Let A be an $n \times n$ matrix. Define a minimal polynomial of A to be a non-zero polynomial $m(x)$ of smallest degree such that $m(A) = 0$. (Since multiplying $m(x)$ by a non-zero constant does not affect the definition, we may assume the leading term of $m(x)$ has coefficient 1.)

1. (a) Show that if $h(x)$ is a polynomial with $h(A) = 0$ then $h(x) = m(x)q(x)$ for some polynomial $q(x)$.
 (b) Deduce that $m(x)$ is unique (up to multiplication by a constant).
 (c) If $A^2 = A$, what are the possibilities for $m(x)$?

2. (a) Show that if $m(\lambda) = 0$ then λ is an eigenvalue of A.
 [Hint: Use Cayley-Hamilton and Question 1.]
 (b) Show that if λ is an eigenvalue of A then $m(\lambda) = 0$.
 [Hint: apply $m(A)$ to an eigenvector of A.]

3. Recall that a matrix is nilpotent if $A^N = 0$ for some N. What is the characteristic polynomial of a nilpotent matrix?

4. (a) Show that the minimal polynomial of A and $P^{-1}AP$ are the same.
 (b) Show that if A is diagonalizable then the minimal polynomial has distinct roots.
 (c) Show that if A has distinct roots then A is diagonalizable. [Hint: it is enough to show that every vector is a linear combination of eigenvectors.]

5. (a) Find the eigenvalues of the matrix
 \[
 \begin{bmatrix}
 0 & 1 & 0 \\
 -4 & 4 & 0 \\
 -3 & 1 & 3 \\
 \end{bmatrix}
 \]
 (b) For each of the eigenvalues in (a), find a basis for the corresponding eigenspace, together with the geometric and algebraic multiplicities of the eigenvalue.