
Math 7350 Homework 6 Solutions Fall 2004

1. Suppose that f is continuous on (0,∞) and
∫∞
0

e−ax|f(x)| dx ≤ 1 for all a > 0. Prove
that f is integrable on (0,∞) and that∫ ∞

0

f(x) dx = lim
n→∞

∫ ∞

0

e−x/nf(x) dx.

Let fn(x) = e−x/nf(x). Then |fn(x)| = e−x/n|f(x)| is an increasing sequence of non-
negative measurable functions and limn→∞ |fn(x)| = |f(x)|. Now by MCT

∫ |f | =
lim

∫ |fn|. But
∫ |fn| ≤ 1, so

∫ |f | ≤ 1 and hence f is integrable. Since |fn| ≤ |f |
and |f | is integrable, by DCT,

∫
f = lim

∫
fn.

2. A function f : [a, b] → R is called singular if f ′ = 0 a.e.. Show that any increas-
ing function f is the sum of an increasing absolutely continuous function and an
increasing singular function. [Hint:

∫
f ′.]

Since f is increasing, we know f ′ exists a.e., f ′ ≥ 0 a.e., and
∫ b

a
f ′(t) dt ≤ f(b)−f(a).

Let g(x) =
∫ x

a
f ′(t) dt. Then g : [a, b] → R is absolutely continuous, (since it is

the integral of an integrable function) and increasing (since f ′ ≥ 0). Let h(x) =
f(x)− g(x). Then f(x) = g(x) + h(x), so it is enough to show that h′ = 0 a.e., and
h is increasing. Now h′ = f ′ − g′ exists a.e., since f, g are increasing. Also, by FTC
g′(x) = f ′(x) a.e., so h′ = 0 a.e.. If x < y then g(y)− g(x) =

∫ y

x
f ′ ≤ f(y)− f(x), so

h(y) ≥ h(x) and h is increasing.

3. Suppose f : (a, b) → R is differentiable everywhere in (a, b) and [c, d] ⊆ (a, b).

(a) Show that if f ′ is continuous on [c, d] then f is absolutely continuous on [c, d].

If f ′ is continuous on [c, d] then f ′ is bounded on [c, d]. Say |f ′| ≤ M . Consider
disjoint intervals Ii = (ai, bi), i = 1, . . . , n with

∑n
i=1(bi − ai) < ε/M . Then by

the Mean Value Theorem, f(bi) − f(ai) = (bi − ai)f
′(ci) for some ci ∈ Ii, so

|f(bi) − f(ai)| ≤ M(bi − ai). Now
∑n

i=1 |f(bi) − f(ai)| ≤
∑n

i=1 M(bi − ai) <
M(ε/M) = ε. Hence f is absolutely continuous.

(b) Give an example of such an f which not absolutely continuous on [c, d]. [Hint:
Consider f(x) = h(x) cos(1/x) on [−1, 1] which is not of bounded variation, but
f ′(0) exists.]

Let h(x) = x/ log(2/|x|) when x 6= 0 and h(x) = 0. For 0 < |x| < 2,
f(x) = h(x) cos(1/x) is differentiable. Also, h′(0) = limε→0 ε−1h(ε) cos(1/ε) =
limε→0(1/ log(2/|ε|)) cos(1/ε) = 0, so f ′(0) = 0 exists as well. Thus f ′ exists

in [−1, 1]. Consider the points ak = 1/(πk). Then f(ak) = (−1)k

πk log(2πk)
. Now

|f(ak)− f(ak−1)| ≥ 2
πk log(2πk)

and so
∑N

k=2 |f(ak)− f(ak−1)| ≥
∑N

k=2
0.1

k log k
. But∑

1
k log k

diverges (e.g., by integral test). Thus f is not of bounded variation,
and so cannot be absolutely continuous.

Alternative function: x2 cos(1/x2) works as well.



4. Give an example of a function f : [0, 1] → R that is absolutely continuous and strictly
increasing, but f ′ = 0 on a set of strictly positive measure.
[Hint: Consider the integral of χS where S is some suitable set.]

Enumerate the rationals in (0, 1) as q1, q2, . . . . Fix ε > 0 and consider the set
S =

⋃∞
k=1(qk − ε/2k, qk + ε/2k). Then λ(S) ≤ ∑

2ε/2k = 2ε. Setting ε = 1/4, we
have λ(S) < 1. Let f(x) =

∫ x

0
χS(t) dt. Then f is absolutely continuous and f ′ = χS

a.e.. But χS(t) = 0 on a set [0, 1] \ S of positive measure. Also, if 0 ≤ x < y ≤ 1
then f(y) − f(x) =

∫ y

x
χS(t) dt = λ(S ∩ [x, y]). Pick a rational qk ∈ (x, y). Then

λ(S ∩ [x, y]) ≥ λ((qk − ε/2k, qk + ε/2k) ∩ [x, y]) ≥ min(|y − x|, ε/2k) > 0. Thus f is
strictly increasing.

5. Suppose g : [a, b] → [c, d] is an increasing function with g(a) = c and g(b) = d.
Suppose also that g is absolutely continuous.

(a) Show that if S ⊆ [c, d] is measurable then λ(S) =
∫ b

a
χS(g(t))g′(t) dt.

[Hint: Consider intervals first.]

Define µ(S) =
∫ b

a
χS(g(t))g′(t) dt. First consider any interval I ⊆ [c, d] with

endpoints ci and di, say, (may be open or closed). Since g is increasing, g−1[I]
is an interval, with endpoints ai and bi, say. Since g is continuous, g(ai) = ci

and g(bi) = di. Now

µ(I) =

∫ b

a

χI(g(t))g′(t) dt =

∫ bi

ai

g′(t) = g(bi)− g(ai) = di − ci = λ(I).

By linearity, µ(U) = λ(U) for any finite disjoint union of open intervals. Now
let U =

⋃∞
i=1 Ii, Ii disjoint open intervals. Since g′ ≥ 0, by MCT

µ(U) =

∫ ∑
χIi

(g(t))g′(t) dt =
∑∫

χIi
(g(t))g′(t) dt =

∑
λ(Ii) = λ(U).

Thus µ(U) = λ(U) for all open U ⊆ [c, d]. Now, by linearity, µ([c, d] \ U) =
µ([c, d])− µ(U) = λ([c, d])− λ(U) = λ([c, d] \ U), so µ(F ) = λ(F ) for all closed
sets F as well. Now for any measurable S we can find open U and closed F with
F ⊆ S ⊆ U and λ(U) < λ(F )+ ε. Now λ(F ) = µ(F ) ≤ µ(S) ≤ µ(U) = λ(U) <
λ(F ) + ε. Letting ε → 0 we get µ(S) = λ(S) for all measurable S ⊆ [c, d].

(b) Deduce that if f : [c, d] → R∗ is integrable then
∫ d

c
f(t) dt =

∫ b

a
f(g(t))g′(t) dt.

By writing f = f+ − f−, f+, f− ≥ 0, we may assume f ≥ 0. Let φn be an in-

creasing sequence of simple functions tending pointwise to f . Now
∫ d

c
χS(t) dt =∫ b

a
χS(g(t))g′(t) dt, so by linearity

∫ d

c
φn(t) dt =

∫ b

a
φn(g(t))g′(t) dt. Thus by

MCT (twice, using g′ ≥ 0)
∫ d

c

f(t) dt = lim

∫ d

c

φn(t) dt = lim

∫ b

a

φn(g(t))g′(t) dt =

∫ b

a

f(g(t))g′(t) dt.


