1. Evaluate, with justification, the limit $\lim_{n\to\infty} \int_0^\infty (1+x/n)^{-n} n \sin(x/n) dx$.

 $\log(1+\frac{x}{n})^{-n}=-n(\frac{x}{n}+O((\frac{x}{n})^2))=-x+O(\frac{x^2}{n})\to -x$ as $n\to\infty$, thus $(1+\frac{x}{n})^{-n}\to e^{-x}$ as $n\to\infty$. Also $n\sin(\frac{x}{n})=n(\frac{x}{n}+O((\frac{x}{n})^3))=x+O(\frac{x^3}{n^2})\to x$ as $n\to\infty$. Thus if we set $f_n(x)=(1+x/n)^{-n}n\sin(x/n)$ then $f_n\to f$ as $n\to\infty$ where $f(x)=xe^{-x}$. We would expect the integral to converge to $\int_0^\infty xe^{-x}\,dx$. To prove this, use Dominated Convergence Theorem. Since $\sin x\le x$ for $x\ge 0$ we have $|f_n(x)|\le x(1+x/n)^{-n}$. If we assume $n\ge 3$ then

 $(1+\frac{x}{n})^n \geq 1+\binom{n}{1}\frac{x}{n}+\binom{n}{2}\frac{x^2}{n^2}+\binom{n}{3}\frac{x^3}{n^3} \geq 1+x+\frac{1}{2}(1-\frac{1}{n})x^2+\frac{1}{6}(1-\frac{1}{n})(1-\frac{2}{n})x^3 \geq x+\frac{1}{27}x^3.$

Thus $|f_n(x)| \leq g(x) = 1/(1+\frac{x^2}{27})$, which is integrable. Thus the limit is $\int_0^\infty xe^{-x} dx$. Now letting $g_n = xe^{-x}\chi_{[0,n]}$, $\int g_n \to \int f$ by MCT. But $\int_0^n xe^{-x} dx = [-(x+1)e^{-x}]_0^n = 1-(n+1)e^{-n} \to 1$ as $n \to \infty$. Thus the limit is 1.

2. Let S be a measurable set with finite measure. Show that $f(x) = \lambda(S \cap (S + x))$ is a continuous function and $\lim_{x\to +\infty} f(x) = 0$.

If I=(a,b) is an interval and $z\in S\cap (I+x)$ but $z\notin S\cap (I+y)$ then $z\in (I+x)\setminus (I+y)$. Now $\lambda((I+x)\setminus (I+y))=\lambda((a+x,b+x)\setminus (a+y,b+y))\leq |x-y|$. Thus $\lambda(S\cap (I+x))-\lambda(S\cap (I+y))\leq |x-y|$. If $U=\bigcup_{i=1}^N I_i$ is a disjoint union of N intervals, then $\lambda(S\cap (U+x))=\sum \lambda(S\cap (I_i+x))$. Thus $\lambda(S\cap (U+x))-\lambda(S\cap (U+y))\leq N|x-y|$. If $\lambda(S)<\infty$, then there is such a U with $\lambda(S\triangle U)<\varepsilon$. Then $|\lambda(S\cap (S+x))-\lambda(S\cap (U+x))-\lambda(S\cap (U+x))|<\varepsilon$. Thus $f(x)-f(y)=\lambda(S\cap (S+x))-\lambda(S\cap (S+y))<2\varepsilon+N|x-y|$. Similarly $f(y)-f(x)<2\varepsilon+N|y-x|$, so $|f(y)-f(x)|<2\varepsilon+N|x-y|$. Since this is $<3\varepsilon$ for |x-y| sufficiently small, and $\varepsilon>0$ is arbitrary, f(x) is continuous.

Let K be the maximum distance between any two points in the (bounded) set U. Let $V = S \setminus U$. Since $S \subseteq U \cup V$, $S \cap (S+x) \subseteq (U \cap (U+x)) \cup (U \cap (V+x)) \cup (V \cap (S+x))$. If x > K then $U \cap (U+x) = \emptyset$, so $\lambda(S \cap (S+x)) \le \lambda(V+x) + \lambda(V) < 2\varepsilon$. Hence $f(x) \to 0$ as $x \to +\infty$.

3. Suppose $f: [0,1] \to \mathbb{R}$ and f^n is integrable for all $n \ge 1$. If $\int_0^1 f^n = \int_0^1 f$ for all $n \ge 1$, show that $f = \chi_S$ a.e. for some measurable set $S \subseteq [0,1]$.

We start be showing $f^2 = f$ a.e.. Consider $g = (f^2 - f)^2$. Then $g \ge 0$ and $\int_0^1 g = \int_0^1 (f^4 - 2f^3 + f^2) = \int_0^1 f - 2 \int_0^1 f + \int_0^1 f = 0$. Let $E_k = \{x : g(x) > 1/k\}$. Then $0 = \int g \ge \lambda(E_k)/k$. Thus $\lambda(E_k) = 0$. But then $\lambda(\bigcup E_k) = 0$ and $\bigcup E_k = \{x : g(x) > 0\} = \{x : f(x)^2 \ne f(x)\}$. Thus $f^2 = f$ a.e.. Since f is measurable, $S = f^{-1}[\{1\}]$ is measurable. If $f(x) \ne \chi_S(x)$ then $f(x) \ne 0, 1$, so $f(x)^2 \ne f(x)$. Thus $f = \chi_S$ a.e..

4. (a) Show that if S is measurable with finite measure then $\lim_{n\to\infty} \int_S \cos nx \, dx = 0$. [Hint: Recall that there exists a finite union U of intervals with $\lambda(S \triangle U) < \varepsilon$.] Assume first that S = (a, b) is an open interval. Then

$$|\int_{S} \cos nx \, dx| = |\int_{a}^{b} \cos nx \, dx| = |[\frac{1}{n} \sin(nx)]_{a}^{b}| \le \frac{2}{n}.$$

Fix $\varepsilon > 0$ and let U be a union of k open intervals with $\lambda(S \triangle U) < \varepsilon$. Now $|\int_S \cos nx \, dx - \int_U \cos nx \, dx| = |\int (\chi_S - \chi_U) \cos nx \, dx| \le \int |\chi_S - \chi_U| = \lambda(S \triangle U)$. Thus $|\int_S \cos nx \, dx - \int_U \cos nx \, dx| < \varepsilon$ and $|\int_U \cos nx \, dx| \le k(2/n)$. Hence $|\int_S \cos nx \, dx| < \varepsilon + k(2/n)$ which is $< 2\varepsilon$ for sufficiently large n. Since this holds for any $\varepsilon > 0$, $\lim_{n \to \infty} \int_S \cos nx \, dx = 0$.

- (b) Deduce the Riemann-Lebesgue Theorem: If f is integrable then $\lim_{n\to\infty}\int f(x)\cos nx\,dx=0$. By writing $f=f_+-f_-$ it is enough to prove the result when $f\geq 0$ and $\int f<\infty$. Let ϕ be a simple function with $0\leq \phi\leq f$, $\phi=\sum_{i=1}^k a_i\chi_{S_i}$, and $\int \phi\geq \int f-\varepsilon/2$. Then $\int \phi\cos nx\,dx=\sum_{i=1}^k a_i\int_{S_i}\cos nx\,dx\to 0$ as $n\to\infty$. Thus for sufficiently large $n,\ |\int \phi\cos nx\,dx|<\varepsilon/2$. But $|\int (f(x)-\phi(x))\cos nx\,dx|\leq \int (f-\phi)\leq \varepsilon/2$, so $|\int f(x)\cos nx\,dx|\leq |\int \phi(x)\cos nx\,dx|+|\int (f-\phi)\cos nx\,dx|<\varepsilon$ for sufficiently large n.
- 5. Suppose that for all n, $\int_0^1 f_n(x)^2 dx \leq \frac{1}{n^4}$. Show that $f_n \to 0$ a.e. on [0,1].

Let $E_n = \{x : |f_n(x)| > 1/n\}$. Then $\int_0^1 f_n(x)^2 dx \ge \lambda(E_n)/n^2$. Thus $\lambda(E_n) \le 1/n^2$. If $f_n(x) \ne 0$ then there is some $\varepsilon = 1/k$ with $f_n(x) > 1/k$ for infinitely many n. But then $f_n(x) > 1/n$ for infinitely many n. Thus $x \in \bigcup_{n_0}^{\infty} E_k$. But the measure of this set is at most $\sum_{n_0}^{\infty} 1/n^2 \to 0$ as $n_0 \to \infty$. Thus the set of x where $f_n \ne 0$ is of measure zero.

Alternative solution:

Let $g(x) = \sum_{n=1}^{\infty} f_n(x)^2 \in [0, \infty]$. Now $\sum_{n=1}^{N} f_n^2$ is increasing in N, so by MCT,

$$\int g = \int \lim_{N \to \infty} \sum_{n=1}^{N} f_n^2 = \lim_{N \to \infty} \int \sum_{n=1}^{N} f_n^2 = \lim_{N \to \infty} \sum_{n=1}^{N} \int f_n^2 \le \sum_{n=1}^{\infty} \frac{1}{n^4} < \infty.$$

But this implies $\{x: g(x)=+\infty\}$ has measure 0. Thus $g(x)=\sum_{n=1}^{\infty}f_n(x)^2$ converges a.e., but this implies $f_n(x)^2\to 0$ a.e., and so $f_n(x)\to 0$ a.e.,