
Math 7351 1. Metric spaces Spring 2005

Many concepts from real analysis can be extended to other spaces if we have a metric on
the space. A metric space is a set X with a ‘distance’ or ‘metric’ function d : X ×X → R
such that

D1. d(x, y) ≥ 0.

D2. d(x, y) = 0 iff x = y

D3. d(x, y) = d(y, x) (Symmetry).

D4. d(x, z) ≤ d(x, y) + d(y, z) (Triangle inequality).

Examples

1. X = R with d(x, y) = |x− y|. This is the usual distance in the reals.

2. More generally, if (X, ‖ ·‖) is a normed space then d(x, y) = ‖x−y‖ defines a metric.
The Lp spaces are examples.

3. In R2, the standard Euclidean distance d(x, y) = ‖x−y‖2 =
√

(x1 − y1)2 + (x2 − y2)2

and the ‘Taxicab’ metric d(x, y) = ‖x − y‖1 = |x1 − y1| + |x2 − y2| are metrics (in
fact these are just given by the L2 and L1 norms respectively on R2).

4. On any space, d(x, y) = 0 if x = y and 1 otherwise gives rise to the discrete metric.

5. The 2-adic metric on Z given by d(n,m) = 2−a if n−m = 2a(2k +1) and 0 if n = m.

6. FedEx Metric: X = R2 with d(x, y) = ‖x‖2 + ‖y‖2 if x 6= y and 0 if x = y.

7. X = (0,∞) with d(x, y) = | 1
x
− 1

y
|.

Definition The (open) ball or radius r about x ∈ X is the set Br(x) = {y : d(y, x) < r}.

Concepts of limits, continuity, and open and closed sets have fairly straightforward gener-
alizations to metric spaces:
A sequence (xi)i∈N in a metric space (X, d) converges to a limit L ∈ X iff

∀ε > 0: ∃n0 : ∀n ≥ n0 : d(xn, L) < ε or ∀ε > 0: ∃n0 : {xn0 , xn0+1, . . . } ⊆ Bε(L).

A point L is a cluster point of a sequence (xi)i∈N iff

∀ε > 0: ∀n0 : ∃n ≥ n0 : d(xn, L) < ε or ∀ε > 0: ∀n0 : {xn0 , xn0+1, . . . } ∩ Bε(L) 6= ∅.
A sequence (xi)i∈N is Cauchy if ∀ε > 0: ∃n0 : ∀n,m ≥ n0 : d(xn, xm) < ε.

A function f from (X, d) to another metric space (X ′, d′) is continuous at x ∈ X iff

∀ε > 0: ∃δ > 0: ∀y ∈ X : d(y, x) < δ ⇒ d′(f(y), f(x)) < ε.

Equivalently, f [Bδ(x)] ⊆ Bε(f(x)), or Bδ(x) ⊆ f−1[Bε(f(x))].

A function is continuous iff it continuous at every point x and uniformly continuous iff the
δ can be chosen independently of x.



A set U ⊆ X is open iff

∀x ∈ U : ∃ε > 0: ∀y ∈ X : d(y, x) < ε ⇒ y ∈ U or ∀x ∈ U : ∃ε > 0: Bε(x) ⊆ U.

Equivalently, U is open iff U is a union of open balls U =
⋃

x Bεx(x).

A point x is a point of closure of S iff ∀ε > 0: Bε(x) ∩ S 6= ∅.
The set of all points of closure of S is the closure of S, written S̄. We say S is closed if
S = S̄ (it is always the case that S ⊆ S̄). Note that the open ball Br(x) is always open
and the closed ball B′

r(x) = {y : d(y, x) ≤ r} is always closed, however the closure of Br(x)
may be smaller than B′

r(x).

Define the distance between a point x and a set S by d(x, S) = infy∈S d(x, y).
Then x is a point of closure of S iff d(x, S) = 0.

Lemma 1.

1. X and ∅ are open.

2. Any finite intersection of open sets is open.

3. Any arbitrary union of open sets is open.

Lemma 2.

1. A set is closed iff its complement is open.

2. X and ∅ are closed. Any finite union of closed sets is closed. Any arbitrary inter-
section of closed sets is closed.

3. The closure of a set S is the smallest closed set containing S (= the intersection of
all closed sets containing S).

Lemma 3. A function f : X → X ′ between two metric spaces is continuous iff f−1[U ′] is
an open set in X for every open set U ′ ⊆ X ′.

Proof. If f is continuous and x ∈ f−1[U ′] then f(x) ∈ U ′. But U ′ is open, so Bε(f(x)) ⊆ U ′

for some ε > 0. By the definition of continuity, Bδ(x) ⊆ f−1[Bε(x)] ⊆ f−1[U ′] for some δ.
Since this holds for all x ∈ f−1[U ′], f−1[U ′] is open.
Conversely, if f−1[U ′] is open for every open U ′ ⊆ X ′, it must be open for U ′ = Bε(f(x)).
But x ∈ f−1[Bε(f(x))], so Bδ(x) ⊆ f−1[Bε(f(x))] for some δ. Since this holds for any ε
and any x, f is continuous.

Subspaces and Products.

Given any metric space (X, d) and any subset S ⊆ X, we can view S as a metric space
with (the restriction of) the same metric d. We call S a subspace of X.

Given two metric spaces (Xi, di), i = 1, 2, one can construct many metrics on the Cartesian
product X1 ×X2. For example, for p ≥ 1 we can take dp((x1, x2), (y1, y2)) = (d(x1, y1)

p +
d(x2, y2)

p)1/p, or d∞((x1, x2), (y1, y2)) = max{d(x1, y1), d(x2, y2)}. Similarly for any finite
number of factors. Starting with the usual metric on R this gives the various Lp metrics
on Rn.
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It turns out that many of the properties of metric spaces can be expressed entirely in terms
of open sets (cf Lemmas 1–3 of the last section). This prompts the following definition.

A topology on a set X is a collection T of subsets of X, called open sets, such that

T1. ∅ and X are open.

T2. Any finite intersection of open sets is open.

T3. An arbitrary union of open sets is open.

We define a set to be closed if its complement is open.
A neighborhood of a point x is a set S such that x ∈ U ⊆ S for some open set U . We call
S an open neighborhood if S is itself open and x ∈ S.

We can also define limits, continuity, closure etc. as follows:

A point L is a limit of (xi)i∈N iff ∀ nbhd N of x : ∃n0 : {xn0 , xn0+1, . . . } ⊆ N .

A point L is a cluster point of (xi)i∈N iff ∀ nbhd N of x : ∀n0 : {xn0 , xn0+1, . . . } ∩N 6= ∅.
f : (X, T ) → (X ′, T ′) is continuous at x iff ∀ nbhd N ′ of f(x) : f−1[N ′] is a nbhd of x.

f : (X, T ) → (X ′, T ′) is continuous iff ∀ open U ′ : f−1[U ′] is open.

The closure S̄ of S is S̄ =
⋂

F⊇S, F closed F .

The interior
◦
S of S is

◦
S =

⋃
U⊆S, U open U .

The boundary ∂S of S is ∂S = S̄ \ ◦
S.

Note: In general, the limit of a sequence may not be unique.

Exercises

1. Check these concepts agree with those defined for a metric space.

2. Check that a function is continuous iff it is continuous at x for all x.

3. Show that the composition of continuous functions is continuous (both ‘at x’ and
generally).

4. Show that A ∪B = Ā∪B̄ and A ∩B ⊆ Ā∩B̄. Give an example when A ∩B 6= Ā∩B̄.

Not all topologies can be derived from a metric. Also, different metrics can give rise to the
same topology. We call two metrics d1 and d2 on a space X equivalent if they give rise to
the same topology.

Lemma 1. Two metrics d1 and d2 are equivalent iff for all x, any d1-ball about x contains
a d2-ball about x and any d2-ball about x contains a d1-ball about x.

Exercise: All Lp metrics on R2 are equivalent.

Although, many properties defined for metric spaces are topological, not all are. For
example, uniform continuity and Cauchy sequences cannot be defined solely in terms of



open sets. To see this, consider the two metrics d1(x, y) = |x − y| and d2(x, y) = | 1
x
− 1

y
|

on X = (0,∞). These are equivalent, so give rise to the same topology, but xn = 1/n is
Cauchy in d1 but not in d2, while f(x) = x is uniformly continuous as a map (X, d1) →
(X, d1), but not as a map (X, d1) → (X, d2) or (X, d2) → (X, d1).

The balls Br(x) play an important rôle in the study of metric spaces, so it is of interest to
try and generalize the idea to arbitrary topological spaces.

Definition A collection B of subsets of X is a base for the topology T , if every B ∈ B is
open, and every open set is a union of elements of B. Equivalently, if x ∈ U and U is open
then there is a B ∈ B with x ∈ B ⊆ U . A collection Bx is a base of open neighborhoods
of x if every B ∈ Bx is an open neighborhood of x, and every open neighborhood of x
contains an element of Bx.

For a collection of sets B to form a base for some topology, it is enough that if B1, B2 ∈ B
and x ∈ B1 ∩B2, then there is a B3 ∈ B with x ∈ B3 ⊆ B1 ∩B2. Similarly, if Bx is a base
of open neighborhoods of x, then if B1, B2 ∈ Bx, there is a B3 ∈ Bx with B3 ⊆ B1 ∩B2.

Clearly, the collection of all open balls (respectively all open balls about x) form a base
(respectively base of open neighborhoods of x).

Definition If T1 and T2 are two topologies on the same set X with T1 ⊆ T2, we say T1 is
weaker or coarser than T2, or T2 is stronger or finer than T1.

The strongest possible topology on X is the discrete topology, where every subset of X is
open. This topology is given by the discrete metric. The weakest possible topology on X
is the indiscrete topology, where the only open sets are ∅ and X. This topology does not
come from a metric if |X| > 1.

Since the intersection of any number of topologies is a topology (check this!), given any
collection of sets C, one can form the weakest topology in which all sets of C are open.
One just intersects all the topologies that contain C. More explicitly, the set of all finite
intersections of sets from C, B = {∩n

i=1Si : n ∈ N, Si ∈ C}, is a base for a topology, and
this topology is clearly the weakest topology containing C.

If f : X → X ′ is an arbitrary function and T ′ is a topology on X ′, f induces a topology
on X given by f ∗[T ′] = {f−1[U ′] : U ′ ∈ T ′}. If X already has a topology T , then the
statement that f is continuous is equivalent to the statement that f ∗[T ′] is weaker than T .
On the other hand, if T1 and T2 are two topologies on X, then T1 is stronger than T2 iff
the identity map i : (X, T1) → (X, T2) is continuous.
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Homeomorphisms

Definition A homeomorphism is an invertible function between two topological spaces
f : (X, T ) → (X ′, T ′) such that both f and f−1 are continuous. Two spaces are homeo-
morphic if there is a homeomorphism between them.

Warning: If f is continuous and bijective, it does not follow that f−1 is continuous, e.g.,
t 7→ eit; [0, 2π) → {z ∈ C : |z| = 1}.

Definition An isometry is an invertible function between two metric spaces f : (X, d) →
(X ′, d′) such that d′(f(x), f(y)) = d(x, y). Two spaces are isometric if there is an isometry
between them.

If two topological spaces are homeomorphic, then they can be considered to be the ‘same’
space with the points renamed. Similarly, two metric spaces are the ‘same’ if there is
an isometry between them. Homeomorphisms preserve all ‘topological’ properties and
isometries preserve all ‘metric’ properties.

Metric spaces also have the concept of uniform homeomorphism, where both f and f−1

are required to be uniformly continuous. Uniform homeomorphisms preserve some metric
properties (e.g., Cauchy sequences, uniform continuity), but not others (e.g., boundedness
of a metric). Two metrics d1, d2, on the same space are uniformly equivalent if the identity
map (X, d1) → (X, d2) is a uniform homeomorphism.

Lemma 1. Two metrics d1 and d2 are uniformly equivalent iff for all ε > 0 there is
a δ > 0 such that a d1-ball of radius ε about any point x contains a d2-ball of radius δ
about x, and a d2-ball of radius ε about any point x contains a d1-ball of radius δ about x.

Exercises

1. Show that the Lp metrics on Rn are all uniformly equivalent.

2. Show that any metric d is uniformly equivalent to the bounded metric d′(x, y) =
min{d(x, y), 1}.

3. Show that R and (0, 1) are homeomorphic but not uniformly homeomorphic with the
standard metric on both spaces.

4. Show that if f : (X, d) → (X ′, d′) is uniformly continuous and (xn) is a Cauchy
sequence in X, then (f(xn)) is a Cauchy sequence in X ′.

Subspaces

Definition If S ⊆ X we can define the subspace topology on S by declaring a subset of
S open iff it is of the form U ∩ S where U is open in X.



Equivalently, it is the topology i∗[T ] where i : S → X is the inclusion map, and is the
weakest topology that makes i continuous. A set is closed in S iff it is of the form F ∩ S
where F is closed in X.

Example [0, 1) is open in the subspace [0, 2) of R and closed in the subspace [−1, 1).

Exercise: Show that the topology given by the metric on a subspace of a metric space is
the same as the subspace topology.

Product Spaces

Definition If (Xα, Tα), α ∈ I are topological spaces, we define the product topology on
X =

∏
Xα to be the weakest topology that makes all the projection maps πα : X → Xα

continuous. The collection {∏ Uα : Uα ∈ Tα, and Uα = Xα for all but finitely many α}
forms a base for this topology.

For example, when there are only two factors X1×X2, the topology has a base consisting
of open rectangles U1 × U2, Ui open in Xi.

A sequence of points in a product space converges iff it converges in each coordinate
separately. If all the Xα are equal, XI =

∏
α∈I X can be thought of as the set of all

functions f : I → X. In this case, fn → f in the product topology iff fn → f pointwise,
i.e., if fn(α) → f(α) for all α ∈ I.

Exercise: Show that for finite products of metric spaces, the ‘Lp’ product metrics all
give rise to the product topology.

Lemma 2. Given a countable collection of metric spaces (Xn, dn) there is a metric on
the product X =

∏
Xn which induces the product topology.

Hint for proof: d((xn), (yn)) = supn{min{dn(xn, yn), 2−n}} works.

In general, the product topology on an uncountable product of metric spaces is not metriz-
able, i.e., it does not come from any metric.

Disjoint unions

Given any collection of disjoint topological spaces (Xα, Tα) we can form the disjoint union⋃
Xα with the topology given by declaring a set U open iff each U ∩ Xα is open in Xα.

Equivalently, it is the strongest topology that makes all the inclusion maps Xα → X
continuous.

If each of the Xα are metric spaces with metrics dα, one can define a metric on X which
gives the disjoint union topology. For example, take d(x, y) = 1 if x ∈ Xα, y ∈ Xβ and
α 6= β, and d(x, y) = min{dα(x, y), 1} if x, y ∈ Xα.
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Definition Two sets A and B are separated iff A ∩ B̄ = Ā ∩B = ∅.

Lemma 1. The following all hold in any metric space

Fréchet (T1): ∀x, y, x 6= y : ∃ open U : x ∈ U, y /∈ U (⇔ points are closed).

Hausdorff (T2): ∀x, y, x 6= y : ∃ disjoint open U, V : x ∈ U, y ∈ V .

Regular: ∀ closed A, y /∈ A : ∃ disjoint open U, V : A ⊆ U, y ∈ V .

Normal: ∀ disjoint closed A,B : ∃ disjoint open U, V : A ⊆ U, B ⊆ V .

Completely Normal: ∀ separated A, B : ∃ disjoint open U, V : A ⊆ U, B ⊆ V .

Gδ-space: Every closed set is countable intersection of open sets (a Gδ-set).

1st Countable: There exists a countable base of neighborhoods about any point.

Common notation: T3 = T1+Regular, T4 = T1+Normal, T5 = T1+Completely Normal.

Proof. (Sketch)
T1: Take U = Bε(x) where ε ≤ d(x, y).
C.Normal: Set U = {x : d(x,A) < d(x,B)} and V = {x : d(x,A) > d(x,B)}.
C.Normal⇒Normal⇒Regular⇒T2: disjoint closed sets are separated and points are closed.
Gδ space: F closed ⇒ F = {x : d(x, F ) = 0} =

⋂∞
n=1{x : d(x, F ) < 1/n}.

1st Countable: {B1/n(x) : n = 1, 2, 3, . . . } is a base at x.

The following three results hold for any Normal space, and so in particular hold for metric
spaces.

Theorem (Urysohn’s Lemma) If A and B are disjoint closed sets in a Normal space
X then there exists a continuous function f : X → [0, 1] with f = 0 on A and f = 1 on B.

[In a metric space we can set f(x) = d(x,A)/(d(x,A) + d(x,B)).]

Theorem (Tietze’s Extension Theorem) If A is a closed set in a Normal space X
and g : A → R is continuous, then there exists a continuous function f : X → R with f = g
on A.

Corollary If A1, . . . , An are pairwise disjoint closed sets in a Normal space X, and
gi : Ai → R, i = 1, . . . , n, are continuous functions, then there exists a continuous function
f : X → R with f = gi on Ai.

Definition A set S is dense if S̄ = X, or equivalently S ∩ U 6= ∅ for all open U 6= ∅.

Definition An open cover is a collection of open sets whose union is X. It is finite,
countable, etc., if the number of open sets in the cover is finite, countable, etc..



Lemma 2. The following are equivalent for any metric space.

Lindelöf: Every open cover has a countable subcover.

Separable: There is a countable dense set of points.

2nd Countable: There is a countable base for the topology.

Proof. (Sketch)
Lind⇒Sep: {Bε(x) : x ∈ X} has a countable cover, {Bε(x) : x ∈ Sε} say. Consider

⋃
S1/n.

Sep⇒2nd C: S is a countable dense set ⇒ {B1/n(x) : x ∈ S, n ∈ N} is a countable base.
2nd C⇒Lind: Let B = {Bn : n ∈ N} be a countable base and X =

⋃
Uα an open cover.

For each Bn pick (if possible) a Uαn with Bn ⊆ Uαn . If x ∈ X, then x ∈ Uα for some α.
But B is a base, so x ⊆ Bn ⊆ Uα for some n. Thus Uαn exists and x ∈ Uαn . Hence the set
of chosen Uαn covers X.

Examples

1. Rn is separable with any of the Lp metrics (Qn is a countable dense subset).

2. Lp(R) is separable if p < ∞ (approximate with ‘rational’ step functions).

3. C([0, 1]) (continuous functions on [0, 1] with L∞ norm) is separable (use uniform
continuity, and approximate with piecewise linear functions with rational corners).

4. L∞(R) and C(R) are not separable (use ‘Cantor Diagonal Argument’: If {fn} is
dense, construct bounded f which is far from fn on [n, n + 1]).

Lemma 3. For metric spaces, these three equivalent conditions are preserved under taking
(a) subspaces, (b) countable products, and (c) countable disjoint unions.

Proof.
(a) Subspaces — use 2nd Countability: If S ⊆ X and {Bi : i ∈ N} is a countable base for
X, then {Bi ∩ S : i ∈ N} is a countable base for S.
(b) Products — use Separability: Assume Si is a countable dense subset of Xi, and fix
xi ∈ Si. Then S = {(yi) : yi ∈ Si and yi = xi for all but finitely many i} is a countable
dense subset of X =

∏
Xi.

(c) Countable Unions — use Separability: Assume Si is a countable dense subset of Xi,
then S =

⋃
Si is a countable dense subset of X =

⋃
Xi.

Metrizability

Question: When does a topology come from a metric?

This is in general a very difficult question, however the following result shows that a
topology comes from a separable metric iff it is T3 and 2nd Countable.

Theorem (Urysohn Metrization Theorem) 2nd Countable + T3 ⇒ metrizable.

[Urysohn actually proved ‘2nd Countable + T4 ⇒ metrizable’. Later, Tychonoff noted
that ‘2nd Countable + T3 ⇒ T4’, so T3 is enough.]
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Definition A metric space X is complete if every Cauchy sequence in X converges.

Examples Rn, Lp(S) (1 ≤ p ≤ ∞), C(S) with the L∞-norm, (S ⊆ R).

Lemma 1. A closed subspace of a complete metric space is complete. If a subspace of a
metric space is complete then it is closed.

Hint: Any convergent sequence is Cauchy, and x is a limit of some sequence in S iff x ∈ S̄.

Lemma 2. A finite product of complete metric space is a complete metric space under
any of the ‘Lp’ product metrics.

Hint: A sequence is Cauchy/convergent iff it is Cauchy/convergent in each coordinate.

Theorem 1. If (X, d) is a metric space, then there is a complete metric space (X̃, d̃)
such that (X, d) is (isometric to) a dense subset of (X̃, d̃). Moreover, (X̃, d̃) is unique up
to isometry, and satisfies the following universal property:

If Y is a complete metric space and f : X → Y is uniformly continuous, then there
exists a unique (uniformly) continuous map f̃ : X̃ → Y extending f to X̃.

One construction is to take all Cauchy sequences in X and quotient out by the relation
(xn) ∼ (yn) iff limn→∞ d(xn, yn) = 0. Then define d̃((xn), (yn)) = limn→∞ d(xn, yn). The
set X then corresponds to the subset of constant sequences.

Note that ‘uniformly’ is required in the above universal property. For example, f̃ does not
exist if X = Q, Y = X̃ = R and f(x) = 0 for x <

√
2 and f(x) = 1 for x >

√
2.

Definition A metric space X is totally bounded if for any ε > 0 there is a finite set
{x1, . . . , xn} such that the Bε(xi), i = 1, . . . , n, cover the whole of X.

Exercise: Show that any totally bounded space is bounded and separable. Give an
example of a metric space that is bounded and separable but not totally bounded.

Theorem 2. The following four conditions are equivalent for any metric space.

Compact: Every open cover has a finite subcover.

Sequentially compact: Every sequence has a convergent subsequence.

Bolzano-Weierstrass property: Every sequence has a cluster point.

The space is both Complete and Totally bounded.

Proof. (Sketch)
Compact⇒T.B: {Bε(x) : x ∈ X} is an open cover, so has a finite subcover {Bε(xi) : i =
1, . . . , n}.
Compact⇒Complete: If (xi) is a Cauchy sequence, ∀ε > 0: ∃n0 : ∀n ≥ n0 : d(xn, xn0) < ε.



Hence only finitely many points of the sequence lie in the open set Uε = {x : d(x, xn0) > ε}.
Thus no finite union of Uε’s can cover X. Hence the Uε do not cover X. Pick L /∈ ⋃

ε Uε.
Then ∀ε > 0: ∃n0 : ∀n ≥ n0 : d(xn, xn0) < ε and d(L, xn0) ≤ ε, so d(xn, L) < 2ε. Thus
xn → L.
Complete+T.B.⇒Seq.C.: Take any sequence (xi). By total boundedness, we can cover
X =

⋃m1

i=1 B1(y1,i). At least one of these balls contains infinitely many terms xn1,i
of the

sequence xi. Now cover X =
⋃m2

i=1 B1/2(y2,i). At least one of these balls contains infinitely
many terms xn2,i

of the sequence xn1,i
. Repeat this process and consider the sequence xni,i

.
Then for j > i, xnj,j

= xni,k
for some k > i since the xnj,∗ sequence is a subsequence of

the xni,∗ . Also d(xni,k
− xni,i

) < 2/i since the xni,∗ sequence lies in the ball B1/i(yi,t) for
some t. Thus xni,i

is Cauchy, so converges by completeness.
Seq.C.⇒B-W: A limit of a subsequence is a cluster point of the sequence.
B-W⇒Compact: Suppose {Uα} is an open cover with no finite subcover. Pick any x1 ∈ X
and choose Uα1 so that Br1(x1) ⊆ Uα1 and r1 is large, (say > 1

2
sup{r : ∃α : Br(x1) ⊆ Uα}).

Since there is no finite subcover, we can inductively choose xi /∈ ⋃
j<i Uαj

, ri, and Uαi

similarly. The sequence xi has a cluster point L. Since the Uα cover X, L ∈ Uα0 for
some α0. Since Uα0 is open, Br0(L) ⊆ Uα0 for some r0 > 0. Pick an xi with d(xi, L) < r0/5.
But then B4r0/5(xi) ⊆ Uα0 , so ri > 2r0/5 by choice of Uαi

. But then all xj, j > i, would
be at least r0/5 from L, and so L would not be a cluster point.

Note that although the first three properties are topological, both completeness and total
boundedness are both metric properties.

The following is an equivalent definition of compactness:

If {Fα} is a collection of closed sets such that any finite intersection is non-empty,
then the intersection of all the Fα is non-empty.

Lemma 3. A closed subspace of a compact space is compact. If a subspace of a metric
(or just T2) space is compact then it is closed.

Hints: 1st part: Add X \ S to any open cover of S. 2nd part: If x ∈ S̄ \ S, consider the
collection of open sets disjoint from some open neighborhood of x.

Theorem (Tychonoff) A arbitrary product of compact topological spaces is compact.

Lemma 4. A continuous image of a compact space is compact.

Proof. If f : X → Y and Uα cover Y , f−1[Uα] cover X, take the Uα corresponding to a
finite subcover of X.

A subset of R is compact iff it is closed and bounded. Hence any continuous real valued
function on a compact set is bounded and attains its bounds.

Lemma 5. Any continuous map f from a compact metric space X to a metric space Y
is uniformly continuous.

Hint: Cover X with balls Bδx(x) where f [B2δx(x)] ⊆ Bε/2(f(x)). Let δ = min δx.
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Theorem (Baire) If {U1, U2, . . . } is a countable collection of dense open subsets of a
complete metric space X, then

⋂∞
n=1 Un is dense in X.

Proof. Fix any non-empty open U . We need to find an L ∈ U ∩ ⋂∞
n=1 Un. Pick a ball

Br1(x1) ⊆ U (possible since U is a non-empty open set). Assume by induction that we
have defined a ball Brn(xn). Since Un is dense, there is a point xn+1 ∈ Un ∩Brn(xn). Since
Un ∩Brn(xn) is open there exists rn+1 > 0 such that

Brn+1(xn+1) ⊆ B2rn+1(xn+1) ⊆ Un ∩Brn(xn).

W.l.o.g., rn+1 < rn/2 so that rn → 0. Since Brn+1(xn+1) ⊆ Brn(xn), Brm(xm) ⊆ Brn(xn)
for all m > n. Thus d(xm, xn) < rn for all m > n. Since rn → 0 as n → ∞, (xn) is a
Cauchy sequence. Let L = lim xn ∈ X. Then since xm ∈ Brn+1(xn+1) for all m > n + 1,

L ∈ Brn+1(xn+1) ⊆ Un for all n. Hence L ∈ ⋂∞
n=1 Un. Also L ∈ Br2(x2) ⊆ Br1(x1) ⊆ U .

Definition A set S is nowhere dense if
◦
S̄ = ∅. Equivalently S̄ contains no non-empty

open set, or X \ S contains an open dense set.

Definition A set S is of 1st category or meager if it is a countable union of nowhere
dense sets. It is of 2nd category or nonmeager otherwise.

A subset of a nowhere dense (resp. 1st category) set is nowhere dense (resp. 1st category).
Moreover, a countable union of 1st category sets is of 1st category.
A superset of a 2nd category set is of 2nd category.
One thinks of 1st category sets as being ‘small’ and 2nd category sets as being ‘large’.

Corollary 1. Any non-empty open subset of a complete metric space is of 2nd category.

Proof. The complement of a countable union of nowhere dense sets contains a countable
intersection of open dense sets. Therefore it is dense. Thus any non-empty open set meets
the complement of any 1st category set, so cannot itself be of 1st category.

Lemma 1. If F is a closed set then F \ ◦
F is nowhere dense. In particular a closed subset

F of a complete metric space is of 1st category iff
◦
F = ∅.

Proof. Since F \ ◦
F is closed, it is enough to show it has no interior. Suppose Bε(x) ⊆ F \ ◦

F

for some x and ε > 0. Now x /∈ ◦
F , so Bε(x) 6⊆ F , contradicting the assumption that

Bε(x) ⊆ F \ ◦
F ⊆ F . For the second part, note if

◦
F = ∅ then F = F \ ◦

F , while if
◦
F 6= ∅

then
◦
F is a non-empty open subset of X, thus

◦
F (and hence F ) is of 2nd Category.

Corollary 2. If X 6= ∅ is a complete space and Fn are closed subsets with
⋃∞

n=1 Fn = X,
then at least one Fn has non-empty interior.

Proof. If all
◦

Fn = ∅ then X =
⋃∞

n=1 Fn is of 1st category. But X is open in X.



Theorem (Uniform Boundedness Theorem) Suppose F is a collection of contin-
uous real-valued functions on a complete metric space X. Suppose that for all x ∈ X,
supf∈F |f(x)| < ∞. Then there is a non-empty open set U and constant M ∈ R such that
supf∈F |f(x)| ≤ M for all x ∈ U .

Proof. Let Fn = {x : supf∈F |f(x)| ≤ n}. Since each f ∈ F is continuous, {x : |f(x)| ≤ n}
is closed. Thus Fn =

⋂
f∈F{x : |f(x)| ≤ n} is closed. Also

⋃
n Fn = X. Thus there is an n

with
◦

Fn 6= ∅. Let M = n and U =
◦

Fn.

Definition A topological space (X, T ) is locally compact if every x ∈ X has a compact

neighborhood, i.e., there exists a compact K ⊆ X with x ∈ ◦
K (note K need not be open).

Warning: There are several non-equivalent definitions in the literature. However, they
are all equivalent for Hausdorff spaces.

A compact space is locally compact (take K = X), but some spaces are locally compact
but not compact (e.g., R). Amoung metric spaces, some complete spaces are not locally
compact (e.g., L∞(R)) and some locally compact spaces are not complete (e.g., (0, 1)).
Nevertheless, the Baire Category Theorem also holds for locally compact spaces.

Theorem (Locally compact BCT) If {U1, U2, . . . } is a countable collection of dense
open subsets of a locally compact Hausdorff space X, then

⋂∞
n=1 Un is dense in X.

Hint. First reduce to the case when X = K is compact. Follow the original proof using
arbitrary open Vn in place of Brn(xn). One needs the fact that if W = Vn ∩ Un is open
and x ∈ W then there is an open Vn+1 with x ∈ Vn+1, Vn+1 ⊆ W . This follows from the
T3 axiom (applied to x and X \W ) which holds in any compact Hausdorff space (prove
this). Finally, use the finite intersection property of compact spaces to finish.

Exercises

1. Show that Rn is not a countable union of (n− 1)-dimensional hyperplanes.

2. Show that an infinite dimensional Banach space has uncountable dimension.
[Hint: Show it is not a countable union of finite dimensional subspaces.]

3. Show that there is no continuous function that swaps the rationals and irrationals
f [Q] ⊆ R \Q and f [R \Q] ⊆ Q. [Hint: f [R] is countable and R =

⋃
z∈f [R] f

−1[z].]

4. Show that Q is not a Gδ-subset of R.

5. Show that there is no function f : R → R that is continuous at all rational points
and discontinuous at all irrational points.

6. Show that there is a subset of [0, 1] which is of measure 1, but of 1st category.

7. Show there is a continuous function R → R that is not monotonic on any interval.
[Hint: Show that {f ∈ C(R) : f is monotonic on [a, b] } is nowhere dense in C(R).]
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Recall: A normed space is a real vector space X with a norm ‖.‖ : X → [0,∞) with the
following properties:

N1. If ‖v‖ = 0 then v = 0,

N2. ‖λv‖ = |λ|‖v‖ where λ ∈ R,

N3. ‖u + v‖ ≤ ‖u‖+ ‖v‖.
If we drop condition N1 then we obtain a pseudo-norm.
A norm gives rise to a metric d(x, y) = ‖x− y‖ and hence a topology on X.
Two norms, ‖.‖ and ‖.‖′, on X are (uniformly) equivalent if there exists constants K, K ′,
such that for all v, ‖v‖′ ≤ K‖v‖ and ‖v‖ ≤ K ′‖v‖′.
A Banach Space is a complete normed space.

Examples

1. Lp(S), S ⊆ R, are Banach spaces for all p, 1 ≤ p ≤ ∞.

2. The finite lpn and infinite lp sequence spaces are Banach spaces for all p, 1 ≤ p ≤ ∞.

3. The completion of any normed space is a Banach space.

4. Any linear (vector) subspace of a normed space is a normed space. A linear subspace
of a Banach space is Banach iff it is closed.

5. For 1 ≤ p < ∞, the subspace F = {(xn) : xn = 0 for all sufficiently large n} is a
dense linear subspace of lp.

6. Let C1([0, 1]) be the space of continuously differentiable functions on [0, 1] with norm
‖f‖ = supx∈[0,1](|f(x)|+ |f ′(x)|). Then C1([0, 1]) is a Banach space.

Lemma 1. All norms on a finite dimensional space are equivalent. In particular, all
finite dimensional normed spaces are complete.

Proof. Since equivalence of norms is an equivalance relation, it is enough to show any ‖.‖
is equivalent to ‖.‖∞ on X = Rn. Let {e1, . . . , en} be the standard basis for Rn and v =∑

λiei. Then ‖v‖ ≤ ∑
i |λi|‖ei‖ ≤ (

∑ ‖ei‖) max |λi| = K ′‖v‖∞ where K ′ =
∑n

i=1 ‖ei‖.
Hence it is enough to show ‖v‖∞ ≤ K‖v‖. Assume otherwise and let vn be a sequence
with ‖vn‖∞ > n‖vn‖. By relacing vn by ‖vn‖−1

∞ vn, we may assume ‖vn‖∞ = 1. But the
‘cube’ {v : ‖v‖∞ = 1} is compact, so there exists a ‖.‖∞-cluster point v of the sequence
vn with ‖v‖∞ = 1. Now v 6= 0, so ‖v‖ 6= 0. Let ε = ‖v‖/2K ′ and pick vn, n large, with
‖vn − v‖∞ < ε. Then ‖vn − v‖ ≤ K ′‖vn − v‖∞ < ‖v‖/2. Then ‖vn‖ > ‖v‖/2, which is a
contradiction if n is large enough since ‖vn‖ < ‖vn‖∞/n = 1/n.
Finally, all norms are complete since ‖.‖∞ is, and completeness is preseved under uniform
equivalence of metrics.

Not all linear subspaces of a normed space are closed (e.g., example 5 above), however
Lemma 1 implies that any finite dimensional linear subspace is closed.



Lemma 2. If Y is a linear subspace of a normed space X then so is its closure Ȳ . Also,
‖v + Y ‖ = infy∈Y ‖v − y‖ defines a pseudo-norm on the quotient space X/Y , which is a
norm iff Y is closed.

For S ⊆ X, let 〈S〉 denote the smallest linear subspace of X containing S, i.e., 〈S〉 =
{∑n

i=1 λivi : n ∈ N, vi ∈ S, λi ∈ R}.

Linear operators

A map T : X → X ′ between two vector spaces is linear if T (λu + µv) = λT (u) + µT (v)
for all u, v ∈ X and λ, µ ∈ R.

Definition If (X, ‖.‖) and (X ′, ‖.‖′) are two (pseudo-)normed spaces and T : X → X ′ is
linear, define ‖T‖ = inf{M ≥ 0 : ∀v ∈ X : ‖T (v)‖′ ≤ M‖v‖} = sup{‖T (v)‖′ : ‖v‖ ≤ 1}.
We say that T is bounded if ‖T‖ < ∞.

Lemma 3 If X and X ′ are normed spaces and T : X → X ′ is continuous at any point
v0 ∈ V then T is bounded. Conversely, if T is bounded then T is uniformly continuous.

Proof. Pick ε = 1, then ∃δ : ‖v − v0‖ ≤ δ ⇒ ‖T (v) − T (v0)‖′ ≤ 1. If u ∈ V , u 6= 0,
let v = v0 + (δ/‖u‖)u. Then ‖v − v0‖ = δ, so 1 ≥ ‖T (v) − T (v0)‖′ = ‖T (v − v0)‖′ =
‖(δ/‖u‖)T (u)‖′ = (δ/‖u‖)‖T (u)‖′. Thus ‖T (u)‖′ ≤ δ−1‖u‖ and T is bounded.
If T is bounded and ε > 0, let δ = ε/‖T‖. Then if ‖u − v‖ < δ, ‖T (u) − T (v)‖′ =
‖T (u− v)‖′ ≤ ‖T‖‖u− v‖ < ε.

Definition An isomorphism between two normed spaces X and X ′ is a bounded linear
map T : X → X ′ which has a bounded linear inverse T−1 : X ′ → X. Equivalently, T is a
linear homeomorphism.

Warning: It is not sufficient that T be a bijective bounded linear map.

Definition If X and Y are two normed spaces, then B(X,Y ) is the set of all bounded
linear maps from X to Y .

Lemma 4 The set B(X,Y ) is a vector space under addition (T + T ′)(v) = T (v) + T ′(v)
and scalar multiplication (λT )(v) = λT (v). With ‖T‖ defined as above, it is also a normed
space. If Y is a Banach space then so is B(X, Y ).

Proof. For the last part, if (Tn) is Cauchy, then so is (Tn(v)) for any v ∈ X. Define
T (v) = lim Tn(v) and show T ∈ B(X, Y ) and ‖Tn − T‖ → 0.

The space X∗ = B(X,R) is called the dual space of X. Note that it is always a Banach
space. The Riesz Representation Theorem of Lp-spaces gives an (isometric) isomorphism
Lp(S)∗ ∼= Lq(S), where 1 ≤ p < ∞ and 1

p
+ 1

q
= 1. Hence for 1 < p < ∞, Lp(S)∗∗ ∼= Lp(S).

However, it is not true in general that X∗∗ ∼= X, even for Banach spaces.
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Definition A convex functional is a map p : X → R such that p(λx) = λp(x) for λ ≥ 0
and p(x + y) ≤ p(x) + p(y).

Theorem (Hahn-Banach) Suppose X0 is a linear subspace of X and p is a convex
functional on X. If T0 : X0 → R is a linear map such that T0(x) ≤ p(x) for all x ∈ X0,
then there exists an extension of T0 to T : X → R with T (x) ≤ p(x) for all x ∈ X.

Proof. Let X = {(T ′, X ′) : X ′ subspace of X, X0 ⊆ X ′, T ′|X0 = T0, ∀x ∈ X ′ : T ′(x) ≤
p(x)}. Partially order X by (T ′, X ′) ≤ (T ′′, X ′′) if X ′ ⊆ X ′′ and T ′′|X′ = T ′. One can
check the conditions of Zorn’s lemma hold, so there is a maximal (T1, X1) ∈ X . If X1 = X
we are done. Otherwise choose u /∈ X1. Now

T1(x) + T1(x
′) = T1(x + x′) ≤ p(x + x′) ≤ p(x + u) + p(x′ − u)

So T1(x
′)− p(x′ − u) ≤ p(x + u)− T1(x) and we can choose α so that

supx′{T1(x
′)− p(x′ − u)} ≤ α ≤ infx{p(x + u)− T1(x)}.

Define T2 on X2 = 〈X1, u〉 by T2(x + λu) = T1(x) + λα. Then for λ ≥ 0, T2(x + λu) ≤
T1(x)+λ(p(x/λ+u)−T1(x/λ)) = p(x+λu), T2(x−λu) ≤ T1(x)−λ(T1(x/λ)−p(x/λ−u)) =
p(x− λu). Thus (T2, X2) ∈ X and (T1, X1) was not maximal, a contradiction.

Corollary Suppose X0 is a subspace of X and T0 ∈ X∗
0 . Then ∃T ∈ X∗ : ‖T‖X∗ = ‖T0‖X∗

0
.

Proof. Take p(x) = ‖T0‖‖x‖. Use −T (x) = T (−x) when bounding |T (x)|.

Corollary If x ∈ X, x 6= 0, then there is an T ∈ X∗ with ‖T‖X∗ = 1 and T (x) = ‖x‖.
Proof. Define T0(λx) = λ‖x‖ on X0 = 〈x〉. Extend to T ∈ X∗ with ‖T‖ = ‖T0‖ = 1.

Corollary There is a natural isometric isomorphism between X and a subspace of X∗∗.

Proof. Define for x ∈ X a map evx : X∗ → R by evx(T ) = T (x). Clearly evx is a linear map
X∗ → R and | evx(T )| = |T (x)| ≤ ‖x‖‖T‖, so ‖ evx ‖ ≤ ‖x‖ and evx ∈ X∗∗. Define T ∈ X∗

so that ‖T‖ = 1 and T (x) = ‖x‖. Then | evx(T )| = ‖x‖ = ‖x‖‖T‖, so ‖ evx ‖ = ‖x‖. The
map x 7→ evx is linear, so is an isometry between X and a subspace of X∗∗.

Note: One can define the completion of a normed space as the closure of the image of X
in X∗∗.

Definition X is called reflexive if the image of X is the whole of X∗∗.

Example If X = L1(R) then X∗∗ is strictly larger than the image of X: By the Riesz
Representation Theorem we know X∗ ∼= L∞(R), where g ∈ L∞ corresponds to the func-
tional f 7→ ∫

gf . Consider T0 : C(R) → R given by T0(g) = g(0). Then ‖T0‖ = 1. Extend
T0 to T : L∞(R) → R. Then T ∈ X∗∗, but is not of the form evf for any f ∈ L1(R), since
evf (g) =

∫
gf does not agree with T0 on C(R) for any f .
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Theorem (Open Mapping Theorem) If X and Y are Banach spaces and T ∈ B(X,Y )
is surjective, then T is an open mapping, i.e., T [U ] is open in Y for every open U ⊆ X.

Proof. Since X =
⋃

n Bn(0), Y = T [X] =
⋃

n T [Bn(0)]. Thus, by the Baire Category

Theorem, some T [Bn(0)] is not nowhere dense. Pick Bε(y) ⊆ T [Bn(0)]. Then ∃z ∈
T [Bn(0)] : z ∈ Bε/2(y), so Bε/2(0) ⊆ T [Bn(0)]− z ⊆ T [B2n(0)]. Fix y0 ∈ Bε/2(0) ⊆ Y
and choose x0 ∈ B2n(0) ⊆ X so that ‖y0 − T (x0)‖ < ε/4. Write y1 = 2(y0 − T (x0)) ∈
Bε/2(0) and repeat, inductively defining yn+1 = 2(yn − T (xn)) ∈ Bε/2(0) ⊆ Y and xn ∈
B2n(0) ⊆ X. Now ‖y0− T (

∑n−1
i=0 2−ixi)‖ = ‖yn/2

n‖ < ε/2n. But
∑n−1

i=0 2−ixi is Cauchy, so
x =

∑∞
i=0 2−ixi ∈ B4n(0) exists. Since T is bounded, ‖T (x)− lim T (

∑n−1
i=0 2−ixi)‖ → 0, so

y0 = T (x) ∈ T [B4n(0)]. Since this holds for any y0, Bε/2(0) ⊆ T [B4n(0)]. Thus by linearity,
if x ∈ U then T [U ] contains a neighborhood of T [x].

Theorem (Inverse Mapping Theorem) If X and Y are Banach spaces and T : X → Y
is a bijective bounded linear map, then T−1 is also bounded (so T is an isomorphism).

Proof. If T is bijective and open, then T−1 is continuous.

Corollary If X is complete with respect to ‖.‖ and ‖.‖′ and ‖.‖ ≤ K‖.‖′, then ‖.‖ and
‖.‖′ are equivalent.

Proof. The identity map (X, ‖.‖′) → (X, ‖.‖) is bijective and bounded.

Theorem (Closed Graph Theorem) Suppose X and Y are Banach spaces, T : X → Y
is linear, and for any sequence xn ∈ X with xn and T (xn) both convergent, T (lim xn) =
lim T (xn). Then T is bounded.

[The condition on T states that {(x, T (x)) : x ∈ X} is a closed subset of X × Y .]

Proof. Define a new norm on X by |||x||| = ‖x‖ + ‖T (x)‖′. If (xn) is Cauchy in |||.||| then
both (xn) and T (xn) are Cauchy in X and Y , so x = lim xn and y = lim T (xn) exists. By
hypothesis, y = T (x). Thus |||xn−x||| = ‖xn−x‖+ ‖T (xn)−T (x)‖′ → 0. Hence (X, |||.|||)
is complete. But ‖.‖ ≤ 1|||.|||, so ‖T (x)‖′ ≤ |||x||| ≤ K‖x‖ and T is bounded.

Theorem (Uniform Boundedness Theorem) If X is a Banach space and Y is a
normed space, and F ⊆ B(X,Y ) is a collection of bouned linear maps such that for all
x ∈ X, supT∈F ‖T (x)‖ < ∞. Then supT∈F ‖T‖ < ∞.

Proof. Applying the Uniform Boundedness Theorem of section 6 to {‖T (.)‖ : T ∈ F}
there is M ∈ R and open U 6= ∅ in X such that ‖T (x)‖ ≤ M for all T ∈ F and x ∈ U .
Pick Bε(x0) ⊆ U . Then for ‖x‖ ≤ 1, ‖T (x)‖ = ‖2

ε
T (x0 + ε

2
x) − 2

ε
T (x0))‖ ≤ 4M/ε. Thus

‖T‖ ≤ 4M/ε for all T ∈ F .
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Definition An inner product on a real or complex vector space X is a map ( , ) : X×X → R
or X ×X → C such that:

I1. (λx1 + µx2, y) = λ(x1, y) + µ(x2, y),

I2. (x, y) = (y, x),

I3. (x, x) ≥ 0 and (x, x) = 0 iff x = 0.

If ( , ) is an inner product on V , define ‖x‖ =
√

(x, x).

Lemma 1.

1. ‖.‖ is a norm on V ,

2. |(x, y)| ≤ ‖x‖‖y‖ (Cauchy-Schwarz)

3. ‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 (Parallelogram law)

4. 4(x, y) =
∑

ζ∈{±1,±i} ζ‖x + ζy‖2 (Polarization identity)

5. 2(x, y) = ‖x + y‖2 − ‖x‖2 − ‖y‖2 for real spaces (Polarization identity)

Definition A Euclidean space is a normed space with norm given by an inner product.
A Hilbert space is a complete Euclidean space (i.e., Banach space given by inner product).

Exercise: The spaces L2(S) and l2 are Hilbert spaces with (f, g) =
∫

fḡ and ((xn), (yn)) =∑
xnȳn respectively.

Definition Two sets S1 and S2 are orthogonal S1⊥S2, if (x, y) = 0 for all x ∈ S1, y ∈ S2.
The orthogonal complement of S is S⊥ = {x : (x, y) = 0 for all y ∈ S}.

Lemma 2. S⊥ is a closed linear subspace of X.

Theorem (Projection Theorem) If F is a complete subspace of a Euclidean space X,
then every element x ∈ X has a unique representation as x = x‖ + x⊥, x‖ ∈ F , x⊥ ∈ F⊥.

Hint. Let d = d(x, F ) and choose xn ∈ F with ‖xn − x‖2 ≤ d2 + 1
n
. Use Parallelogram

law to show (xn) Cauchy and set x‖ = lim xn, x⊥ = x− x‖.

Corollary If F is a closed subspace of a Hilbert space then (F⊥)⊥ = F .

Theorem (Riesz Representation Theorem) If X is a Hilbert space, then every
T ∈ H∗ can be given by T (x) = (x, y) for some unique y ∈ H. Moreover ‖T‖ = ‖y‖.
Hint. Let F = T−1[{0}] and choose y ∈ F⊥ with T (y) = ‖y‖2.

Note: This shows that there is a natural anti-isomorphism between H and H∗ (an anti-
isomorphism since λy corresponds to λ̄T ). Also, every Hilbert space is reflexive.



Definition An orthonormal system is a set S ⊆ X such that (e, e′) = 0 for all e, e′ ∈ S,
e 6= e′, and (e, e) = 1 for all e ∈ S. An orthonormal system is complete if it is maximal,
i.e., there is no orthonormal system containing S as a proper subset.

Note: By Zorn’s lemma, every Euclidean space has a complete orthonormal system.
An orthonormal system is complete iff 〈S〉⊥ = {0}.

Theorem (Gram-Schmidt orthogonalization) If {x1, x2, . . . } is a linearly indepen-
dent sequence in a Euclidean space, then there exists an orthonormal system {e1, e2, . . . }
with 〈e1, . . . , en〉 = 〈x1, . . . , xn〉 for every n.

Proof. Let zn = xn −
∑n−1

i=1 (xn, ei)ei and set en = zn/‖zn‖.

Corollary Every separable Euclidean space has a countable complete orthonormal system.

Proof. Take a countable dense set {x1, x2, . . . }. Form an independent subsequence (xnk
)

by choosing nk minimal so that xnk
/∈ 〈

xn1 , . . . , xnk−1

〉
. Then {xn1 , . . . } is an independent

set and 〈xn1 , . . . 〉 is dense. Apply Gram-Schmidt to {xn1 , xn2 , . . . } to get orthonormal
{e1, e2, . . . }. Assume {y} ∪ {e1, . . . } is an orthonormal system. There is an n such that
xn ∈ B1(y), so B1(y) ∩ 〈xn1 , . . . , xnk

〉 6= ∅ when nk+1 > n. Hence B1(y) ∩ 〈e1, . . . , ek〉 6= ∅.
But if y′ ∈ 〈e1, . . . , ek〉 then y′⊥y, so ‖y′ − y‖2 = ‖y‖2 + ‖y′‖2 ≥ 1, so y′ /∈ B1(y), a
contradiction.

Lemma 3. Let S = {e1, . . . } be an orthonormal system in a Hilbert space X, and let
F = 〈S〉. Write x ∈ X as x = x‖+x⊥ with x‖ ∈ F , x⊥ ∈ F⊥. Then

∑
n(x, en)en converges

to x‖ and
∑

n |(x, en)|2 = ‖x‖‖2 ≤ ‖x‖2.

Proof. Write ci = (x, ei) and xn =
∑n

i=1 ciei. Then (x− xn)⊥ei for i ≤ n, so (x− xn)⊥xn.
Thus ‖x‖2 = ‖xn‖2 + ‖x − xn‖2 ≥ ∑n

i=1 |ci|2. Thus
∑∞

i=1 |ci|2 < ∞. Now ‖xn − xm‖2 =∑m
i=n+1 |ci|2 ≤

∑∞
i=n+1 |ci|2 → 0 as n → ∞. Thus xn is Cauchy in the complete space F .

Let x′ = lim xn ∈ F . Then (x − x′, ei) = limn(x − xn, ei) = 0 for all i, so (x − x′)⊥ ⊇ S.
But (x−x′)⊥ is a closed linear subspace, so (x−x′)⊥ ⊇ F . Thus x−x′ ∈ F⊥ and x′ = x‖.
Finally,

∑∞
i=1 |ci|2 = lim

∑n
i=1 |ci|2 = lim ‖xn‖2 = ‖x‖‖2.

Definition We call ci = (x, ei) the Fourier coefficients of x with respect to the orthonormal
system {e1, . . . }.

Theorem Any separable Hilbert space is isometric to either the n-dimenensional Euclidean
space l2n or the l2 sequence space.

Proof. Let {e1, e2, . . . } be a complete orthonormal system. Map x ∈ X to (ci) ∈ l2 where
ci = (x, ei) are the Fourier coefficients of x.

Example The orthonormal system {√2 sin 2nπx : n ≥ 1} ∪ {√2 cos 2nπx : n ≥ 1} ∪ {1}
gives an isometry between L2([0, 1]) and l2.


