Math 7350 Homework Assignment 2 Fall 2004

Due September 30.

1. Let C be a collection of subsets of a set X, and let A be the g-algebra generated
by C. Show that if A € A, then there exists a countable subset Cy C C such that A
is in the o-algebra generated by Cy. [Hint: show that the union of all the o-algebras
generated by the countable subsets of C is a o-algebra.]

2. Show that there exists a function f: R — R such that f(x +y) = f(x) + f(y), but
f(z) is not of the form f(z) = Az. [Hint: Consider R as a vector space over the
field Q and define a suitable f using a basis for this vector space.]

3. (a) If (z,) and (y,) are two real sequences, show that

limz,, + limy, < lim(z, +y,) < limz, + limy,
provided both sides are not of the form co — oo.

(b) Give examples to show that both inequalities may be strict.

4. Let S be a set of positive real numbers. Define
Y segT = Sup {ersox : Sy is a finite subset of S} .
Show that if S is uncountable then oz = 4o0.

5. Let (z,)22, be a real sequence, and for all 7, let y; be a cluster point of (z,,)5°,. Show
that any cluster point of (y;)$2, is also a cluster point of (z,,)5%,.



Math 7350 Homework 2 Solutions Fall 2004

1. Let C be a collection of subsets of a set X, and let A be the o-algebra generated
by C. Show that if A € A, then there exists a countable subset Cy C C such that A
is in the o-algebra generated by Cy. [Hint: show that the union of all the o-algebras
generated by the countable subsets of C is a o-algebra.]

If Cy is a countable subset of C, then A = o(C) contains Cy, is a o-algebra, and so
contains o (Cy), the o-algebra generated by Co. Let U = (Jo, 0(Co). Then U C A. If
x €C then z € o({z}) C U, so C C U. To prove U = A, it is therefore enough to
show that U is a o-algebra.

() Deod CU.

(2) If Xy, Xy, -+ € U, then there are countable sets C; C C with X; € ¢(C;). Hence
X; € o(JGi), and since o(|JC;) is a o-algebra, |JX; € o(|JC;). But JC; is a
countable union of countable sets, so is countable. Hence | J X; € U.

(3) If X € U then X, € 0(Cy) for some countable Cy. But then X§ € o(Cy) C U.

2. Show that there exists a function f: R — R such that f(z +y) = f(z) + f(y), but
f(z) is not of the form f(z) = Ax. [Hint: Consider R as a vector space over the
field Q@ and define a suitable f using a basis for this vector space.]

Let {e; : i € I} be a basis for R as a Q vector space. Every z € R can be written
uniquely as a finite sum Zielogl Aiei, |Io] < oo, A; € Q. Pick ip € I and define
f(x) =X (or 0if iy ¢ I). Clearly f(x +vy) = f(z) + f(y), but f(e;,) = 0 for any
i1 # ig. Since e;, # 0, if f(x) = Az then A = 0. But f(e;,) = 1 # 0, a contradiction.
Thus f is not of the form f(z) = Az for any A\ € Q.

3. (a) If (z,) and (y,) are two real sequences, show that
limz, + limy, < lim(z, +y,) < limz, + limy,
provided both sides are not of the form oo — co.

First note that inf,, v, <y, <sup,,y, for all n.
Hence =z, +inf,, ym < 2, + vy, < 2, +sup,, y,, for all n.
Hence sup{z, + inf,, ¥} < sup(x, + y,) < sup{z, + sup,, ym}-
But  sup{z, + ¢} =supz, + ¢ unless this is of the form oo — co.
Thus supx, + infy, < sup(z, + y,) < supz, + sup y,.
Now take the limit as ng — oo of

sup x, + inf y, < sup (z, + y,) < sup x, + sup y,

n>ng n2no n>ng n>ng n>ng
to get

limz, + limy, <lim(z, +y,) < limz, + limy,



(b) Give examples to show that both inequalities may be strict.
Let z, = (—1)" and y, = —2(—1)". Then

limz, +limy, = 1-2 = —1,
lim(z, + yn) lim{—(—-1)"}
M:anrm% = 1+2
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. Let S be a set of positive real numbers. Define
> wes® = sup{> g,z : So is a finite subset of S} .
Show that if S is uncountable then ) 2 = 4o00.

If x > 0 then there exists a natural number n such that xn > 1, i.e., z > 1/n. Let
Sp={x€S:x>1/n}. Then S =J,~, S,. Since S is uncountable and the union
is a countable union, at least one of the S, must be uncountable. In particular,
at least one S, must be infinite. Letting Sy be a subset of S, of size mn, we see
Y oses T = mn(l/n) =m for any m. Thus ) _cx = oo.

. Let (2,)%, be a real sequence, and for all 7, let y; be a cluster point of (z,,)%,. Show
that any cluster point of (y;)$2, is also a cluster point of (z,,)5%,,.

Let L € R be a cluster point of (y;). Pick € > 0 and ny. Then there exists an i > ng
with |y; — L| < /2. Now since y; is a cluster point of (x,), there exists an n > ny
with |z, — ;| < /2. But now |z, — L| < €. Since this holds for any ¢ > 0 and ny,
L is a cluster point of (z,).

Now assume oo is a cluster point of (y;). Pick K > 0 and ng. Then there exists an
i > ng with y; > 2K. Now since y; is a cluster point of (z,), there exists an n > ny
with |z, —y;| < K (or z,, > K if y; = 00). But now x,, > K. Since this holds for
any K > 0 and ng, oo is a cluster point of (x,). A similar proof holds for —oc.



