Math 7350 Homework Assignment 1 Fall 2004

Due September 16.

1. Let A;; be subsets of a set X for ¢, 7 € N. Show that

U4 =UMN 4

i=0 j=0 (a;) i=0

where the second union is over all sequences (a;)$2, of natural numbers.

2. Let C be a collection of subsets of a set X, and let A be the algebra generated by C.
Show that the o-algebra generated by C is equal to the o-algebra generated by A.

3. Give an example of a partial order with a unique minimal element, but no smallest
element.

4. Assume A and B are well ordered sets, with well orderings < and <’ respectively.
If A is order isomorphic to an initial segment of B and B is order isomorphic to an
initial segment of A, show that A and B are order isomorphic. [Hint: show that the
composition of the two order isomorphisms is the identity.]

5. We call a set X Dedekind finite if every injection f: X — X is also surjective.
(a) Show that if X is not Dedekind finite, then there is an injection g: N — X.
[Hint: If 2o ¢ f[X], z,01 = f(x,), and f is injective, then the z,, are distinct.]
(b) Show that if there exists an injection g: N — X then X is not Dedekind finite.



Math 7350 Homework 1 Solutions Fall 2004

1. Let A;; be subsets of a set X for ¢, 7 € N. Show that

U Ay =U [ 4

i=0 j=0 (a;) =0

where the second union is over all sequences (a;)$2, of natural numbers.

Assume z € (2, U2, Aij- Then, for all i, x € J72, Ai ;. Hence, if we fix i, there is
a j such that x € A, ;. Set a; to be the smallest such j. Now x € A, ,, for all 7, so
x € (g Aia;- In particular, z € U,y Mo Aiar-

Now assume z € U(ai) Mz Aia;- Then there exists a sequence (a;)3°, such that
r € (iggAig, 50 v € A, for all i. But then, for all 4, z € Uj A, ;. Hence
z € (2o UjZo Aiy-

By Extensionality, the two sets are equal.

1. Let C be a collection of subsets of a set X, and let A be the algebra generated by C.
Show that the o-algebra generated by C is equal to the o-algebra generated by A.

Let o(C) be the o-algebra generated by C and let o(.A) be the o-algebra generated
by A. Since any o-algebra is also an algebra, ¢(C) is an algebra containing C,
and hence contains A, the smallest algebra containing C. Now ¢(C) is a o-algebra
containing A, so contains o(A), the smallest such o-algebra. Similarly o(A) is a
o-algebra that contains A, and hence C, and so contains ¢(C). Thus o(C) = o(A).

2. Give an example of a partial order with a unique minimal element, but no smallest
element.

Let X = Z U {x} with the ordering given by the usual ordering on Z, x < %, but *
unrelated to any element of Z. Since the usual ordering on Z is a partial ordering,
we only need to check the axioms involving %, which are trivial. Now % is clearly
minimal since x < x implies x = . On the other hand, no x € Z is minimal since
x — 1 < x. Finally, X has no smallest element, since the minimal element x is not <
every other element (or indeed any other element).

3. Assume A and B are well ordered sets, with well orderings < and <’ respectively.
If A is order isomorphic to an initial segment of B and B is order isomorphic to an
initial segment of A, show that A and B are order isomorphic. [Hint: show that the
composition of the two order isomorphisms is the identity.]



Suppose f: A — B’ and g: B — A’ are order isomorphisms where A" and B’ are
initial segments of A and B respectively. Consider the function h = go f: A — A.
Assume h is not the identity on A and let x = min{y € A : h(y) # y}. There are
two possible cases:

Case 1: h(x) < x.

In this case h(h(z)) = h(z) (by minimality of ). But then g(f(h(z))) = g(f(x)), so
f(h(z)) = f(z) (injectivity of ¢g) and h(x) = z (injectivity of f). This contradicts
h(z) < x.

Case 2: h(x) > x.

Now if y > x then f(y) > f(z) and ¢(f(y)) > g(f(x)) by the order preserving
property of f and g. Hence h(y) > h(z) > = for all y > x and h(y) =y < =
for all y < . Hence x ¢ h[A]. But ¢[B] is an initial segment of A and contains
h(z) = g(f(x)) > x, so x = g(2’) for some 2’ € B. But now f(x) > 2’ by the order
preserving property of g. Now since f[A] is an initial segment, 2’ = f(z”) for some
2" € A. But then h(z") = x, a contradiction.

Now h(x) = z for all x, so A" = g[B] 2 g[f[A]] = A. Hence A’ = A and g is an order
isomorphism from B to A.

4. We call a set X Dedekind finite if every injection f: X — X is also surjective.

(a) Show that if X is not Dedekind finite, then there is an injection g: N — X.
[Hint: If 2o ¢ f[X], 2p41 = f(2,), and f is injective, then the z,, are distinct.]

Since X is not Dedekind finite, there exists an injective function f: X — X
such that f[X] # X. Pick xy € X \ f[X] and define recursively z,+1 = f(x,)
for n > 0. We shall show by induction on n that x,, # z,, for all m < n. Clearly
this holds for n = 0 since no such m exists. Assume true for n and consider
Tpi1 = f(x,). Clearly z,,1 # x¢ since zq ¢ f[X]. However, if m > 0 then by
induction x,, # z,,_;. But f is injective, so x,11 = f(z,) # f(Tm_1) = T, as
required.

Now define g(n) = z,, so that g: N — X is an injective function.

(b) Show that if there exists an injection g: N — X then X is not Dedekind finite.

Define f: X — X by

J(2) = gn+1) if x=g(n) e g[N].
Clearly f is injective, but ¢g(0) ¢ f[X].

{x if x ¢ g[N];



