
Math 7350 Homework 7 Solutions Fall 2004
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2. Let C[0, 1] be the space of all continuous functions on [0, 1].

(a) Show that with the ‖ · ‖∞ norm, C[0, 1] is a Banach space.

If fn ∈ C[0, 1] and fn is Cauchy in L∞, then ∀ε > 0: ∃n0 : ∀n,m ≥ n0 :
‖fn − fm‖∞ < ε. But ‖fn − fm‖∞ < ε implies |fn(x) − fm(x)| < ε for a.e. x.
Since fn − fm is continuous, we must have |fn(x) − fm(x)| ≤ ε for all x, so
fn(x) is a Cauchy sequence. Let f(x) = lim fn(x). Then |fn(x) − f(x)| ≤ ε
for all n ≥ n0. Since n0 is independent of x, fn → f uniformly in x. Thus
‖fn − f‖∞ → 0 and fn → f in L∞. A uniform limit of continuous functions is
continuous, so f ∈ C[0, 1]. Thus C[0, 1] is a complete normed space with the
L∞-norm. Thus it is a Banach space.

(b) Show that with the ‖ · ‖p norm, C[0, 1] is not a Banach space for 1 ≤ p < ∞.

Let fn = (2x)n

1+(2x)n . Then limn→∞ fn(x) = f(x) where f(x) = 0 for x < 1/2,

f(x) = 1 for x > 1/2 and f(1/2) = 1/2. Since |fn − f |p ≤ 1, by DCT,∫ |fn − f |p → 0, so ‖fn − f‖p → 0, and fn → f in Lp([0, 1]). Hence fn is a
Cauchy sequence in C[0, 1] with the Lp-norm. If fn → g in C[0, 1] with the
Lp-norm, then fn → g in Lp([0, 1]). But then g = f a.e.., but f is not = a.e.,
to any continuous function.

3. (a) If f : [0, 1] → R is measurable, show that limp→∞ ‖f‖p = ‖f‖∞.

Suppose ‖f‖∞ > M . Then S = {x : |f | > M} has positive measure and ‖f‖p ≥
(λ(S)Mp)1/p = M(λ(S))1/p. Thus limp→∞ ‖f‖p ≥ limp→∞ M(λ(S))1/p = M .
Since this holds for all M < ‖f‖∞, limp→∞ ‖f‖p ≥ ‖f‖∞.

Conversely, ‖f‖∞ ≤ M . Then |f | ≤ M a.e., so ‖f‖p ≤ (Mp)1/p = M . Thus
limp→∞ ‖f‖p ≤ M . Since this holds for all M ≥ ‖f‖∞, limp→∞ ‖f‖p ≤ ‖f‖∞.

Thus limp→∞ ‖f‖p exists and equals ‖f‖∞.

(b) Give an example to show that this statement may be false if f is defined on the
whole of R.

Let f(x) = 1 on R. Then ‖f‖p = ∞ for all p < ∞ and ‖f‖∞ = 1.



4. Suppose g ∈ Lp(R), |fn| ≤ M , and fn → f a.e.. Show that fng → fg in Lp(R).

We need to show that ‖fng − fg‖p → 0 as n → ∞, or equivalently, we need
to show limn→∞

∫ |fng − fg|p = 0. Now
∫ |g|p < ∞ and |fn − f | ≤ 2M , so

|fng− fg|p ≤ (2M)p|g|p, which is integrable. Thus by DCT, limn→∞
∫ |fng− fg|p =∫

limn→∞ |fng − fg|p =
∫

0 = 0.

5. Assume 1 < p ≤ ∞ and 1
p

+ 1
q

= 1. Let fn ∈ Lp(R) with ‖fn‖p ≤ M for all n and
suppose fn → 0 a.e..

(a) If λ(S) < ∞, show that
∫
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Fix ε > 0 and let Sn0 = {x ∈ S : ∀n ≥ n0 : |fn(x)| < ε}. Then Sn0 is an
increasing sequence of sets with λ(S \ ⋃

Sn0) = 0. In particular, there exists
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was arbitrary, the result follows.

(b) Using (a), show that for all g ∈ Lq(R),
∫

fng → 0.

By (a) this is true when g = χS and λ(S) < ∞. Thus by linearity it is true for all
simple functions. Let g0 be a simple function with |g0| ≤ |g| and ‖g − g0‖q ≤ ε
(Lq functions can be approximated by simple functions for q < ∞). Then
| ∫ fng| ≤ | ∫ fng0|+ | ∫ fn(g − g0)| ≤ | ∫ fng0|+ Mε by Hölder. For sufficiently
large n, | ∫ fng0| ≤ Mε, so | ∫ fng| ≤ 2Mε. Since ε is arbitrary,

∫
fng → 0.

(c) Does (b) hold in the case p = 1, q = ∞?

No. For example, take g = 1, fn = χ[n,n+1].


