Math 7411 Homework Assignment 2 Spring 2008

Due Tuesday, February 5.

- 1. Assume $f: X \to Y$ is a function. Prove the following.
 - (a) f is injective iff for all Z and all maps $g, h: Z \to X$, $f \circ g = f \circ h \Rightarrow g = h$.
 - (b) f is surjective iff for all Z and all maps $g, h: Y \to Z$, $g \circ f = h \circ f \Rightarrow g = h$.
- 2. Assume A and B are well ordered sets, with well orderings \leq and \leq' respectively. If A is order isomorphic to an initial segment B' of B and B is order isomorphic to an initial segment A' of A, show that A' = A and B' = B. In particular, deduce that A and B are order isomorphic. [Hint: show that the composition of the two order isomorphisms is the identity.]

Let X be a set. Let \mathcal{X} be the collection of pairs (A, \leq) where \leq is a well ordering of A and $A \subseteq X$. Define an equivalence relation on \mathcal{X} by $(A, \leq) \sim (B, \leq')$ if (A, \leq) is order-isomorphic to (B, \leq') . Define an ordering \leq on $\overline{\mathcal{X}} = \mathcal{X}/\sim$ by $\overline{(A, \leq)} \leq \overline{(B, \leq')}$ if (A, \leq) is order isomorphic to an initial segment of (B, \leq') . Note that \leq is well defined, and, by Lemma 1 of the notes, \leq is a total ordering.

- 3. Show that if $(\underline{A}, \leq) \in \mathcal{X}$ then (A, \leq) is order isomorphic to the initial segment $\{(B, \leq') \in \bar{\mathcal{X}} \mid (B, \leq') \prec (A, \leq)\}$. Deduce that $(\bar{\mathcal{X}}, \preccurlyeq)$ is well ordered.
- 4. Suppose that X has a well ordering. Show without using AC that there exists a well ordered set Y with |Y| > |X|. [Hint: if there was a injection from $Y = \bar{\mathcal{X}}$ to X in question 3, then there would exist an $(A, \leq) \in \mathcal{X}$ that was order isomorphic both to $(\bar{\mathcal{X}}, \preccurlyeq)$ and to a proper initial segment of $(\bar{\mathcal{X}}, \preccurlyeq)$, contradicting question 2.]
- 5. We call a set X Dedekind finite if there is no bijection $f: X \to X'$ between X and a proper subset X' of X.
 - (a) Show that if X is not Dedekind finite, then there is an injection $g: \mathbb{N} \to X$. [Hint: If $x_0 \notin X'$ and $x_{n+1} = f(x_n)$ then the x_n are distinct.]
 - (b) Show that if there exists an injection $g: \mathbb{N} \to X$ then X is not Dedekind finite.