
Math 7350 Homework Assignment 2 Fall 2004

Due September 30.

1. Let C be a collection of subsets of a set X, and let A be the σ-algebra generated
by C. Show that if A ∈ A, then there exists a countable subset C0 ⊆ C such that A
is in the σ-algebra generated by C0. [Hint: show that the union of all the σ-algebras
generated by the countable subsets of C is a σ-algebra.]

2. Show that there exists a function f : R → R such that f(x + y) = f(x) + f(y), but
f(x) is not of the form f(x) = λx. [Hint: Consider R as a vector space over the
field Q and define a suitable f using a basis for this vector space.]

3. (a) If (xn) and (yn) are two real sequences, show that

lim xn + lim yn ≤ lim(xn + yn) ≤ lim xn + lim yn

provided both sides are not of the form ∞−∞.

(b) Give examples to show that both inequalities may be strict.

4. Let S be a set of positive real numbers. Define
∑

x∈Sx = sup
{∑

x∈S0
x : S0 is a finite subset of S

}
.

Show that if S is uncountable then
∑

x∈S x = +∞.

5. Let (xn)∞n=0 be a real sequence, and for all i, let yi be a cluster point of (xn)∞n=0. Show
that any cluster point of (yi)

∞
i=0 is also a cluster point of (xn)∞n=0.



Math 7350 Homework 2 Solutions Fall 2004

1. Let C be a collection of subsets of a set X, and let A be the σ-algebra generated
by C. Show that if A ∈ A, then there exists a countable subset C0 ⊆ C such that A
is in the σ-algebra generated by C0. [Hint: show that the union of all the σ-algebras
generated by the countable subsets of C is a σ-algebra.]

If C0 is a countable subset of C, then A = σ(C) contains C0, is a σ-algebra, and so
contains σ(C0), the σ-algebra generated by C0. Let U =

⋃
C0 σ(C0). Then U ⊆ A. If

x ∈ C then x ∈ σ({x}) ⊆ U , so C ⊆ U . To prove U = A, it is therefore enough to
show that U is a σ-algebra.

(1) ∅ ∈ σ(∅) ⊆ U .
(2) If X1, X2, · · · ∈ U , then there are countable sets Ci ⊆ C with Xi ∈ σ(Ci). Hence
Xi ∈ σ(

⋃ Ci), and since σ(
⋃ Ci) is a σ-algebra,

⋃
Xi ∈ σ(

⋃ Ci). But
⋃ Ci is a

countable union of countable sets, so is countable. Hence
⋃

Xi ∈ U .
(3) If X0 ∈ U then X0 ∈ σ(C0) for some countable C0. But then Xc

0 ∈ σ(C0) ⊆ U .

2. Show that there exists a function f : R → R such that f(x + y) = f(x) + f(y), but
f(x) is not of the form f(x) = λx. [Hint: Consider R as a vector space over the
field Q and define a suitable f using a basis for this vector space.]

Let {ei : i ∈ I} be a basis for R as a Q vector space. Every x ∈ R can be written
uniquely as a finite sum

∑
i∈I0⊆I λiei, |I0| < ∞, λi ∈ Q. Pick i0 ∈ I and define

f(x) = λi0 (or 0 if i0 /∈ I0). Clearly f(x + y) = f(x) + f(y), but f(ei1) = 0 for any
i1 6= i0. Since ei1 6= 0, if f(x) = λx then λ = 0. But f(ei0) = 1 6= 0, a contradiction.
Thus f is not of the form f(x) = λx for any λ ∈ Q.

3. (a) If (xn) and (yn) are two real sequences, show that

lim xn + lim yn ≤ lim(xn + yn) ≤ lim xn + lim yn

provided both sides are not of the form ∞−∞.

First note that infm ym ≤ yn ≤ supm ym for all n.
Hence xn + infm ym ≤ xn + yn ≤ xn + supm ym for all n.
Hence sup{xn + infm ym} ≤ sup(xn + yn) ≤ sup{xn + supm ym}.
But sup{xn + c} = sup xn + c unless this is of the form ∞−∞.
Thus sup xn + inf yn ≤ sup(xn + yn) ≤ sup xn + sup yn.
Now take the limit as n0 →∞ of

sup
n≥n0

xn + inf
n≥n0

yn ≤ sup
n≥n0

(xn + yn) ≤ sup
n≥n0

xn + sup
n≥n0

yn

to get
lim xn + lim yn ≤ lim(xn + yn) ≤ lim xn + lim yn



(b) Give examples to show that both inequalities may be strict.

Let xn = (−1)n and yn = −2(−1)n. Then

lim xn + lim yn = 1− 2 = −1,

lim(xn + yn) = lim{−(−1)n} = 1,

lim xn + lim yn = 1 + 2 = 3.

4. Let S be a set of positive real numbers. Define
∑

x∈Sx = sup
{∑

x∈S0
x : S0 is a finite subset of S

}
.

Show that if S is uncountable then
∑

x∈S x = +∞.

If x > 0 then there exists a natural number n such that xn > 1, i.e., x > 1/n. Let
Sn = {x ∈ S : x > 1/n}. Then S =

⋃∞
n=1 Sn. Since S is uncountable and the union

is a countable union, at least one of the Sn must be uncountable. In particular,
at least one Sn must be infinite. Letting S0 be a subset of Sn of size mn, we see∑

x∈S x ≥ mn(1/n) = m for any m. Thus
∑

x∈S x = ∞.

5. Let (xn)∞n=0 be a real sequence, and for all i, let yi be a cluster point of (xn)∞n=0. Show
that any cluster point of (yi)

∞
i=0 is also a cluster point of (xn)∞n=0.

Let L ∈ R be a cluster point of (yi). Pick ε > 0 and n0. Then there exists an i ≥ n0

with |yi − L| < ε/2. Now since yi is a cluster point of (xn), there exists an n ≥ n0

with |xn − yi| < ε/2. But now |xn − L| < ε. Since this holds for any ε > 0 and n0,
L is a cluster point of (xn).

Now assume ∞ is a cluster point of (yi). Pick K > 0 and n0. Then there exists an
i ≥ n0 with yi > 2K. Now since yi is a cluster point of (xn), there exists an n ≥ n0

with |xn − yi| < K (or xn > K if yi = ∞). But now xn > K. Since this holds for
any K > 0 and n0, ∞ is a cluster point of (xn). A similar proof holds for −∞.


