects every column Ka,1,c and is almost uniformly distributed amongst
{Ka,b,c ∩ C : Ka,b,c ⊂ M̃i ∩ ∆1} for each i.

Next, we prove εn+1-minimality. For � large enough, it suffices to prove that each
fn+1 orbit intersects every εn+1-ball. Choose � and N large enough that for every
εn+1-ball B, there exists a, c such that Ka,1,c ⊂ HnB. Hence {H−1

n+1S
j
ωn+1

x ; j ≥ 1}
intersects every εn+1-ball. Since fn+1 = H−1

n+1Sωn+1Hn+1, this gives condition 3.
Finally, we choose � and N large enough that for all ϕ ∈ {ϕ1, . . . , ϕn+1} we have

max
x∈Ka,b,c

ϕ ◦ H−1
n (x) − min

x∈Ka,b,c

ϕ ◦ H−1
n (x) <

εn+1

6
. (B.1)

Let Π(i)
x := {j ∈ {1, . . . , qn+1} : h−1

n+1S
j
ωn+1

x ∈ C ∩ M̃i ∩ ∆1}. If Π(i)
x �= ∅, then∣∣∣ 1

#Π(i)
x

∑
j∈Π

(i)
x

ϕH−1
n h−1

n+1S
j
ωn+1

x −
∫

ϕH−1
n dµ̃(i)

∣∣
C∩∆1

∣∣∣ <
εn+1

3
,

by (B.1) and (almost) uniform distribution. If we let Πx := ∪iΠ
(i)
x , then∣∣∣ 1

#Πx

∑
j∈Πx

ϕH−1
n h−1

n+1S
j
ωn+1

x −
∫

ϕH−1
n dν̃x

∣∣
C∩∆1

∣∣∣ <
εn+1

3
,

where ν̃x is in the simplex of measures µ̃(1), . . . , µ̃(k). Since we can make the cores
C capture almost all of every orbit and since ∆1 has almost full measure in ∆ we
obtain ∣∣∣ 1

qn+1

qn+1−1∑
j=1

ϕH−1
n h−1

n+1S
j
ωn+1

x −
∫

ϕH−1
n dνx

∣∣∣ < εn+1,

which is condition 4.

Remark. A modification [8] to the above arguments yields minimality and
countably many absolutely continuous ergodic measures. Moreover, the union of the
“supports” of the absolutely continuous measures is of full measure. (By support,
we mean the set of generic points for a given invariant measure.) The argument to
show there are no more ergodic measures now shows only that there are no more
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8 I. Melbourne and A. Windsor

absolutely continuous ergodic measures. Indeed there must be at least one singular
ergodic measure by weak-* compactness. By carefully choosing the approximation
by parallelograms it is possible to ensure that there is precisely one singular ergodic
measure, but this is not necessary for Theorem 1.3.
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