1. Suppose that f is continuous on  $(0, \infty)$  and  $\int_0^\infty e^{-ax} |f(x)| dx \le 1$  for all a > 0. Prove that f is integrable on  $(0, \infty)$  and that

$$\int_0^\infty f(x) \, dx = \lim_{n \to \infty} \int_0^\infty e^{-x/n} f(x) \, dx.$$

Let  $f_n(x) = e^{-x/n} f(x)$ . Then  $|f_n(x)| = e^{-x/n} |f(x)|$  is an increasing sequence of nonnegative measurable functions and  $\lim_{n\to\infty} |f_n(x)| = |f(x)|$ . Now by MCT  $\int |f| = \lim \int |f_n|$ . But  $\int |f_n| \le 1$ , so  $\int |f| \le 1$  and hence f is integrable. Since  $|f_n| \le |f|$  and |f| is integrable, by DCT,  $\int f = \lim \int f_n$ .

2. A function  $f:[a,b] \to \mathbb{R}$  is called *singular* if f'=0 a.e.. Show that any increasing function f is the sum of an increasing absolutely continuous function and an increasing singular function. [Hint:  $\int f'$ .]

Since f is increasing, we know f' exists a.e.,  $f' \geq 0$  a.e., and  $\int_a^b f'(t) \, dt \leq f(b) - f(a)$ . Let  $g(x) = \int_a^x f'(t) \, dt$ . Then  $g \colon [a,b] \to \mathbb{R}$  is absolutely continuous, (since it is the integral of an integrable function) and increasing (since  $f' \geq 0$ ). Let h(x) = f(x) - g(x). Then f(x) = g(x) + h(x), so it is enough to show that h' = 0 a.e., and h is increasing. Now h' = f' - g' exists a.e., since f, g are increasing. Also, by FTC g'(x) = f'(x) a.e., so h' = 0 a.e.. If x < y then  $g(y) - g(x) = \int_x^y f' \leq f(y) - f(x)$ , so  $h(y) \geq h(x)$  and h is increasing.

- 3. Suppose  $f:(a,b)\to\mathbb{R}$  is differentiable everywhere in (a,b) and  $[c,d]\subseteq(a,b)$ .
  - (a) Show that if f' is continuous on [c,d] then f is absolutely continuous on [c,d]. If f' is continuous on [c,d] then f' is bounded on [c,d]. Say  $|f'| \leq M$ . Consider disjoint intervals  $I_i = (a_i,b_i), i = 1,\ldots,n$  with  $\sum_{i=1}^n (b_i a_i) < \varepsilon/M$ . Then by the Mean Value Theorem,  $f(b_i) f(a_i) = (b_i a_i)f'(c_i)$  for some  $c_i \in I_i$ , so  $|f(b_i) f(a_i)| \leq M(b_i a_i)$ . Now  $\sum_{i=1}^n |f(b_i) f(a_i)| \leq \sum_{i=1}^n M(b_i a_i) < M(\varepsilon/M) = \varepsilon$ . Hence f is absolutely continuous.
  - (b) Give an example of such an f which not absolutely continuous on [c, d]. [Hint: Consider  $f(x) = h(x)\cos(1/x)$  on [-1, 1] which is not of bounded variation, but f'(0) exists.]

Let  $h(x) = x/\log(2/|x|)$  when  $x \neq 0$  and h(x) = 0. For 0 < |x| < 2,  $f(x) = h(x)\cos(1/x)$  is differentiable. Also,  $h'(0) = \lim_{\varepsilon \to 0} \varepsilon^{-1}h(\varepsilon)\cos(1/\varepsilon) = \lim_{\varepsilon \to 0} (1/\log(2/|\varepsilon|))\cos(1/\varepsilon) = 0$ , so f'(0) = 0 exists as well. Thus f' exists in [-1,1]. Consider the points  $a_k = 1/(\pi k)$ . Then  $f(a_k) = \frac{(-1)^k}{\pi k \log(2\pi k)}$ . Now  $|f(a_k) - f(a_{k-1})| \ge \frac{2}{\pi k \log(2\pi k)}$  and so  $\sum_{k=2}^N |f(a_k) - f(a_{k-1})| \ge \sum_{k=2}^N \frac{0.1}{k \log k}$ . But  $\sum \frac{1}{k \log k}$  diverges (e.g., by integral test). Thus f is not of bounded variation, and so cannot be absolutely continuous.

Alternative function:  $x^2 \cos(1/x^2)$  works as well.

4. Give an example of a function  $f:[0,1] \to \mathbb{R}$  that is absolutely continuous and strictly increasing, but f'=0 on a set of strictly positive measure.

[Hint: Consider the integral of  $\chi_S$  where S is some suitable set.]

Enumerate the rationals in (0,1) as  $q_1,q_2,\ldots$  Fix  $\varepsilon>0$  and consider the set  $S=\bigcup_{k=1}^{\infty}(q_k-\varepsilon/2^k,q_k+\varepsilon/2^k)$ . Then  $\lambda(S)\leq\sum 2\varepsilon/2^k=2\varepsilon$ . Setting  $\varepsilon=1/4$ , we have  $\lambda(S)<1$ . Let  $f(x)=\int_0^x\chi_S(t)\,dt$ . Then f is absolutely continuous and  $f'=\chi_S$  a.e.. But  $\chi_S(t)=0$  on a set  $[0,1]\setminus S$  of positive measure. Also, if  $0\leq x< y\leq 1$  then  $f(y)-f(x)=\int_x^y\chi_S(t)\,dt=\lambda(S\cap[x,y])$ . Pick a rational  $q_k\in(x,y)$ . Then  $\lambda(S\cap[x,y])\geq\lambda((q_k-\varepsilon/2^k,q_k+\varepsilon/2^k)\cap[x,y])\geq\min(|y-x|,\varepsilon/2^k)>0$ . Thus f is strictly increasing.

- 5. Suppose  $g:[a,b] \to [c,d]$  is an increasing function with g(a)=c and g(b)=d. Suppose also that g is absolutely continuous.
  - (a) Show that if  $S \subseteq [c, d]$  is measurable then  $\lambda(S) = \int_a^b \chi_S(g(t))g'(t) dt$ . [Hint: Consider intervals first.]

Define  $\mu(S) = \int_a^b \chi_S(g(t))g'(t) dt$ . First consider any interval  $I \subseteq [c,d]$  with endpoints  $c_i$  and  $d_i$ , say, (may be open or closed). Since g is increasing,  $g^{-1}[I]$  is an interval, with endpoints  $a_i$  and  $b_i$ , say. Since g is continuous,  $g(a_i) = c_i$  and  $g(b_i) = d_i$ . Now

$$\mu(I) = \int_a^b \chi_I(g(t))g'(t) dt = \int_{a_i}^{b_i} g'(t) = g(b_i) - g(a_i) = d_i - c_i = \lambda(I).$$

By linearity,  $\mu(U) = \lambda(U)$  for any finite disjoint union of open intervals. Now let  $U = \bigcup_{i=1}^{\infty} I_i$ ,  $I_i$  disjoint open intervals. Since  $g' \geq 0$ , by MCT

$$\mu(U) = \int \sum \chi_{I_i}(g(t))g'(t) dt = \sum \int \chi_{I_i}(g(t))g'(t) dt = \sum \lambda(I_i) = \lambda(U).$$

Thus  $\mu(U) = \lambda(U)$  for all open  $U \subseteq [c,d]$ . Now, by linearity,  $\mu([c,d] \setminus U) = \mu([c,d]) - \mu(U) = \lambda([c,d]) - \lambda(U) = \lambda([c,d] \setminus U)$ , so  $\mu(F) = \lambda(F)$  for all closed sets F as well. Now for any measurable S we can find open U and closed F with  $F \subseteq S \subseteq U$  and  $\lambda(U) < \lambda(F) + \varepsilon$ . Now  $\lambda(F) = \mu(F) \le \mu(S) \le \mu(U) = \lambda(U) < \lambda(F) + \varepsilon$ . Letting  $\varepsilon \to 0$  we get  $\mu(S) = \lambda(S)$  for all measurable  $S \subseteq [c,d]$ .

(b) Deduce that if  $f: [c, d] \to \mathbb{R}^*$  is integrable then  $\int_c^d f(t) dt = \int_a^b f(g(t))g'(t) dt$ . By writing  $f = f_+ - f_-$ ,  $f_+, f_- \ge 0$ , we may assume  $f \ge 0$ . Let  $\phi_n$  be an increasing sequence of simple functions tending pointwise to f. Now  $\int_c^d \chi_S(t) dt = \int_a^b \chi_S(g(t))g'(t) dt$ , so by linearity  $\int_c^d \phi_n(t) dt = \int_a^b \phi_n(g(t))g'(t) dt$ . Thus by MCT (twice, using  $g' \ge 0$ )

$$\int_{a}^{d} f(t) dt = \lim_{a} \int_{a}^{d} \phi_{n}(t) dt = \lim_{a} \int_{a}^{b} \phi_{n}(g(t))g'(t) dt = \int_{a}^{b} f(g(t))g'(t) dt.$$