Due September 30.

- 1. Let \mathcal{C} be a collection of subsets of a set X, and let \mathcal{A} be the σ -algebra generated by \mathcal{C} . Show that if $A \in \mathcal{A}$, then there exists a countable subset $\mathcal{C}_0 \subseteq \mathcal{C}$ such that A is in the σ -algebra generated by \mathcal{C}_0 . [Hint: show that the union of all the σ -algebras generated by the countable subsets of \mathcal{C} is a σ -algebra.]
- 2. Show that there exists a function $f: \mathbb{R} \to \mathbb{R}$ such that f(x+y) = f(x) + f(y), but f(x) is not of the form $f(x) = \lambda x$. [Hint: Consider \mathbb{R} as a vector space over the field \mathbb{Q} and define a suitable f using a basis for this vector space.]
- 3. (a) If (x_n) and (y_n) are two real sequences, show that

$$\overline{\lim} x_n + \underline{\lim} y_n \le \overline{\lim} (x_n + y_n) \le \overline{\lim} x_n + \overline{\lim} y_n$$

provided both sides are not of the form $\infty - \infty$.

- (b) Give examples to show that both inequalities may be strict.
- 4. Let S be a set of positive real numbers. Define

$$\sum_{x \in S} x = \sup \left\{ \sum_{x \in S_0} x : S_0 \text{ is a finite subset of } S \right\}.$$

Show that if S is uncountable then $\sum_{x \in S} x = +\infty$.

5. Let $(x_n)_{n=0}^{\infty}$ be a real sequence, and for all i, let y_i be a cluster point of $(x_n)_{n=0}^{\infty}$. Show that any cluster point of $(y_i)_{i=0}^{\infty}$ is also a cluster point of $(x_n)_{n=0}^{\infty}$.

1. Let \mathcal{C} be a collection of subsets of a set X, and let \mathcal{A} be the σ -algebra generated by \mathcal{C} . Show that if $A \in \mathcal{A}$, then there exists a countable subset $\mathcal{C}_0 \subseteq \mathcal{C}$ such that A is in the σ -algebra generated by \mathcal{C}_0 . [Hint: show that the union of all the σ -algebras generated by the countable subsets of \mathcal{C} is a σ -algebra.]

If C_0 is a countable subset of C, then $A = \sigma(C)$ contains C_0 , is a σ -algebra, and so contains $\sigma(C_0)$, the σ -algebra generated by C_0 . Let $U = \bigcup_{C_0} \sigma(C_0)$. Then $U \subseteq A$. If $x \in C$ then $x \in \sigma(\{x\}) \subseteq U$, so $C \subseteq U$. To prove U = A, it is therefore enough to show that U is a σ -algebra.

- (1) $\emptyset \in \sigma(\emptyset) \subseteq U$.
- (2) If $X_1, X_2, \dots \in U$, then there are countable sets $C_i \subseteq C$ with $X_i \in \sigma(C_i)$. Hence $X_i \in \sigma(\bigcup C_i)$, and since $\sigma(\bigcup C_i)$ is a σ -algebra, $\bigcup X_i \in \sigma(\bigcup C_i)$. But $\bigcup C_i$ is a countable union of countable sets, so is countable. Hence $\bigcup X_i \in U$.
- (3) If $X_0 \in U$ then $X_0 \in \sigma(\mathcal{C}_0)$ for some countable \mathcal{C}_0 . But then $X_0^c \in \sigma(\mathcal{C}_0) \subseteq U$.
- 2. Show that there exists a function $f: \mathbb{R} \to \mathbb{R}$ such that f(x+y) = f(x) + f(y), but f(x) is not of the form $f(x) = \lambda x$. [Hint: Consider \mathbb{R} as a vector space over the field \mathbb{Q} and define a suitable f using a basis for this vector space.]

Let $\{e_i: i \in I\}$ be a basis for \mathbb{R} as a \mathbb{Q} vector space. Every $x \in \mathbb{R}$ can be written uniquely as a finite sum $\sum_{i \in I_0 \subseteq I} \lambda_i e_i$, $|I_0| < \infty$, $\lambda_i \in \mathbb{Q}$. Pick $i_0 \in I$ and define $f(x) = \lambda_{i_0}$ (or 0 if $i_0 \notin I_0$). Clearly f(x+y) = f(x) + f(y), but $f(e_{i_1}) = 0$ for any $i_1 \neq i_0$. Since $e_{i_1} \neq 0$, if $f(x) = \lambda x$ then $\lambda = 0$. But $f(e_{i_0}) = 1 \neq 0$, a contradiction. Thus f is not of the form $f(x) = \lambda x$ for any $\lambda \in \mathbb{Q}$.

3. (a) If (x_n) and (y_n) are two real sequences, show that

$$\overline{\lim} x_n + \underline{\lim} y_n \le \overline{\lim} (x_n + y_n) \le \overline{\lim} x_n + \overline{\lim} y_n$$

provided both sides are not of the form $\infty - \infty$.

First note that $\inf_m y_m \le y_n \le \sup_m y_m$ for all n.

Hence $x_n + \inf_m y_m \le x_n + y_n \le x_n + \sup_m y_m$ for all n.

Hence $\sup\{x_n + \inf_m y_m\} \le \sup\{x_n + y_n\} \le \sup\{x_n + \sup_m y_m\}.$

But $\sup\{x_n+c\} = \sup x_n + c$ unless this is of the form $\infty - \infty$.

Thus $\sup x_n + \inf y_n \le \sup (x_n + y_n) \le \sup x_n + \sup y_n$.

Now take the limit as $n_0 \to \infty$ of

$$\sup_{n \ge n_0} x_n + \inf_{n \ge n_0} y_n \le \sup_{n \ge n_0} (x_n + y_n) \le \sup_{n \ge n_0} x_n + \sup_{n \ge n_0} y_n$$

to get

$$\overline{\lim} x_n + \lim y_n \le \overline{\lim} (x_n + y_n) \le \overline{\lim} x_n + \overline{\lim} y_n$$

(b) Give examples to show that both inequalities may be strict.

Let
$$x_n = (-1)^n$$
 and $y_n = -2(-1)^n$. Then
$$\frac{\overline{\lim} x_n + \underline{\lim} y_n}{\overline{\lim} (x_n + y_n)} = \frac{1-2}{\overline{\lim} \{-(-1)^n\}} = \frac{-1}{1},$$

$$\overline{\lim} x_n + \overline{\lim} y_n = 1 + 2 = 3.$$

4. Let S be a set of positive real numbers. Define

$$\sum_{x \in S} x = \sup \left\{ \sum_{x \in S_0} x : S_0 \text{ is a finite subset of } S \right\}.$$

Show that if S is uncountable then $\sum_{x \in S} x = +\infty$.

If x > 0 then there exists a natural number n such that xn > 1, i.e., x > 1/n. Let $S_n = \{x \in S : x > 1/n\}$. Then $S = \bigcup_{n=1}^{\infty} S_n$. Since S is uncountable and the union is a countable union, at least one of the S_n must be uncountable. In particular, at least one S_n must be infinite. Letting S_0 be a subset of S_n of size mn, we see $\sum_{x \in S} x \ge mn(1/n) = m$ for any m. Thus $\sum_{x \in S} x = \infty$.

5. Let $(x_n)_{n=0}^{\infty}$ be a real sequence, and for all i, let y_i be a cluster point of $(x_n)_{n=0}^{\infty}$. Show that any cluster point of $(y_i)_{i=0}^{\infty}$ is also a cluster point of $(x_n)_{n=0}^{\infty}$.

Let $L \in \mathbb{R}$ be a cluster point of (y_i) . Pick $\varepsilon > 0$ and n_0 . Then there exists an $i \ge n_0$ with $|y_i - L| < \varepsilon/2$. Now since y_i is a cluster point of (x_n) , there exists an $n \ge n_0$ with $|x_n - y_i| < \varepsilon/2$. But now $|x_n - L| < \varepsilon$. Since this holds for any $\varepsilon > 0$ and n_0 , L is a cluster point of (x_n) .

Now assume ∞ is a cluster point of (y_i) . Pick K > 0 and n_0 . Then there exists an $i \ge n_0$ with $y_i > 2K$. Now since y_i is a cluster point of (x_n) , there exists an $n \ge n_0$ with $|x_n - y_i| < K$ (or $x_n > K$ if $y_i = \infty$). But now $x_n > K$. Since this holds for any K > 0 and n_0 , ∞ is a cluster point of (x_n) . A similar proof holds for $-\infty$.