
Math 7350 Homework Assignment 1 Fall 2004

Due September 16.

1. Let Ai,j be subsets of a set X for i, j ∈ N. Show that
∞⋂
i=0

∞⋃
j=0
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⋃

(ai)

∞⋂
i=0

Ai,ai

where the second union is over all sequences (ai)
∞
i=0 of natural numbers.

2. Let C be a collection of subsets of a set X, and let A be the algebra generated by C.
Show that the σ-algebra generated by C is equal to the σ-algebra generated by A.

3. Give an example of a partial order with a unique minimal element, but no smallest
element.

4. Assume A and B are well ordered sets, with well orderings ≤ and ≤′ respectively.
If A is order isomorphic to an initial segment of B and B is order isomorphic to an
initial segment of A, show that A and B are order isomorphic. [Hint: show that the
composition of the two order isomorphisms is the identity.]

5. We call a set X Dedekind finite if every injection f : X → X is also surjective.

(a) Show that if X is not Dedekind finite, then there is an injection g : N → X.
[Hint: If x0 /∈ f [X], xn+1 = f(xn), and f is injective, then the xn are distinct.]

(b) Show that if there exists an injection g : N→ X then X is not Dedekind finite.
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1. Let Ai,j be subsets of a set X for i, j ∈ N. Show that
∞⋂
i=0

∞⋃
j=0

Ai,j =
⋃

(ai)

∞⋂
i=0

Ai,ai

where the second union is over all sequences (ai)
∞
i=0 of natural numbers.

Assume x ∈ ⋂∞
i=0

⋃∞
j=0 Ai,j. Then, for all i, x ∈ ⋃∞

j=0 Ai,j. Hence, if we fix i, there is
a j such that x ∈ Ai,j. Set ai to be the smallest such j. Now x ∈ Ai,ai

for all i, so
x ∈ ⋂∞

i=0 Ai,ai
. In particular, x ∈ ⋃

(ai)

⋂∞
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.

Now assume x ∈ ⋃
(ai)

⋂∞
i=0 Ai,ai

. Then there exists a sequence (ai)
∞
i=0 such that

x ∈ ⋂∞
i=0 Ai,ai

, so x ∈ Ai,ai
for all i. But then, for all i, x ∈ ⋃

j Ai,j. Hence
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By Extensionality, the two sets are equal.

1. Let C be a collection of subsets of a set X, and let A be the algebra generated by C.
Show that the σ-algebra generated by C is equal to the σ-algebra generated by A.

Let σ(C) be the σ-algebra generated by C and let σ(A) be the σ-algebra generated
by A. Since any σ-algebra is also an algebra, σ(C) is an algebra containing C,
and hence contains A, the smallest algebra containing C. Now σ(C) is a σ-algebra
containing A, so contains σ(A), the smallest such σ-algebra. Similarly σ(A) is a
σ-algebra that contains A, and hence C, and so contains σ(C). Thus σ(C) = σ(A).

2. Give an example of a partial order with a unique minimal element, but no smallest
element.

Let X = Z ∪ {?} with the ordering given by the usual ordering on Z, ? ≤ ?, but ?
unrelated to any element of Z. Since the usual ordering on Z is a partial ordering,
we only need to check the axioms involving ?, which are trivial. Now ? is clearly
minimal since x ≤ ? implies x = ?. On the other hand, no x ∈ Z is minimal since
x− 1 < x. Finally, X has no smallest element, since the minimal element ? is not ≤
every other element (or indeed any other element).

3. Assume A and B are well ordered sets, with well orderings ≤ and ≤′ respectively.
If A is order isomorphic to an initial segment of B and B is order isomorphic to an
initial segment of A, show that A and B are order isomorphic. [Hint: show that the
composition of the two order isomorphisms is the identity.]



Suppose f : A → B′ and g : B → A′ are order isomorphisms where A′ and B′ are
initial segments of A and B respectively. Consider the function h = g ◦ f : A → A.
Assume h is not the identity on A and let x = min{y ∈ A : h(y) 6= y}. There are
two possible cases:

Case 1: h(x) < x.
In this case h(h(x)) = h(x) (by minimality of x). But then g(f(h(x))) = g(f(x)), so
f(h(x)) = f(x) (injectivity of g) and h(x) = x (injectivity of f). This contradicts
h(x) < x.

Case 2: h(x) > x.
Now if y ≥ x then f(y) ≥ f(x) and g(f(y)) ≥ g(f(x)) by the order preserving
property of f and g. Hence h(y) ≥ h(x) > x for all y ≥ x and h(y) = y < x
for all y < x. Hence x /∈ h[A]. But g[B] is an initial segment of A and contains
h(x) = g(f(x)) > x, so x = g(x′) for some x′ ∈ B. But now f(x) > x′ by the order
preserving property of g. Now since f [A] is an initial segment, x′ = f(x′′) for some
x′′ ∈ A. But then h(x′′) = x, a contradiction.

Now h(x) = x for all x, so A′ = g[B] ⊇ g[f [A]] = A. Hence A′ = A and g is an order
isomorphism from B to A.

4. We call a set X Dedekind finite if every injection f : X → X is also surjective.

(a) Show that if X is not Dedekind finite, then there is an injection g : N → X.
[Hint: If x0 /∈ f [X], xn+1 = f(xn), and f is injective, then the xn are distinct.]

Since X is not Dedekind finite, there exists an injective function f : X → X
such that f [X] 6= X. Pick x0 ∈ X \ f [X] and define recursively xn+1 = f(xn)
for n ≥ 0. We shall show by induction on n that xn 6= xm for all m < n. Clearly
this holds for n = 0 since no such m exists. Assume true for n and consider
xn+1 = f(xn). Clearly xn+1 6= x0 since x0 /∈ f [X]. However, if m > 0 then by
induction xn 6= xm−1. But f is injective, so xn+1 = f(xn) 6= f(xm−1) = xm as
required.

Now define g(n) = xn, so that g : N→ X is an injective function.

(b) Show that if there exists an injection g : N→ X then X is not Dedekind finite.

Define f : X → X by

f(x) =

{
x if x /∈ g[N];

g(n + 1) if x = g(n) ∈ g[N].

Clearly f is injective, but g(0) /∈ f [X].


