Math 7350 Homework Assignment 3 Fall 2004

Due October 14.

- 1. Let $\mathbb{R}(x)$ be the set of rational functions $f(x) = \frac{P(x)}{Q(x)}$ where P and Q are polynomials with real coefficients and Q is not identically zero. Define an order \leq by $f \leq g$ if $\exists K > 0 : \forall x \geq K : f(x) \leq g(x)$.
 - (a) Show that with this order, $\mathbb{R}(x)$ is an ordered field. [You may assume it is a field, so you just need to check that \leq is a total order which respects + and \times .]
 - (b) Show that \mathbb{R} (the set of constant functions) has an upper bound, but no least upper bound in $\mathbb{R}(x)$.
- 2. Show that the set of (real) cluster points of a sequence (x_n) is a closed set.
- 3. (a) Show that there are at most 7 sets that can be obtained by applying the operations $\bar{}$ and \circ iteratively to a set S (including S itself). [Hint: Show that if F is closed, $F^{\circ -} \subseteq F$, and if U is open, $U^{-\circ} \supseteq U$.]
 - (b) Give an example where all 7 sets in (a) are distinct.
- 4. A function $f: \mathbb{R} \to \mathbb{R}$ is upper semi-continuous at $a \in \mathbb{R}$ if $\forall \varepsilon > 0 : \exists \delta > 0 : \forall x : |x a| < \delta \Rightarrow f(x) \geq f(a) \varepsilon$. Show that f is upper semi-continuous for all $x \in \mathbb{R}$ iff $f^{-1}[(a, \infty)]$ is open for all $a \in \mathbb{R}$.
- 5. A continuous function $g: [a,b] \to \mathbb{R}$ is called *piecewise linear* iff there exists a subdivision $a = x_0 < x_1 < \cdots < x_n = b$ such that g is linear on $[x_i, x_{i+1}]$. If $f: [a,b] \to \mathbb{R}$ is a continuous function and $\varepsilon > 0$, show that there is a piecewise linear function $g: [a,b] \to \mathbb{R}$ such that $|f(x) g(x)| < \varepsilon$ for all $x \in [a,b]$.

- 1. Let $\mathbb{R}(x)$ be the set of rational functions $f(x) = \frac{P(x)}{Q(x)}$ where P and Q are polynomials with real coefficients and Q is not identically zero. Define an order \leq by $f \leq g$ if $\exists K > 0 \colon \forall x \geq K \colon f(x) \leq g(x)$.
 - (a) Show that with this order, $\mathbb{R}(x)$ is an ordered field. [You may assume it is a field, so you just need to check that \leq is a total order which respects + and \times .] If $f \leq g$ and $h \leq k$, then $\exists K_1 \colon \forall x \geq K_1 \colon f(x) \leq g(x)$ and $\exists K_2 \colon \forall x \geq K_2 \colon h(x) \leq k(x)$. Let $K = \max\{K_1, K_2\}$, then if $x \geq K$, $f(x) + h(x) \leq g(x) + k(x)$, so $f + h \leq g + k$. Thus \leq respects +.

Similarly, if $f \leq g$ and $0 \leq h$, then $\exists K_1 \colon \forall x \geq K_1 \colon f(x) \leq g(x)$ and $\exists K_2 \colon \forall x \geq K_2 \colon 0) \leq h(x)$. Let $K = \max\{K_1, K_2\}$, then if $x \geq K$, $f(x)h(x) \leq g(x)h(x)$, so $fh \leq gh$. Thus $\leq \text{respects} \times$.

Similarly, if $f \leq g \leq h$ then $\exists K_1 : \forall x \geq K_1 : f(x) \leq g(x)$ and $\exists K_2 : \forall x \geq K_2 : g(x) \leq h(x)$. Let $K = \max\{K_1, K_2\}$, then $\forall x \geq K : f(x) \leq h(x)$ and so $f \leq h$. Thus \leq is transitive.

If $f \neq g$, then $h = f - g \neq 0$. Write $h = \frac{P(x)}{Q(x)}$. Then $P \neq 0$. Pick K larger than all the roots of P(x) and Q(x). Then the sign of P(x) and Q(x) does not change for all x > K. Hence either $f - g \leq 0$ or $0 \leq f - g$, but not both. Hence either $f \leq g$ or $g \leq f$, but not both. Thus $f \leq g$ and $g \leq f$ imply f = g, and for any f and g, either $f \leq g$ or $g \leq f$. Thus $g \in g$ is a total order.

- (b) Show that \mathbb{R} (the set of constant functions) has an upper bound, but no least upper bound in $\mathbb{R}(x)$.
 - f(x) = x is an upper bound, since for any constant function g(x) = c, we can pick K = c and then $\forall x \geq K : g(x) = c \leq x = f(x)$. There is no least upper bound, since if f is an upper bound, then for all c, $f \geq c+1$, so $f-1 \geq c$. But then f-1 is an upper bound and f-1 < f.
- 2. Show that the set of (real) cluster points of a sequence (x_n) is a closed set.
 - Let $c \in \mathbb{R}$ be a point of closure of the set of cluster points of (x_n) . Then for all m > 0, there is a cluster point y of (x_n) with $y \in (c \frac{1}{m}, c + \frac{1}{m})$. Then there are infinitely many n such that $|x_n y| < \frac{1}{m}$. Inductively define n_m to be the smallest n with $n > n_{m-1}$ and $|x_n y| < \frac{1}{m}$. Then $|x_{n_m} c| < \frac{2}{m}$. But then c is a cluster point (limit point) of (x_{n_m}) , and so is a cluster point of (x_n) .
- 3. (a) Show that there are at most 7 sets that can be obtained by applying the operations $\bar{}$ and $\bar{}$ iteratively to a set S (including S itself). [Hint: Show that if F is closed, $F^{\circ -} \subseteq F$, and if U is open, $U^{-\circ} \supseteq U$.]

If F is closed, then F is a closed set containing F° . But then F must contain the smallest such set, $F^{\circ -}$. Similarly, if U is open, then U is an open subset of U^{-} , so must be a subset of the largest such set $U^{-\circ}$.

Now let S be arbitrary. Then $S^{\circ-}$ is closed, so $S^{\circ-\circ-} \supseteq S^{\circ-}$. But S° is open, so $S^{\circ-\circ} \subseteq S^{\circ}$. But then $S^{\circ-\circ-} \subseteq S^{\circ-}$. Hence $S^{\circ-\circ-} = S^{\circ-}$. Similarly $S^{-\circ-\circ} = S^{-\circ}$. Since $S^{\circ\circ} = S^{\circ}$ and $S^{--} = S^{-}$, the sets one can obtain are

$$S$$
, S° , S^{-} , $S^{\circ-}$, $S^{\circ\circ}$, $S^{\circ\circ}$, $S^{\circ\circ\circ}$

since applying $^{\circ}$ or $^{-}$ to any of these, again gives one of these sets.

(b) Give an example where all 7 sets in (a) are distinct.

Let $S = \{0\} \cup [1, 2) \cup (2, 3] \cup (\mathbb{Q} \cap [3, 4]).$

4. A function $f: \mathbb{R} \to \mathbb{R}$ is upper semi-continuous at $a \in \mathbb{R}$ if $\forall \varepsilon > 0 : \exists \delta > 0 : \forall x : |x - a| < \delta \Rightarrow f(x) \ge f(a) - \varepsilon$. Show that f is upper semi-continuous for all $x \in \mathbb{R}$ iff $f^{-1}[(a, \infty)]$ is open for all $a \in \mathbb{R}$.

If f is upper semi-continuous and $x \in f-1[(a,\infty)]$ then f(x) > a. Set $\varepsilon = f(x) - a$. Then $\exists \delta > 0 \colon |y-x| < \delta \Rightarrow f(y) > f(x) - \varepsilon = a$. Hence $(x-\delta,x+\delta) \subseteq f-1[(a,\infty)]$. Thus $f-1[(a,\infty)]$ is open.

If $f-1[(a,\infty)]$ is open, then for any x and $\varepsilon > 0$, let $a = f(x) - \varepsilon$. Now $x \in f^{-1}[(a,\infty)]$, so $(x-\delta,x+\delta) \subseteq^{-1} [(a,\infty)]$. But then, for all y with $|y-x| < \delta$, $f(y) > a = f(x) - \varepsilon$ and f is upper semi-continuous at x.

5. A continuous function $g: [a,b] \to \mathbb{R}$ is called *piecewise linear* iff there exists a subdivision $a = x_0 < x_1 < \cdots < x_n = b$ such that g is linear on $[x_i, x_{i+1}]$. If $f: [a,b] \to \mathbb{R}$ is a continuous function and $\varepsilon > 0$, show that there is a piecewise linear function $g: [a,b] \to \mathbb{R}$ such that $|f(x) - g(x)| < \varepsilon$ for all $x \in [a,b]$.

We know that f is uniformly continuous, so that for some $\delta > 0$, $|x - y| < \delta$ implies $|f(x) - f(y)| < \varepsilon$. Choose $a = x_0 < x_1 < \cdots < x_n = b$ so that $|x_{i+1} - x_i| < \delta$, and define g so that $g(x_i) = f(x_i)$ and g is linear on $[x_i, x_{i+1}]$. Then for any $x \in [a, b]$, $x \in [x_i, x_{i+1}]$ for some i. But $g(x) \in [f(x_i), f(x_{i+1})]$ (or $[f(x_{i+1}), f(x_i)]$), so $|f(x) - g(x)| \le \max\{|f(x) - f(x_i)|, |f(x) - f(x_{i+1})|\} < \varepsilon$ as required.