
Math 7350 Homework 4 Solutions Fall 2004

1. Let fn : R → R be a sequence of continuous functions. Show that the set of points
C = {x ∈ R : fn(x) converges as n →∞} is an Fσδ-set.

The sequence fn(x) converges iff fn(x) is a Cauchy sequence: ∀ε > 0: ∃n0 >
0: ∀n,m ≥ n0 : |fn(x)− fm(x)| < ε.
The ‘σδ’ should take care of the quantifiers, but we need {x : |fn(x) − fm(x)| < ε}
to be closed. It is not closed as it stands, but the set

En,m,ε = {x : |fn(x)− fm(x)| ≤ ε}
is closed since it is the complement of the set {x : |fn(x) − fm(x)| > ε} which is
the inverse image of the open set (−∞,−ε) ∪ (ε,∞) under the continuous function
g(x) = fn(x)− fm(x). Now

Cn0,ε =
⋂

n,m≥n0

En,m,ε = {x : ∀n,m ≥ n0 : |fn(x)− fm(x)| ≤ ε}

is an intersection of closed sets, so is closed. Thus

Aε =
⋃
n0

Cn0,ε = {x : ∃n0 : ∀n,m ≥ n0 : |fn(x)− fm(x)| ≤ ε}

is an Fσ-set, and

B =
⋂

k

A1/k =
⋂
ε>0

Aε = {x : fn(x) converges}

is an Fσδ-set.

2. If E ⊂ R is a Lebesgue measurable set with a finite measure, prove that for any
given ε > 0, there is a set U which is a finite union of open intervals such that
λ(U 4 E) < ε. Here U 4 E = (U \ E) ∪ (E \ U).

Since λ(E) = λ∗(E) < ∞, we can find a countable sequence of open intervals
I1, I2, . . . such that E ⊆ ⋃∞

i=1 Ii and
∑∞

i=1 λ(Ii) =
∑∞

i=1 l(Ii) < λ(E) + ε/2. If
we set U∞ =

⋃∞
i=1 Ii, then λ(U∞) ≤ ∑

λ(Ii) < λ(E) + ε/2, so λ(U∞ \ E) < ε/2.

Set Un =
⋃n

i=1 Ii. Then U1 ⊆ U2 ⊆ . . . and
⋃∞

n=1 Un = U∞. Hence limn→∞ λ(Un) =
λ(U∞). Thus there is some n for which λ(Un) ≥ λ(U∞)−ε/2, and so λ(U∞\Un) < ε/2.

Now Un is a finite union of intervals and
Un 4 E = (U∞ \ E)4 (U∞ \ Un) ⊆ (U∞ \ E) ∪ (U∞ \ Un),
so λ(Un 4 E) < ε/2 + ε/2 = ε.

3. Show that if U is a finite union of open intervals and Q ∩ [0, 1] ⊆ U , then λ(U) ≥ 1.

Suppose U =
⋃n

i=1 Ii where Ii are open intervals and Q ∩ [0, 1] ⊆ U . We need to
show λ(U) ≥ 1.

Without loss of generality, and by induction of n, we may assume the Ii’s are pairwise
disjoint. Otherwise, if Ii∩Ij 6= ∅, then Ii∪Ij is also an open interval, and we can write
U as a union of a smaller number of intervals. Similarly, without loss of generality,



each Ii intersects [0, 1], otherwise we could remove Ii from the union to get a set U ′

which is the union of n− 1 intervals, Q ∩ [0, 1] ⊆ U ′, and λ(U) ≥ λ(U ′) ≥ 1.

Now write the intervals as Ii = (ai, bi) and order the intervals so that a1 < a2 < · · · <
an (if ai = aj then Ii and Ij intersect, so we may assume the ai are distinct). Now if
bi > ai+1 then Ii and Ii+1 intersect. Hence we may assume bi ≤ ai+1. In particular
we may assume U ∩ (ai, ai+1) = Ii. On the other hand, if bi < ai+1 then either
bi ≥ 1 (so Ii+1 ∩ [0, 1] = ∅) or ai+1 ≤ 0 (so Ii ∩ [0, 1] = ∅) or (bi, ai+1) ∩ [0, 1] 6= ∅ (so
(bi, ai+1)∩ [0, 1] contains a rational that is not in U). Since none of these are possible,
we must have bi = ai+1 for all i with 1 ≤ i < n. Thus U = (a1, bn) \ {a2, . . . , an}.
But 0 ∈ U so a1 < 0, and 1 ∈ U so bn > 1. Now λ(U) = bn − a1 > 1.

4. The first Borel-Cantelli Lemma states that if the sets B1, B2, . . . are measurable and∑∞
i=1 λ(Bi) < ∞, then the set of points that belong to infinitely many Bi is a set of

measure 0.

Prove the first Borel-Cantelli Lemma.

Let E be the set of points that belong to infinitely many Bi. Since
∑∞

i=1 λ(Bi)
converges, for any ε > 0 there is an n0 such that

∑∞
i=n0

λ(Bi) < ε. But then
λ(

⋃∞
i=n0

Bi) ≤
∑∞

i=n0
λ(Bi) < ε. Now if x ∈ E then x is in infinitely many Bi, and

so lies in some Bi with i ≥ n0. Thus E ⊆ ⋃∞
i=n0

Bi. Hence λ(E) ≤ λ(
⋃∞

i=n0
Bi) < ε.

Since this holds for all ε > 0, λ(E) = 0.

5. Let A be a subset of R such that λ(A) > 0. Denote by A−A the set {x−y : x, y ∈ A}.
(a) Prove that there is an interval [a, b] such that λ(A ∩ [a, b]) > 3

4
(b− a).

First by setting An = A∩[n, n+1) and noting that and
∑

λ(An) = λ(A), we may
assume λ(An) > 0 for some n. Replacing A by An, we may assume λ(A) < ∞.
Now A ⊆ U with U open and λ(U) < 4

3
λ(A). Writing U as a countable disjoint

union of intervals Ii, we get
∑

λ(Ii) = λ(U) < 4
3
λ(A) = 4

3

∑
λ(Ii ∩ A). If

λ(Ii) ≥ 4
3
λ(Ii∩A) for all i we obtain a contradiction. Hence there is an interval

Ii with λ(Ii ∩ A) > 3
4
λ(Ii).

(b) Show that if 0 ≤ δ ≤ 1
4
(b− a) then A ∩ (A + δ) ∩ [a, b] is non-empty.

Let A′ = A ∩ [a, b]. Now if A′ ∩ (A′ + δ) = ∅ then λ(A′) + λ(A′ + δ) =
λ(A′ ∪ (A′ + δ)) ≤ λ([a, b + δ]) ≤ 5

4
(b− a). But λ(A′) = λ(A′ + δ) > 3

4
(b− a), a

contradiction. Hence A′ ∩ (A′ + δ) ⊆ A ∩ (A + δ) ∩ [a, b] is non-empty.

(c) Deduce that A− A ⊇ [−1
4
(b− a), 1

4
(b− a)].

If 0 ≤ δ ≤ 1
4
(b − a) then A ∩ (A + δ) 6= ∅, so x ∈ A ∩ (A + δ) for some x. But

then x ∈ A and x− δ ∈ A, so ±x ∈ A−A. Thus A−A ⊇ [−1
4
(b− a), 1

4
(b− a)].


