Math 7350 Homework 4 Solutions Fall 2004

1. Let $f_n : \mathbb{R} \to \mathbb{R}$ be a sequence of continuous functions. Show that the set of points $C = \{x \in \mathbb{R} : f_n(x) \text{ converges as } n \to \infty\}$ is an $F_{\sigma\delta}$ -set.

The sequence $f_n(x)$ converges iff $f_n(x)$ is a Cauchy sequence: $\forall \varepsilon > 0 : \exists n_0 > 0 : \forall n, m \ge n_0 : |f_n(x) - f_m(x)| < \varepsilon$.

The ' $\sigma\delta$ ' should take care of the quantifiers, but we need $\{x : |f_n(x) - f_m(x)| < \varepsilon\}$ to be closed. It is not closed as it stands, but the set

$$E_{n,m,\varepsilon} = \{x : |f_n(x) - f_m(x)| \le \varepsilon\}$$

is closed since it is the complement of the set $\{x : |f_n(x) - f_m(x)| > \varepsilon\}$ which is the inverse image of the open set $(-\infty, -\varepsilon) \cup (\varepsilon, \infty)$ under the continuous function $g(x) = f_n(x) - f_m(x)$. Now

$$C_{n_0,\varepsilon} = \bigcap_{n,m \ge n_0} E_{n,m,\varepsilon} = \{ x : \forall n, m \ge n_0 \colon |f_n(x) - f_m(x)| \le \varepsilon \}$$

is an intersection of closed sets, so is closed. Thus

$$A_{\varepsilon} = \bigcup_{n_0} C_{n_0,\varepsilon} = \{ x : \exists n_0 \colon \forall n, m \ge n_0 \colon |f_n(x) - f_m(x)| \le \varepsilon \}$$

is an F_{σ} -set, and

$$B = \bigcap_{k} A_{1/k} = \bigcap_{\varepsilon > 0} A_{\varepsilon} = \{ x : f_n(x) \text{ converges} \}$$

is an $F_{\sigma\delta}$ -set.

2. If $E \subset \mathbb{R}$ is a Lebesgue measurable set with a finite measure, prove that for any given $\epsilon > 0$, there is a set U which is a *finite* union of open intervals such that $\lambda(U \bigtriangleup E) < \epsilon$. Here $U \bigtriangleup E = (U \setminus E) \cup (E \setminus U)$.

Since $\lambda(E) = \lambda^*(E) < \infty$, we can find a countable sequence of open intervals I_1, I_2, \ldots such that $E \subseteq \bigcup_{i=1}^{\infty} I_i$ and $\sum_{i=1}^{\infty} \lambda(I_i) = \sum_{i=1}^{\infty} l(I_i) < \lambda(E) + \varepsilon/2$. If we set $U_{\infty} = \bigcup_{i=1}^{\infty} I_i$, then $\lambda(U_{\infty}) \leq \sum \lambda(I_i) < \lambda(E) + \varepsilon/2$, so $\lambda(U_{\infty} \setminus E) < \varepsilon/2$. Set $U_n = \bigcup_{i=1}^n I_i$. Then $U_1 \subseteq U_2 \subseteq \ldots$ and $\bigcup_{n=1}^{\infty} U_n = U_{\infty}$. Hence $\lim_{n \to \infty} \lambda(U_n) = \lambda(U_{\infty})$. Thus there is some *n* for which $\lambda(U_n) \geq \lambda(U_{\infty}) - \varepsilon/2$, and so $\lambda(U_{\infty} \setminus U_n) < \varepsilon/2$. Now U_n is a finite union of intervals and

 $U_n \triangle E = (U_{\infty} \setminus E) \triangle (U_{\infty} \setminus U_n) \subseteq (U_{\infty} \setminus E) \cup (U_{\infty} \setminus U_n),$ so $\lambda(U_n \triangle E) < \varepsilon/2 + \varepsilon/2 = \varepsilon.$

3. Show that if U is a *finite* union of open intervals and $\mathbb{Q} \cap [0,1] \subseteq U$, then $\lambda(U) \ge 1$. Suppose $U = \bigcup_{i=1}^{n} I_i$ where I_i are open intervals and $\mathbb{Q} \cap [0,1] \subseteq U$. We need to show $\lambda(U) \ge 1$.

Without loss of generality, and by induction of n, we may assume the I_i 's are pairwise disjoint. Otherwise, if $I_i \cap I_j \neq \emptyset$, then $I_i \cup I_j$ is also an open interval, and we can write U as a union of a smaller number of intervals. Similarly, without loss of generality,

each I_i intersects [0, 1], otherwise we could remove I_i from the union to get a set U' which is the union of n-1 intervals, $\mathbb{Q} \cap [0, 1] \subseteq U'$, and $\lambda(U) \ge \lambda(U') \ge 1$.

Now write the intervals as $I_i = (a_i, b_i)$ and order the intervals so that $a_1 < a_2 < \cdots < a_n$ (if $a_i = a_j$ then I_i and I_j intersect, so we may assume the a_i are distinct). Now if $b_i > a_{i+1}$ then I_i and I_{i+1} intersect. Hence we may assume $b_i \leq a_{i+1}$. In particular we may assume $U \cap (a_i, a_{i+1}) = I_i$. On the other hand, if $b_i < a_{i+1}$ then either $b_i \geq 1$ (so $I_{i+1} \cap [0, 1] = \emptyset$) or $a_{i+1} \leq 0$ (so $I_i \cap [0, 1] = \emptyset$) or $(b_i, a_{i+1}) \cap [0, 1] \neq \emptyset$ (so $(b_i, a_{i+1}) \cap [0, 1]$ contains a rational that is not in U). Since none of these are possible, we must have $b_i = a_{i+1}$ for all i with $1 \leq i < n$. Thus $U = (a_1, b_n) \setminus \{a_2, \ldots, a_n\}$. But $0 \in U$ so $a_1 < 0$, and $1 \in U$ so $b_n > 1$. Now $\lambda(U) = b_n - a_1 > 1$.

4. The first Borel-Cantelli Lemma states that if the sets B_1, B_2, \ldots are measurable and $\sum_{i=1}^{\infty} \lambda(B_i) < \infty$, then the set of points that belong to infinitely many B_i is a set of measure 0.

Prove the first Borel-Cantelli Lemma.

Let *E* be the set of points that belong to infinitely many B_i . Since $\sum_{i=1}^{\infty} \lambda(B_i)$ converges, for any $\varepsilon > 0$ there is an n_0 such that $\sum_{i=n_0}^{\infty} \lambda(B_i) < \varepsilon$. But then $\lambda(\bigcup_{i=n_0}^{\infty} B_i) \leq \sum_{i=n_0}^{\infty} \lambda(B_i) < \varepsilon$. Now if $x \in E$ then *x* is in infinitely many B_i , and so lies in some B_i with $i \geq n_0$. Thus $E \subseteq \bigcup_{i=n_0}^{\infty} B_i$. Hence $\lambda(E) \leq \lambda(\bigcup_{i=n_0}^{\infty} B_i) < \varepsilon$. Since this holds for all $\varepsilon > 0$, $\lambda(E) = 0$.

- 5. Let A be a subset of \mathbb{R} such that $\lambda(A) > 0$. Denote by A A the set $\{x y : x, y \in A\}$.
 - (a) Prove that there is an interval [a, b] such that $\lambda(A \cap [a, b]) > \frac{3}{4}(b a)$. First by setting $A_n = A \cap [n, n+1)$ and noting that and $\sum \lambda(A_n) = \lambda(A)$, we may assume $\lambda(A_n) > 0$ for some n. Replacing A by A_n , we may assume $\lambda(A) < \infty$. Now $A \subseteq U$ with U open and $\lambda(U) < \frac{4}{3}\lambda(A)$. Writing U as a countable disjoint union of intervals I_i , we get $\sum \lambda(I_i) = \lambda(U) < \frac{4}{3}\lambda(A) = \frac{4}{3}\sum \lambda(I_i \cap A)$. If $\lambda(I_i) \geq \frac{4}{3}\lambda(I_i \cap A)$ for all i we obtain a contradiction. Hence there is an interval I_i with $\lambda(I_i \cap A) > \frac{3}{4}\lambda(I_i)$.
 - (b) Show that if $0 \le \delta \le \frac{1}{4}(b-a)$ then $A \cap (A+\delta) \cap [a,b]$ is non-empty. Let $A' = A \cap [a,b]$. Now if $A' \cap (A'+\delta) = \emptyset$ then $\lambda(A') + \lambda(A'+\delta) = \lambda(A' \cup (A'+\delta)) \le \lambda([a,b+\delta]) \le \frac{5}{4}(b-a)$. But $\lambda(A') = \lambda(A'+\delta) > \frac{3}{4}(b-a)$, a contradiction. Hence $A' \cap (A'+\delta) \subseteq A \cap (A+\delta) \cap [a,b]$ is non-empty.
 - (c) Deduce that $A A \supseteq [-\frac{1}{4}(b-a), \frac{1}{4}(b-a)].$ If $0 \le \delta \le \frac{1}{4}(b-a)$ then $A \cap (A+\delta) \ne \emptyset$, so $x \in A \cap (A+\delta)$ for some x. But then $x \in A$ and $x - \delta \in A$, so $\pm x \in A - A$. Thus $A - A \supseteq [-\frac{1}{4}(b-a), \frac{1}{4}(b-a)].$