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Definition A ring on X is a non-empty collection A of sets such that A,B ∈ A ⇒
A \B ∈ A and A ∪B ∈ A. It is a σ-ring if A1, A2, · · · ∈ A ⇒

∪∞
i=1Ai ∈ A.

An algebra (σ-algebra) is a ring (σ-ring) containing the set X.

For algebras one can replace the condition A \B ∈ A by X \B ∈ A.
Both (σ-)rings and (σ-)algebras are also closed under finite (countable) intersections.

Definition A measurable space is a pair (X,A) where A is a σ-algebra on X.

Definition A measure µ on (X,A) is a function µ : A → [0,∞] that is countably additive:
If Ai ∈ A are disjoint sets for i ∈ I, and I is countable, then µ(

∪
i∈I Ai) =

∑
i∈I µ(Ai).

[Note: we include finite I and empty I, so in particular µ(∅) = 0.]

Definition We say µ is finite if µ(X) < ∞. We say µ is σ-finite if X =
∪∞
i=1Xi with

µ(Xi) <∞. We call µ a probability measure if µ(X) = 1.

Definition A measure space is a triple (X,A, µ) where A is a σ-algebra on X and µ is a
measure on (X,A). We say A ⊆ X is µ-measurable if A ∈ A.

Examples

1. If L is the set of Lebesgue measurable sets and λ is the Lebesgue measure, then
(R,L, λ) is a (σ-finite) measure space. More generally, if f ≥ 0 is measurable and
µ(S) =

∫
S
f(x) dx then µ is a measure on (R,L).

2. If X is any set, the counting measure µ(A) = |A| is a measure on (X,P(X)). It is
finite (σ-finite) iff X is finite (countable). More generally, if w : X → [0,∞] is any
function, then the weighted counting measure µ(A) =

∑
x∈Aw(x) is a measure on

(X,P(X)).

Lemma 1. Suppose (X,A, µ) is a measure space. Then

1. µ is monotonic: if A ⊆ B then µ(A) ≤ µ(B).

2. µ is countably subadditive: if Ai ∈ A, I countable, then µ(
∪
i∈I Ai) ≤

∑
i∈I µ(Ai).

3. If A1 ⊆ A2 ⊆ . . . , then µ(
∪∞
i=1Ai) = limi→∞ µ(Ai).

4. If A1 ⊇ A2 ⊇ . . . and µ(A1) <∞, then µ(
∩∞
i=1Ai) = limi→∞ µ(Ai).

Definition (X,A, µ) is complete if µ(A) = 0 implies all subsets of A lie in A.

Lemma 2. If (X,A, µ) is a measure space, then there is a unique complete measure
space (X, Â, µ̂) with Â = {A ∪ E : A ∈ A, E ⊆ B ∈ A, µ(B) = 0} and µ̂|A = µ.

The space (X, Â, µ̂) is called the completion of (X,A, µ).
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Definition Given a measurable space (X,A), a signed measure is a countably additive
function µ : A → R such that either µ(A) is never +∞ or it is never −∞. We call µ finite
if µ(A) is never ±∞.

The conditions on ±∞ imply we never get ∞−∞ in the ‘countably additive’ property.

Definition A set A ∈ A is positive if µ(B) ≥ 0 for all B ⊆ A, negative if µ(B) ≤ 0 for
all B ⊆ A, and null if µ(B) = 0 for all B ⊆ A, B ∈ A.

Theorem (Hahn decomposition) If µ is a signed measure, then any A ∈ A can be
written as disjoint union A = A+ ∪ A− where A+ is positive and A− is negative.

Proof. W.l.o.g., assume µ is never +∞. Pick any B0 ⊆ A with µ(B0) ̸= −∞. If there is a
C0 ⊆ B0 with µ(C0) < 0, pick C0 with µ(C0) <

1
2
inf{µ(C) : C ⊆ B0} (< −1 if inf = −∞)

and let B1 = B0 \ C0. Repeat this process to get a sequence B0 ⊇ B1 ⊇ B2 ⊇ . . . and let
B =

∩
Bn. Then µ(B0 \B) =

∑
µ(Ci) < 0, so µ(B) ≥ µ(B0). By assumption µ(B) <∞,

so µ(Ci) → 0. Thus if C ⊆ B and µ(C) < 0 then some µ(Ci) >
1
2
µ(C), contradicting the

choice of Ci. Thus B is positive and sup{µ(B) : B ⊆ A} = sup{µ(B) : B ⊆ A, B positive}.
Thus we can find a sequence of positive sets Bi with µ(Bi) → sup{µ(B) : B ⊆ A}. Let
A+ =

∪
Bi. If C ⊆ A+ then C =

∪
(Bi ∩ C \ ∪j<iBj) is a disjoint union of subsets of

the Bi, so µ(C) ≥ 0. Thus A+ is positive and µ(A+) = µ(Bi) + µ(A+ \ Bi) ≥ µ(Bi) for
all i, so µ(A+) = sup{µ(B) : B ⊆ A}. Let A− = A \ A+. If C ⊆ A− with µ(C) > 0 then
µ(A+ ∪ C) > µ(A+), a contradiction. Hence A− is negative.

Note: The decomposition A = A+ ∪ A− is not unique in general.

Definition A (signed) measure µ is supported on a subset A ∈ A if µ(B) = µ(B ∩A) for
all B ∈ A. Equivalently, µ(B) = 0 for all B ⊆ Ac. Two (signed) measures µ and ν are
mutually singular, µ⊥ν, if they are supported on disjoint sets.

Theorem (Jordan decomposition) If µ is a signed measure then µ = µ+−µ− where µ±

are mutually singular measures, at least one of which is finite. Moreover, this decomposition
is unique.

Proof. WriteX = X+∪X− as above and set µ+(A) = µ(A∩X+) and µ−(A) = −µ(A∩X−).
Then µ = µ+ − µ− and µ± are mutually singular measures. Assume now that µ =
µ+ − µ− = ν+ − ν− and X = Y + ∪ Y − with ν± supported on Y ±. Now if A ⊆ X+ ∩ Y −,
µ(A) = µ+(A) = −ν−(A), so µ+(A) = −ν−(A) = 0. Hence if A ⊆ X+ then ν−(A) = 0
and µ(A) = µ+(A) = ν+(A). Similarly if A ⊆ X− then ν+(A) = 0, so for any A,
µ+(A) = ν+(A). Thus µ+ = ν+, so by subtraction, µ− = ν−.

Exercise: Suppose f is integrable. Show that µ(S) =
∫
S
f(x) dx is a signed measure.

Give an expression for µ±(S).
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Definition A semiring on X is a non-empty collection I of subsets of X such that

S1. I, J ∈ I ⇒ I ∩ J ∈ I,
S2. I, J ∈ I ⇒ I \ J is a finite disjoint union of elements of I.

A semialgebra is a semiring containing X.

Examples

1. The set of all half-open intervals (a, b], a, b ∈ R.
2. The set of rectangles A×B in X × Y .

Lemma 1. Let I be a semiring.

1. If A1, . . . , An ∈ I, then ∃ disjoint I1, . . . , IN with each Ai a union of some Ijs.

2. Any element of the ring generated by I is a finite disjoint union of elements of I,
3. Any countable union of elements of I is a disjoint countable union of elements of I.

Proof. 1. Induction: replace Ii with Ii ∩ An+1 and the disjoint sets with union Ii \ An+1.
By induction on N one can also decompose An+1 \

∪N
1 Ii as a disjoint union.

2. Clear. 3. Write
∪
Ai as a disjoint union of Ai \∪j<iAj, each of which is a finite disjoint

union of elements of I.

We say a function l : I → [0,∞] is a measure on I if it is countably additive when defined:
if Ii ∈ I, are disjoint, I is countable, and

∪
i∈I Ii ∈ I, then l(

∪
i∈I Ii) =

∑
i∈I l(Ii).

We shall prove:

Theorem (Carathéodory) Suppose l is a measure on the semiring I. Then there is an
extension of l to a measure µ on some σ-algebra containing I. Moreover, this measure is
uniquely determined on the σ-ring generated by Ifin = {I ∈ I : l(I) <∞}.

Definition Suppose I is any collection of subsets of X and l : I → [0,∞] any function.
Define for any A ⊆ X, µ∗(A) = infA⊆∪

Ii

∑
i l(Ii), where the infimum is over all countable

collections of Ii ∈ I with A ⊆
∪
Ii.

We include finite and empty collections, so in particular µ∗(∅) = 0.
Also, if there is no countable collection of Ii with A ⊆

∪
Ii then µ

∗(A) = ∞.

Lemma 2. For any l : I → [0,∞], µ∗ is an outer measure, i.e.,

1. µ∗ is monotonic: if A ⊆ B then µ∗(A) ≤ µ∗(B),

2. µ∗ is countably subadditive: if {Ai : i ∈ I} is countable, µ∗(
∪
i∈I Ai) ≤

∑
i∈I µ

∗(Ai).

Definition If µ∗ is an outer measure, we say A ⊆ X is µ∗-measurable if for all E ⊆ X,
µ∗(E) = µ∗(E ∩ A) + µ∗(E \ A). [Subadditivity ⇒≤, so we only need ≥.]



Lemma 3. The set A of all µ∗-measurable sets is a σ-algebra and the restriction of µ∗

to A is a complete measure.

Proof. Clearly A = X is measurable and A is measurable iff X \A is measurable. Suppose
A1, A2, . . . are measurable and let A =

∪
Ai. Define inductively E0 = E and Ei+1 = Ei\Ai.

By measurability of Ai, µ
∗(Ei) = µ∗(Ei ∩ Ai) + µ∗(Ei+1). Hence

µ∗(E) =
∑n

i=1 µ
∗(Ei ∩ Ai) + µ∗(En+1).

However E \ A ⊆ En+1, so µ
∗(E) ≥

∑n
i=1 µ

∗(Ei ∩ Ai) + µ∗(E \ A) for all n. Thus
µ∗(E) ≥

∑∞
i=1 µ

∗(Ei ∩ Ai) + µ∗(E \ A). (1)

However,
∪
(Ei ∩ Ai) = E ∩ A, so by subadditivity, µ∗(E ∩ A) ≤

∑∞
i=1 µ

∗(Ei ∩ Ai). Thus
µ∗(E) ≥ µ∗(E ∩ A) + µ∗(E \ A),

as required. (If there are only finitely many Ai, set the other Ai = ∅.)
If Ai are disjoint and µ∗-measurable, take E = A so that Ei ∩ Ai = Ai and (1) gives
µ∗(A) ≥

∑∞
i=1 µ

∗(Ai). Since µ
∗ is countably subadditive, µ∗(A) =

∑∞
i=1 µ

∗(Ai).
For completeness, note that if µ∗(A) = 0 and B ⊆ A then µ∗(E ∩ B) ≤ µ∗(A) = 0 and
µ∗(E \B) ≤ µ∗(E), so µ∗(E) ≥ µ∗(E ∩B) + µ∗(E \B) and so B is µ∗-measurable.

Lemma 4. If I is a semiring and l is a measure on I then every I ∈ I is µ∗-measurable
and µ∗(I) = l(I).

Proof. Fix I ∈ I. Assume E ⊆
∪
Ii and µ

∗(E) ≥
∑
l(Ii)−ε. Now µ∗(E∩I) ≤

∑
i l(Ii∩I),

and µ∗(E \ I) ≤
∑

i,j l(Ii,j) where Ii \ I =
∪
j Ii,j is a disjoint union. But by assumption

l(Ii) = l(Ii ∩ I) +
∑

j l(Ii,j). Thus µ∗(E) ≥ µ∗(E ∩ I) + µ∗(E \ I) − ε. Since this is
true for all ε > 0, I is µ∗-measurable. Clearly µ∗(I) ≤ l(I). Suppose I ⊆

∪
Ii. Let

Ji = I ∩ Ii \ ∪j<iIj. By Lemma 1, both Ji and Ii \ Ji are finite disjoint unions of elements
of I, Ji =

∪
Ii,j, Ii \Ji =

∪
I ′i,j. But I is a disjoint union of the Ji, so l(I) =

∑
i

∑
j l(Ii,j).

Now l(Ii) =
∑

j l(Ii,j) +
∑

j l(I
′
i,j), so

∑
i l(Ii) ≥ l(I) and thus µ∗(I) = l(I).

Lemma 5. If I is a semiring and l is a measure on I then any extension of l to a
measure ν on a σ-algebra containing I satisfies ν ≤ µ∗. Moreover, ν = µ∗ on the σ-ring
generated by Ifin.

Proof. Let A be ν-measurable. If A ⊆
∪
Ii then ν(A) ≤

∑
ν(Ii) =

∑
l(Ii), so ν(A) ≤

µ∗(A). Now assume A is in the σ-ring generated by Ifin. Then A ⊆
∪
Ii for some Ii ∈ Ifin.

(The collection of all such A is a σ-ring and contains Ifin). Thus by Lemma 1, A ⊆
∪
Ii for

some disjoint Ii ∈ Ifin. Now ν(Ii \A)+ν(Ii∩A) = ν(Ii) = µ∗(Ii) = µ∗(Ii \A)+µ∗(Ii∩A),
and ν ≤ µ∗, so ν(Ii ∩A) = µ∗(Ii ∩A) and ν(A) =

∑
ν(Ii ∩A) =

∑
µ∗(Ii ∩A) = µ∗(A).

Example Suppose µ(A) = |A| and ν(A) = 2|A| for A ⊆ R. Let I = {(a, b] : a, b ∈ R}.
Then µ|I = ν|I but µ ̸= ν on singletons, which are in the σ-ring generated by I.

The Carathéodory Theorem follows from Lemmas 3–5.
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Let B be the Borel sets of R. If µ is a finite measure on (R,B), then the cumulative
distribution function of µ is

F (x) = µ((−∞, x]).

Note that µ((a, b]) = F (b) − F (a) for all a ≤ b and F is an increasing function of x that
is continuous on the right:

F (a) ≤ limx→a+ F (x) ≤ limn F (a+
1
n
) = µ(

∩
n(−∞, a+ 1

n
]) = µ((−∞, a]) = F (a).

Theorem If F is an increasing real valued function that is continuous on the right, then
there is a unique measure µF on (R,B) with µF ((a, b]) = F (b)− F (a) for all a ≤ b.

Proof. Let I = {(a, b] : a ≤ b}. Then I is a semiring. Define l : I → [0,∞] by l((a, b]) =
F (b)− F (a). We shall show that l is a measure on I.

Suppose (a, b] =
∪∞
i=1(ai, bi] is a disjoint union. For any N one can define (cj, dj], j ≤ N ,

to be (ai, bi], i ≤ N , ordered in increasing order of ai. Set d0 = a and cN+1 = b. Then

a = d0 ≤ c1 ≤ d1 ≤ c2 ≤ · · · ≤ dN ≤ cN+1 = b,

F (b)− F (a) =
∑N

i=1(F (di)− F (ci)) +
∑N

i=0(F (ci+1)− F (di)) ≥
∑N

i=1(F (bi)− F (ai)),

since F increasing. Thus l((a, b]) ≥
∑N

i=1 l((ai, bi]) for each N , so l((a, b]) ≥
∑∞

i=1 l((ai, bi]).

Fix ε > 0. Then there is a δ with F (a+δ) < F (a)+ε and δi with F (bi+δi) < F (bi)+ε/2
i.

The open sets (ai, bi+ δi) cover the compact set [a+ δ, b]. Hence there is a finite collection
of sets (ai, bi + δi] that cover (a + δ, b]. Inductively removing any (ai, bi + δi] that lie in
some other (aj, bj + δj] and ordering the remaining sets by ai, we obtain intervals (ci, di]
with ci+1 ≤ di. Setting d0 = a+ δ, cN+1 = b, we may assume this also holds with i = 0, N .
Since F is increasing

F (b)−F (a+ δ) =
∑N

i=1(F (di)−F (ci))−
∑N

i=0(F (di)−F (ci+1)) ≤
∑

(F (bi+ δi)−F (ai)).

Thus F (b)− F (a) ≤
∑

(F (bi)− F (ai)) + ε+
∑
ε/2i.

So l((a, b]) ≤
∑∞

i=1 l((ai, bi]) + 2ε for any ε > 0. Hence l is a measure on I.

Finally, the σ-ring generated by Ifin = I contains all open intervals since (a, b) =
∪
(ai, bi]

when ai decreases to a ∈ [−∞,∞) and bi increases to b ∈ (−∞,∞]. Thus it contains all
open sets (each is a countable union of open intervals), and so all Borel sets. The result
now follows from Carathéodory.

Examples 1. Lebesgue measure can be constructed as the special case F (x) = x.
2. Let F be the Cantor Ternary function. Then µF is supported on a set of Lebesgue
measure zero (the Cantor set), but is zero on all singletons.

One can extend this result to (finite) signed measures, if we replace the condition that F is
increasing by the condition that F is has bounded variation, since in this case one can write
F = G−H where G and H are (bounded) increasing functions and define µF = µG− µH .
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Theorem (Weak Monotone Convergence Theorem) Suppose (X,A, µ) is a measure
space and A,Ai ∈ A, c, ci ≥ 0. If cµ(A) >

∑∞
i=1 ciµ(Ai) then ∃x ∈ A : c >

∑
i : x∈Ai

ci.

Proof. Pick γ < c and α < µ(A) so that γα >
∑∞

i=1 ciµ(Ai). Let Sn = {x ∈ A :∑
i≤n, x∈Ai

ci > γ}. Then Sn is a union of intersections of the sets A1, . . . , An, so is mea-
surable. If

∪
Sn = A then µ(Sn) → µ(A), so ∃N : µ(SN) > α. Let I1, . . . , IM be disjoint

elements of A such that each Ai, i ≤ N , and A can be written as a union of some of the Is.
Then SN is a disjoint union of some of the Is and

∞∑
i=1

ciµ(Ai) ≥
N∑
i=1

∑
Is⊆Ai

ciµ(Is) =
∑
Is

∑
i≤N, Is⊆Ai

ciµ(Is) ≥
∑
Is⊆SN

γµ(Is) > γα,

a contradiction. Hence
∪
Sn ̸= A and there is an x ∈ A with c > γ ≥

∑
i : x∈Ai

ci.

Theorem If (X,A, µ) and (Y,B, ν) are measure spaces then there is a measure µ× ν on
the σ-algebra A⊗ B generated by A× B with (µ× ν)(A× B) = µ(A)ν(B) for all A ∈ A,
B ∈ B. Moreover, if µ and ν are both σ-finite then this measure is unique and σ-finite.

Proof. Let I = {A × B : A ∈ A, B ∈ B} and let l(A × B) = µ(A)ν(B). Now (A × B) ∩
(A′×B′) = (A∩A′)× (B∩B′) and (A×B)\ (A′×B′) is the disjoint union of (A\A′)×B
and A′ × (B \B′). Hence the measurable rectangles form a semiring.

Suppose A × B =
∪∞
i=1(Ai × Bi) is a disjoint union. Let c = ν(B), ci = ν(Bi), then for

all x, B =
∪
i : x∈Ai

Bi, so c ≤
∑

i : x∈Ai
ci. By WMCT, l(A × B) = cµ(A) ≤

∑
ciµ(Ai) =∑

l(Ai × Bi). Now fix N and construct disjoint I1, . . . , IM so that each Ai, i ≤ N , is a
union of some of the Is.
N∑
i=1

µ(Ai)ν(Bi) ≤
∑
i≤N

∑
Is⊆Ai

µ(Is)ν(Bi) ≤
∑
Is⊆A

µ(Is)
∑

i≤N, Is⊆Ai

ν(Bi) ≤
∑
Is⊆A

µ(Is)ν(B) ≤ µ(A)ν(B).

Letting N → ∞ gives
∑
l(Ai×Bi) ≤ l(A×B). Thus l is a measure and the result follows

from Carathéodory.

Define µ×̂ν to be the completion of µ× ν, with σ-algebra A⊗̂B.
If E ⊆ X × Y , define the section of E at x to be Ex = {y : (x, y) ∈ E}.
We say a property holds µ-a.e. if the set of points where it fails has µ-measure zero.

Lemma If E is µ× ν-measurable, then Ex is ν-measurable for all x ∈ X.

Proof. The set {E ⊆ X × Y : Ex is ν-measurable for all x} is a σ-algebra and contains all
measurable rectangles A×B, so contains A⊗ B.

Note that this is not true for µ×̂ν measurable sets. E.g., if S is a non Lebesgue measurable
set in R then E = {x}×S ⊆ {x}×R is a subset of a set of measure zero, so is λλ̂-measurable,
but Ex is not measurable.
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Suppose (Xi,Ai, µi), i = 1, 2, . . . are measure spaces with µi(Xi) = 1, we shall construct a
measure on X =

∏
Xi.

Definition A cylinder set is a set of the form A =
∏
Ai where Ai ∈ Ai and Ai = Xi for

all but finitely many i.

Theorem There exists a unique probability measure on the σ-algebra generated by cylinder
sets of X =

∏
Xi in which each cylinder set

∏
Ai gets measure

∏
µi(Ai).

Note:
∏
µi(Ai) is really a finite product since µi(Ai) = 1 for all but finitely many i’s.

Proof. For each N and each cylinder set A =
∏
Ai, define A

(N) =
∏

i>N Ai and A(N) =∏
i≤N Ai, so that one can regard A as a product A(N) × A(N). Since A is a cylinder

set, A(N) = X(N) for sufficiently large N . Define l(A) =
∏
µi(Ai), and more generally

l(A(N)) =
∏

i>N µi(Ai). By the existence of finite product measures, there are measures
µ(N) on X with µ(N)(A) = l(A) for all cylinder sets with A(N) = X(N).

Suppose A and Ai are cylinder sets with A a disjoint union of the Ai. Now A ⊇
∪n
i=1Ai,

and for sufficiently large N , A(N) = A
(N)
1 = · · · = A

(N)
n = X(N). Thus l(A) = µ(N)(A) ≥∑n

i=1 µ(N)(Ai) =
∑n

i=1 l(Ai). Letting n→ ∞, l(A) ≥
∑∞

i=1 l(Ai).

Suppose l(A) >
∑∞

i=1 l(Ai). We shall construct a point x = (x1, x2, . . . ) ∈ A that is not in
any Ai. Assume we have defined x1, . . . , xN−1 and let XN−1 = {x1}×· · ·×{xN−1}×X(N−1)

be the set of all points in X with first N − 1 components equal to xi. Assume that
XN−1 ∩ A ̸= ∅ and

l(A(N−1)) >
∑

i:XN−1∩Ai ̸=∅

l(A
(N−1)
i ).

Since X0 = X, this holds for N = 1. Write c = l(A(N)) and ci = l(A
(N)
i ). Then l(A(N−1)) =

cµN((A)N) and l(A
(N−1)
i ) = ciµN((Ai)N). Thus by the WMCT there exists an xN ∈ (A)N

(so XN ∩ A ̸= ∅) with

l(A(N)) = c >
∑

i:XN−1∩Ai ̸=∅, xN∈(Ai)N

ci =
∑

i:XN∩Ai ̸=∅

l(A(N)).

Now fix i. If (x1, . . . ) ∈ Ai then for sufficiently large N , l(A
(N)
i ) = 1 ≥ l(A(N)), a

contradiction. But for large enough N , A(N) = X(N), so (x1, . . . ) ∈ XN ⊆ A. Thus
A ̸=

∪
Ai, a contradiction. Hence l is a measure on I. The result now follows from

Carathéodory.

Surprisingly, the extension of this result to uncountable products is easy. Indeed, for any
set A in the σ-algebra generated by cylinder sets, there is a countable I such that A is
also in the σ-algebra generated by cylinder sets

∏
Ai with Ai = Xi for i /∈ I. Thus the

measure need only be defined on countable products.
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Definition A function f : (X,A) → (Y,B) between measurable spaces is calledmeasurable
if for all B ∈ B, f−1[B] ∈ A.

Definition A function f : (X,A) → R∗ is measurable iff it is measurable with respect to
the Borel σ-algebra on R∗.

Note: we do not in general use complete measures on Y since this may make many ‘nice’
functions non-measurable. In particular, if we use Lebesgue measurable sets then there
exist continuous functions that are not measurable: Take two Cantor-like sets with λ(C1) >
0 = λ(C2) and construct a continuous bijection f : [0, 1] → [0, 1], f [C1] = C2, by making it
map each interval of [0, 1] \C1 linearly onto the corresponding interval of [0, 1] \C2. Then
any non-measurable subset E ⊆ C1 is the inverse image of the measurable set f(E) ⊆ C2.

Since {B : f−1[B] ∈ A} is a σ-algebra on Y , it is enough to check the condition on any
set of B’s that generate B as a σ-algebra. In particular, f : X → R∗ is measurable iff
f−1[(a,∞]] is measurable for all a ∈ R, or even just all a ∈ Q.

Lemma 1. For functions (X,A) to R∗

1. If (X,A) = (R,B) or (R,L), then any continuous function is measurable.

2. The characteristic function χS is measurable iff S ∈ A.

3. If fn are measurable then supn fn, infn fn, lim fn, and lim fn are measurable.

4. If f, g are measurable then f + g, f − g, fg and f/g are measurable as functions on
the set where they are defined. The set where they are defined is also measurable.

Definition A simple function is a measurable function ϕ : X → R such that ϕ[X] is finite.
Equivalently ϕ =

∑n
i=1 aiχSi

where Si are measurable subsets of X, ai ∈ R, and χS is the
characteristic function of S. We may choose the Si to be disjoint.

Lemma 2. If f : X → [0,∞] is measurable, then there exists an increasing sequence of
simple functions 0 ≤ ϕ1 ≤ ϕ2 ≤ . . . with ϕn → f pointwise.

Lemma 3. If f : X → Y is any function and (Y,B) is a measurable space, then σ(f) =
{f−1[B] : B ∈ B} is a σ-algebra on X.

We call σ(f) the σ-algebra on X generated by f . The function f : (X,A) → (Y,B) is
measurable iff σ(f) ⊆ A.

More generally, if f1, f2, . . . are functions on X to a measurable space, σ(f1, f2, . . . ) is the
σ-algebra generated by all the σ(fi)’s and is the smallest σ-algebra on X making all the
fi measurable.

Example The (uncompleted) σ-algebra defined on a product space (finite or infinite) is
just σ(π1, π2, . . . ) where πi is the projection map onto the i’th coordinate.
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Lemma If f : X → [0,∞] is a measurable function, then the shadow of f , S(f) = {(x, y) :
0 ≤ y < f(x)} is a (µ× λ)-measurable subset of X × R.

Proof. Clear for simple functions, and S(f) =
∪
S(ϕn) where ϕ1 ≤ ϕ2 ≤ . . . , ϕn → f .

Definition If f : X → [0,∞] is measurable, the integral of f is
∫
f dµ = (µ× λ)(S(f)).

If f : X → R∗ is measurable and
∫
|f | dµ < ∞ then we say f is integrable and define∫

f dµ =
∫
f+ dµ−

∫
f− dµ where f+(x) = max{f(x), 0}, f−(x) = max{−f(x), 0}.

Clearly
∫
ϕ dµ =

∑n
i=1 aiµ(Si) for any simple non-negative ϕ =

∑n
i=1 aiχSi

.

Theorem (Monotone Convergence Theorem) If 0 ≤ f1 ≤ f2 ≤ . . . is an increasing
sequence of non-negative measurable functions on X, then

∫
lim fn dµ = lim

∫
fn dµ

Proof. S(f1) ⊆ S(f2) ⊆ . . . and S(f) =
∪
S(fn).

Corollary If f : X → [0,∞] is measurable then
∫
f dµ = supϕ

∫
ϕ dµ where the supremum

is taken over simple ϕ with 0 ≤ ϕ ≤ f .

Proof. S(ϕ) ⊆ S(f), so
∫
ϕ ≤

∫
f , and if 0 ≤ ϕ1 ≤ . . . , ϕn → f , then

∫
ϕn →

∫
f .

Note, this gives an alternative definition of the integral, and shows that it does not depend
on the choice of µ× λ when µ is not σ-finite.

Theorem Suppose f, g : X → [0,∞] are measurable, (resp. f, g : X → R∗ integrable).

1. If f ≤ g then
∫
f dµ ≤

∫
g dµ

2. If c ≥ 0 (resp. c ∈ R) then
∫
cf dµ = c

∫
f dµ

3.
∫
(f + g) dµ =

∫
f dµ+

∫
g dµ

4. If f ≥ 0 then
∫
f dµ = 0 iff f = 0 a.e.

Proof. For 2 and 3 with f, g ≥ 0 prove it first with simple functions and take limits.
For 4, ⇒,

∫
f dµ ≥ 1

N
µ{x : f(x) > 1

N
} and {x : f(x) > 0} =

∪
{x : f(x) > 1

N
}.

Theorem (Fatou’s Lemma) If fi ≥ 0 are non-negative measurable functions then∫
lim fn dµ ≤ lim

∫
fn dµ.

Proof. If gn = infr≥n fr then gn is increasing and
∫
lim fn dµ =

∫
lim gn dµ = lim

∫
gn dµ ≤

limn infr≥n
∫
fr dµ = lim

∫
fn dµ.

Theorem (Dominated Convergence Theorem) If g is integrable and |fn| ≤ g and
fn converges pointwise then

∫
lim fn = lim

∫
fn.

Proof. Apply Fatou to g − fn and g + fn.
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Definition A collectionM of subsets ofX is amonotone class if whenever A1 ⊆ A2 ⊆ . . . ,
Ai ∈ M, then

∪∞
i=1Ai ∈ M and whenever A1 ⊇ A2 ⊇ . . . , Ai ∈ M, then

∩∞
i=1Ai ∈ M.

Lemma 1. If A is an algebra, then the smallest monotone class M containing A is equal
to the σ-algebra σ(A) generated by A.

Proof. The intersection of all monotone classes ⊇ A is a monotone class, so M exists. Let
M(A) = {B ⊆ X : A∪B, A \B, B \A ∈ M}. Then M(A) is a monotone class. If A ∈ A
then A ⊆ M(A), so M ⊆ M(A). But then (reversing the roles of A and B), if A ∈ M
then A ⊆M(A), so M ⊆M(A). But then M is closed under finite unions and differences,
so is a ring. If Ai ∈ M, then

∪∞
n=1An =

∪∞
n=1(

∪n
i=1Ai) ∈ M and as X ∈ A ⊆ M, M is

a σ-algebra. Thus σ(A) ⊆ M, but σ(A) is a monotone class, so σ(A) = M.

Lemma 2. Suppose (X,A, µ) and (Y,B, ν) are σ-finite measure spaces. If E is a µ× ν-
measurable set and g(x) = ν(Ex), then g exists, is µ-measurable, and µ× ν(E) =

∫
g dµ.

Proof. First assume µ and ν are finite. Consider M = {E ⊆ X × Y : g(x) = ν(Ex) exists,
is measurable, and µ× ν(E) =

∫
g dµ}. Then M contains all measurable rectangles, and

is closed under finite disjoint unions, so contains the algebra generated by measurable
rectangles. But M is a monotone class (use the fact that µ and ν are finite, and the DCT
for

∫
g dµ). Thus M ⊇ A⊗B. For σ-finite µ and ν, write X × Y as a union of increasing

finite rectangles Xi × Yi, prove the result for E ∩ (Xi × Yi) and take limits.

Corollary 3. If (X,A, µ) and (Y,B, ν) are complete σ-finite measure spaces, E is µ×̂ν-
measurable, and g(x) = ν(Ex), then g exists µ-a.e., is µ-measurable, and µ×̂ν(E) =

∫
g dµ.

Proof. If E is µ × ν-measurable and µ × ν(E) = 0 then by Lemma 2,
∫
g dµ = 0, so

g = 0 a.e.. Thus if E is a subset of a set of µ × ν-measure zero then g = 0 a.e., and the
result holds. Writing E as a union of a µ × ν-measurable set and a subset of a set with
µ× ν-measure zero gives the result.

Theorem (Fubini-Tonelli) If (X,A, µ) and (Y,B, ν) are σ-finite measure spaces and
f : X×Y → R∗ is non-negative and µ×ν-measurable, then f(x, .) : Y → R∗ is ν-measurable
for all x ∈ X, g(x) =

∫
f(x, y) dν is µ-measurable and

∫
f(x, y) d(µ×ν) =

∫∫
f(x, y) dνdµ.

Similarly, if f is µ × ν-integrable, then f(x, .) is ν-integrable for µ-a.e. x ∈ X, g(x) =∫
f(x, y) dν is µ-integrable and

∫
f(x, y) d(µ× ν) =

∫∫
f(x, y) dνdµ (=

∫∫
f(x, y) dµdν).

Proof. Lemma 2 shows that this holds when f = χE. Thus by linearity it holds for simple
functions, and MCT implies it holds for all non-negative measurable f . For integrable f ,
apply result to f±, |f |, and use

∫∫
|f | dνdµ <∞ to show f(x, .) is ν-integrable µ-a.e..

A corresponding result holds for µ×̂ν provided µ and ν are complete and we replace ‘all
x ∈ X’ with ‘µ-a.e. x ∈ X’.

Example
∫∞
0

∫∞
0

x2−y2
(x2+y2+1)2

dxdy ̸=
∫∞
0

∫∞
0

x2−y2
(x2+y2+1)2

dydx.
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Definition If µ and ν are two signed measures on a measurable space (X,A) then we say
ν is absolutely continuous with respect to µ, ν ≪ µ, iff every µ-null set is ν-null. We say ν
is singular with respect to µ, ν⊥µ, if they are mutually singular, i.e., ν is supported on a
µ-null set.

Theorem (Radon-Nikodym) Let µ and ν be (positive) measures on the same measur-
able space (X,A), with ν ≪ µ and µ σ-finite. Then there exists a measurable function
f : X → [0,∞] such that ν(A) =

∫
A
f dµ for all A ∈ A. Moreover if f and g are two such

functions then f = g µ-a.e..

Proof. Assume first that µ is finite. Then for all α ∈ Q, α ≥ 0, ν−αµ is a signed measure.
Let X = X+

α ∪ X−
α be a corresponding Hahn decomposition. We may assume X+

0 = X.
Note that X±

α may not be monotonic in α due to the non-uniqueness of the decompositions.
Nevertheless, if α > β and E = X+

α \ X+
β , then αµ(E) ≤ ν(E) ≤ βµ(E), so µ(E) = 0,

Define f(x) = sup{α ∈ Q : x ∈ X+
α } ∈ [0,∞]. Then {x : f(x) > a} =

∪
α>aX

+
α is

measurable, so f is a measurable function.

Fix a measurable E, and N > 0, and let Ei = E ∩ f−1[[ i
N
, i+1
N
)]. Then Ei ⊆ X−

(i+1)/N ,

so ν(Ei) ≤ i+1
N
µ(Ei). Also Ei ⊆ X+

β ∪
∪
α>β(X

+
α \ X+

β ) for all β < i
N
. Thus ν(Ei) ≥

ν(Ei ∩X+
β ) ≥ βµ(Ei ∩X+

β ) = βµ(Ei). Thus ν(Ei) ≥ i
N
µ(Ei). But

i
N

≤ f ≤ i+1
N

on Ei, so
i
N
µ(Ei) ≤

∫
Ei
f dµ ≤ i+1

N
µ(Ei). Thus

− 1
N
µ(Ei) ≤ ν(Ei)−

∫
Ei
f dµ < 1

N
µ(Ei).

If we let E∞ = E ∩ f−1[{∞}] then E \E∞ =
∪
Ei is a disjoint union. Thus by MCT and

countable additivity of ν and µ,

− 1
N
µ(E \ E∞) ≤ ν(E \ E∞)−

∫
E\E∞

f dµ ≤ 1
N
µ(E \ E∞).

Since this holds for all N and µ(E) <∞, ν(E \ E∞) =
∫
E\E∞

f dµ. Finally, if µ(E∞) > 0

then ν(E∞) > αµ(E∞) for arbitrarily large α’s, so ν(E∞) =
∫
E∞

f dµ = ∞. On the other

hand, if µ(E∞) = 0 then ν(E∞) = 0 since ν ≪ µ, and ν(E∞) =
∫
E∞

f dµ = 0. Thus by

addition ν(E) =
∫
E
f dµ.

For σ-finite µ, write X =
∪
Xi with µ(Xi) < ∞ and disjoint. We can define fi on Xi by

ν(A ∩ Xi) =
∫
A∩Xi

fi dµ. Now let f =
∑
fiχXi

and use MCT. For uniqueness, let E =

{x : f(x)− g(x) > 1
n
and g(x) < n} ∩Xi. Then ν(E) =

∫
f dµ ≥ 1

n
µ(E) +

∫
g dµ = ν(E),

which implies µ(E) = 0 (note that
∫
g dµ < ∞). Taking unions over all n and i we get

µ({x : f(x) > g(x)}) = 0 and similarly µ({x : f(x) < g(x)}) = 0. Thus f = g µ-a.e..

Definition We define a Radon-Nikodym derivative of ν with respect to µ, dν
dµ
, to be this f .

Note that it is only defined up to equality µ-a.e..

Note that if f is any non-negative measurable function then ν(E) =
∫
E
f dµ defines a

measure with ν ≪ µ and Radon-Nikodym derivative dν
dµ

= f µ-a.e..



Corollary (Lebesgue Decomposition) If (X,A, µ) is a σ-finite measure space, then
any σ-finite measure ν on (X,A) can be written in the form ν = νc+ νs where νc ≪ µ and
νs⊥µ.

Proof. Let ψ = ν + µ, then ψ is σ-finite and µ ≪ ψ. Write µ(E) =
∫
E
f dψ and let

X = A ∪ B where A = {x : f(x) > 0} and B = {x : f(x) = 0}. Define νc(E) = ν(E ∩ A)
and νs(E) = ν(E ∩ B). Then ν = νc + νs, νs is supported on B and µ(B) = 0, so νs⊥µ.
If µ(E) = 0 then ψ(E ∩ A) = 0, so νc(E) = ν(E ∩ A) ≤ ψ(E ∩ A) = 0, and νc ≪ µ.

Recall the Lebesgue-Stieltjes measure on (R,B) given by µF ((a, b]) = F (b)−F (a) for some
increasing right-continuous function F . We generally denote the integral with respect to
µF by

∫
f(x) dF .

Theorem The Lebesgue-Stieltjes measure µF is absolutely continuous with respect to
Lebesgue measure λ iff F is an absolutely continuous function. In this case dµF

dλ
= F ′

λ-a.e..

Proof. If µF ≪ λ then by Radon-Nikodym, F (b) − F (a) = µF ((a, b]) =
∫
(a,b]

dµF
dλ

dλ.

But then F (x) = F (a) +
∫ x
a
dµF
dλ

(t) dt and dµF
dλ

(t) ≥ 0 is measurable, so F (x) is absolutely
continuous. Conversely, suppose F is absolutely continuous, then F ′ exists a.e., and F (b)−
F (a) =

∫ b
a
F ′(x) dx. Define µ(E) =

∫
E
F ′(x) dx. Then µ is a measure on (R,B) and

µ((a, b]) = µF ((a, b]). Let M = {E ⊆ (n, n+ 1] : µ(E) = µF (E)}. Then M is a monotone
class (using µF ((n, n + 1]) < ∞ for decreasing limits). But M also contains (a, b] for
n ≤ a < b ≤ n + 1 and is closed under finite disjoint unions, so contains the algebra on
(n, n + 1] generated by half-open intervals. Thus M contains all Borel sets in (n, n + 1].
Finally, for arbitrary E ∈ B, µF (E) =

∑
n µF (E∩(n, n+1]) =

∑
n µ(E∩(n, n+1]) = µ(E),

so µ = µF . But then µF (E) =
∫
E
F ′(x) dx, so if λ(E) = 0 then µF (E) = 0, so µF ≪ λ.

Finally, F ′ = dµF
dλ

λ-a.e. by uniqueness of the Radon-Nikodym derivative.

Exercises

1. If ν ≪ µ, then
∫
f dν =

∫
f dν
dµ
dµ.

2. If ψ ≪ ν ≪ µ, then dψ
dµ

= dψ
dν

dν
dµ
µ-a.e.

3. If ψ, ν ≪ µ, then d(ψ+ν)
dµ

= dψ
dµ

+ dν
dµ
µ-a.e.

4. Extend the Radon-Nikodym theorem to the case when ν is a signed measure.
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One can construct a model of probability using measure theory. The measure space
(X,A, µ) is usually denoted (Ω,A,P), where Ω is the sample space, or the set of pos-
sible outcomes. The σ-algebra A is the set of all events, and P is a probability measure
which assigns to each event E ∈ A a probability P(E) ∈ [0, 1]. An event occurs almost
surely or a.s., if P(E) = 1, or equivalently P(not E) = 0.

A random variable is a measurable function on Ω (usually to R and usually denoted in upper
case X, Y ,. . . , lower case variables typically denote constants). We write, for example,
P(X > c) as a shorthand for P({ω ∈ Ω : X(ω) > c}). The σ-algebra σ(X) = {X−1[B] : B
Borel} is the set of events that can be described in terms of the value of X as ‘X ∈ B’.

The expectation or mean of a random variable X is the integral of X, E(X) =
∫
X(ω) dP.

If we write 1E for the characteristic function of the event E, then P(E) = E(1E). If
E|X| < ∞ then the variance of X is Var(X) = E(X2) − (EX)2 = E((X − EX)2). Note
that Var(X) ≥ 0 and may be +∞ even if E|X| <∞.

Any real-valued random variable gives rise to a probability measure on (R,B) by setting
µ(B) = P(X ∈ B) for any Borel set B. The cumulative distribution function of a random
variable is the function F (c) = P(X ≤ c). The measure µ is just the Lebesgue-Stieltjes
measure corresponding to F . If F is absolutely continuous, then f = F ′ is called the
probability density function of X, and is just the Radon-Nikodym derivative dµ

dλ
. Note that

EX =
∫
x dF =

∫
xf(x) dx when defined.

If A1 and A2 are two sub-σ-algebras of A, we say A1 and A2 are independent if P(A∩B) =
P(A)P(B) for all A ∈ A1, B ∈ A2. Two events A and B are independent if P(A ∩ B) =
P(A)P(B), or equivalently the σ-algebras generated by {A} and {B} are independent.
Two random variables X and Y are independent if σ(X) and σ(Y ) are independent. In
other words, any event describable in terms of X is independent of any event describable
in terms of Y . More generally, any number of σ-algebras Ai are independent if each Ai

is independent of the σ-algebra generated by all the others, and similarly for events and
random variables. If one is given random variables Xi on different probability spaces
(Ωi,Ai,Pi), one can construct a probability space on which all the Xi are independent by
taking the product space with the product measure.

Warning: Suppose X1, . . . Xn−1 are independent random variables that take the values
0 or 1 each with probability 1

2
. Let Xn ∈ {0, 1} be the sum X1 + · · ·+Xn−1 mod 2. Then

any subset of the Xi’s of size < n are independent, but X1, . . . , Xn are not independent.

Exercises
1. If X1, X2, . . . are random variables with

∑
E|Xi| <∞ then E(

∑
Xi) =

∑
E(Xi).

2. If X1, . . . , Xn are independent random variables with E|Xi| <∞ then E(
∏n

i=1Xi) =∏n
i=1 E(Xi) and Var(

∑
Xi) =

∑
Var(Xi).

3. Tchebychev’s Inequality: If E|X| <∞ and t > 0 then P(|X−EX| ≥ t) ≤ Var(X)/t2.



Theorem (Kolmogorov’s 0–1 law) Suppose X1, X2, . . . are independent random vari-
ables and E is a tail event, i.e., an event such that for all n, E only depends on the values
of Xn+1, Xn+2, . . . . Then P(E) = 0 or 1.

Proof. The setM of all events that are independent of E is a monotone class: If P(E∩Ai) =
P(E)P(Ai) and Ai ∈ M is a monotonic sequence, then the limit A =

∪
Ai or

∩
Ai

satisfies P(E ∩ A) = limP(E ∩ Ai) = P(E) limP(Ai) = P(E)P(A), so A ∈ M. Now E ∈
σ(Xn+1, Xn+2, . . . ), so E is independent of σ(X1, . . . , Xn). Thus C =

∪
n σ(X1, . . . , Xn) ⊆

M. But C is an algebra (check this), so M contains the σ-algebra generated by C, which
is just σ(X1, X2, . . . ). But then E ∈ M, so E is independent of E. But then P(E) =
P(E ∩ E) = P(E)P(E), so P(E) = 0 or 1.

Example Events such as ‘limXi ≤ c’ and ‘lim 1
n

∑n
i=1Xi = c’ are tail events.

Example Consider Z2 and join neighboring (horizontally or vertically adjacent) points
independently with probability p. Then the probability that there is an infinite connected
subset of Z2 is either 0 or 1. (In fact it is 1 for p > 0.5 and 0 for p ≤ 0.5, but this is very
much harder to prove).

Conditional Expectation

In elementary probability theory, one defines the conditional probability of A given B as
P(A | B) = P(A∩B)/P(B). This works as long as P(B) > 0. But there are many instances
when we would like to apply conditional probability when P(B) = 0. More specifically,
if Z is a random variable, we would like to define P(A | Z = z) as a function ϕ(z) even
when P(Z = z) = 0. If we consider P(A | Z) = ϕ(Z), then what we are asking for is a new
random variable that depends only on the value of Z, i.e., is σ(Z)-measurable.

We first define conditional expectation. Given a σ-algebra A0 ⊆ A and an integrable
random variable X (E|X| < ∞), define for A ∈ A0, µ(A) = E(IAX). Then µ is a signed
measure on (Ω,A0). Also, µ ≪ P, so by the Radon-Nikodym theorem, there exists an
A0-measurable Y such that E(IAX) = E(IAY ) for all A ∈ A0. This random variable Y
is denoted E(X | A0) and is called the conditional expectation of X given A0. It is only
defined up to equality a.s.. We define, for example, E(X | Y, Z) to be E(X | σ(Y, Z)).
Conditional probability is defined by, for example, P(E | A0) = E(1E | A0).

Lemma Assuming all relevant quantities are defined,

1. E(X | Y ) = ϕ(Y ) a.s. for some Borel measurable ϕ : R → R,
2. if X and A0 are independent then E(X | A0) = EX a.s.,

3. if X is A0-measurable then E(XY | A0) = X E(Y | A0) a.s.,

4. if A1 ⊆ A0 ⊆ A then E(X | A1) = E(E(X | A0) | A1) a.s.,
in particular E(X) = E(E(X | A0)).
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Suppose (X,A, µ) is a measure space and f : X → R∗ is measurable. Define ∥f∥p =
(
∫
|f |p dµ)1/p for 1 ≤ p <∞ and ∥f∥∞ = ess sup |f | = inf{c : µ{x : |f(x)| > c} = 0}.

Lemma f = g a.e. ⇒ ∥f∥p = ∥g∥p and ∥f∥p = 0 iff f = 0 a.e.

Theorem (Minkowski) ∥f + g∥p ≤ ∥f∥p + ∥g∥p

Proof. |x|p convex ⇒
∣∣∣ ∥f∥
∥f∥+∥g∥

f
∥f∥ +

∥g∥
∥f∥+∥g∥

g
∥g∥

∣∣∣p ≤ ∥f∥
∥f∥+∥g∥

∣∣∣ f
∥f∥

∣∣∣p+ ∥g∥
∥f∥+∥g∥

∣∣∣ g
∥g∥

∣∣∣p. Now ∫
.

Define Lp(X,A, µ) to be {f : ∥f∥p <∞}/ ∼, where f ∼ g iff f = g a.e..

Lemma Lp(X,A, µ) is a vector space, and ∥.∥p induces a norm on Lp(X,A, µ).

Theorem (Riesz-Fischer) Lp(X,A, µ) is complete wrt ∥.∥p, so is a Banach space.

Proof. First show that Lp is complete iff
∑

∥fn∥p <∞ ⇒
∑
fn converges in Lp.

Now
∑

∥fn∥p < ∞ gives g(x) =
∑

|fn(x)| ∈ Lp by MCT, so g < ∞ a.e., and f(x) =∑
fn(x) converges a.e.. Apply DCT to show ∥f −

∑N
1 fn∥p → 0, (dominate with |g|p).

Theorem (Hölder) If 1
p
+ 1

q
= 1, f ∈ Lp, g ∈ Lq then

∫
|fg| dµ ≤ ∥f∥p∥g∥q.

Proof. Use Young’s inequality ab ≤ ap

p
+ bq

q
with a = |f |

∥f∥p , b =
|g|
∥g∥q . Now

∫
.

Lemma For p <∞, simple Lp functions are dense in Lp.

Proof. Let 0 ≤ ϕ1 ≤ ϕ2 ≤ · · · → |f |, then ψn = ϕn sgn f is simple, ∥ψn∥p = ∥ϕn∥p ≤ ∥f∥p
and ∥f − ψn∥p → 0 by DCT (dominate by |f |p).

Lemma For p <∞, the support supp f = {x : f(x) ̸= 0} of any f ∈ Lp is σ-finite.

Proof. supp f =
∪
n{x : |f(x)| > 1

n
}, and µ{x : |f(x)| > 1

n
} ≤

∫
(n|f |p) = np∥f∥pp <∞.

Theorem (Riesz Representation Theorem) Let F be a bounded linear functional on
Lp(X,A, µ), 1 ≤ p < ∞ and suppose either p > 1 or (X,A, µ) σ-finite. Then there is a
unique function g ∈ Lq(X,A, µ), 1

p
+ 1

q
= 1, such that

F (f) =

∫
fg for all f ∈ Lp(X,A, µ).

Moreover, for all such g, the above formula defines a linear functional with ∥F∥ = ∥g∥q.

Proof. Assume first that µ is finite. Now χE ∈ Lp for any E. Define ν(E) = F (χE) ∈ R.

Claim 1: ν is a finite signed measure.
Finite clear. If E =

∪
Ei is disjoint, then ∀N ≥ n0 : µ(E \ FN) < ε where FN =

∪N
i=1Ei,



so |ν(E) −
∑N

1 ν(Ei)| = |F (χE −
∑N

i=1 χEi
)| = |F (χE\FN

)| ≤ ∥F∥∥χE\FN
∥p ≤ ∥F∥ε1/p.

Hence ν(E) =
∑∞

1 ν(Ei).

Claim 2: ν ≪ µ.
µ(E) = 0 ⇒ |ν(A)| = |F (χA)| ≤ ∥F∥∥χA∥p = 0 for any A ⊆ E.

Now by the Radon-Nikodym theorem F (χE) = ν(E) =
∫
E
g dµ =

∫
χEg dµ. So by linear-

ity, F (ϕ) =
∫
ϕg dµ for any simple function ϕ.

Claim 3: ∥g∥q ≤ ∥F∥, in particular g ∈ Lq.

Let 0 ≤ ϕ1 ≤ ϕ2 ≤ · · · → |g|q/p. Then ∥ϕn∥pp =
∫
ϕpn =

∫
ϕ
p/q+1
n ≤

∫
|g|ϕn = F (ϕn sgn g) ≤

∥F∥∥ϕn∥p. Hence ∥ϕn∥p−1
p ≤ ∥F∥, and so

∫
ϕpn ≤ ∥F∥p/(p−1) = ∥F∥q. But

∫
ϕpn →

∫
|g|q

by MCT, so ∥g∥q ≤ ∥F∥. For q = ∞ let E = {x : |g(x)| > c}, then cµ(E) ≤
∫
E
|g| =

F (χE sgn g) ≤ ∥F∥∥χE∥1 = ∥F∥µ(E), so if c > ∥F∥ then µ(E) = 0.

Claim 4: F (f) =
∫
fg.

Let ϕn → f in Lp, then |F (f)−
∫
fg| ≤ |F (f)−F (ϕn)|+ |f(ϕn)−

∫
ϕng|+ |

∫
ϕng−

∫
fg| ≤

∥F∥∥f − ϕn∥p + 0 + ∥g∥q∥f − ϕn∥p → 0, the last term by Hölder.

Claim 5: g is unique a.e. (even if µ not finite).
Let g1 and g2 be two such g’s. Then for f ∈ Lp,

∫
f(g1 − g2) = 0. For any E with

µ(E) < ∞, f = sgn(g1 − g2)χE ∈ Lp. Then
∫
E
|g1 − g2| = 0, so g1 = g2 a.e. on E. But

{x : g1(x) ̸= 0 or g2(x) ̸= 0} is σ-finite, so g1 = g2 a.e..

Now assume µ is σ-finite. Write X =
∪
Xn with X1 ⊆ X2 ⊆ . . . and µ(Xn) < ∞. By

considering the finite measure µn(A) = µ(A ∩Xn), we can define gn by F (f) =
∫
gnf dµ

when supp f ⊆ Xn. W.l.o.g. gn(x) = 0 for x /∈ Xn and gn(x) = gm(x) for all x ∈ Xn ∩Xm

(by a.e. uniqueness of gn). Note that ∥gn∥q ≤ ∥F∥Lp(Xn) ≤ ∥F∥Lp(X), so if g(x) = lim gn(x)
then ∥g∥q ≤ ∥F∥ by MCT. If f ∈ Lp let fn = fχXn . Then |F (f)−

∫
gf | ≤ |F (f)−F (fn)|+

|F (fn) −
∫
gnf | + |

∫
gnf −

∫
gf | ≤ ∥F∥∥f − fn∥p + 0 + |

∫
gnf −

∫
gf |. But fn → f , so

∥f − fn∥p → 0 by DCT (dominate by |f |), and
∫
gnf →

∫
gf by DCT (dominate by |gf |

and use Hölder). Thus F (f) =
∫
gf and ∥g∥q ≤ ∥F∥.

Now assume µ is arbitrary but p > 1, so q < ∞. For all σ-finite E, define gE so that
F (f) =

∫
fgE when supp f ⊆ E. W.l.o.g. gE(x) = 0 when x /∈ E. Now ∥gE∥q ≤

∥F∥Lp(E) ≤ ∥F∥Lp(X), and if E ⊆ E ′ then ∥gE∥q ≤ ∥gE′∥ since gE = gE′ a.e. on E.
Thus we can choose an increasing sequence E1 ⊆ E2 ⊆ . . . with ∥gEi

∥q → supE ∥gE∥q.
Let E =

∪
Ei and suppose f ∈ Lp. If F (fχX\E) ̸= 0 then since supp f is σ-finite,

there exists an F ⊆ X \ E with µ(F ) < ∞ and F (fχF ) ̸= 0. Thus ∥gF∥q > 0. But
∥gE∪F∥qq = ∥gE∥qq+∥gF∥qq > ∥gE∥qq, a contradiction. Hence F (f) = F (fχE) =

∫
gEf dµ for

all f ∈ Lp.

Finally, |F (f)| = |
∫
fg| ≤ ∥f∥p∥g∥q, so ∥F∥ ≤ ∥g∥q, and thus ∥F∥ = ∥g∥q.
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Lemma 1. Let (X, d) be a metric space and µ∗ an outer measure such that µ∗(A∪B) =
µ∗(A) + µ∗(B) when d(A,B) > 0. Then all Borel sets in X are µ∗-measurable.

Proof. We show closed sets are measurable. We need µ∗(E) ≥ µ∗(E ∩ A) + µ∗(E \ A) for
any E and any closed A. W.l.o.g. µ∗(E) < ∞. Since A is closed, A = {x : d(x,A) =
0}. Let Aε = {x : d(x,A) < ε}. Let Rn = {x ∈ E : 1

n+1
< d(x,A) ≤ 1

n
}. Then

d(Rn, Rm) > 0 when |n −m| ≥ 2. Hence
∑N

n=1 µ
∗(R2n) = µ∗(

∪N
n=1R2n) ≤ µ∗(E) < ∞,

so
∑∞

n=1 µ
∗(R2n) converges. Similarly

∑∞
i=1 µ

∗(R2n+1) converges. Fix ε > 0. Then for
someN ,

∑∞
n=N µ

∗(Rn) < ε. But E\A = (E\A1/N)∪
∪∞
n=N Rn, so µ

∗(E\A) ≤ µ∗(E\AN)+ε
by countable subadditivity. Hence µ∗(E∩A)+µ∗(E \A) ≤ µ∗(E∩A)+µ∗(E \A1/N)+ε ≤
µ∗((E ∩A)∪ (E \A1/N))+ ε ≤ µ∗(E)+ ε since d(E ∩A,E \A1/N) ≥ 1

N
. Now let ε→ 0.

For α > 0 define m
(ε)
α (A) = inf

∑∞
i=1 r

α
i where the infimum is over all collections of balls

Bri(xi) with A ⊆
∪∞
i=1Bri(xi) and ri ≤ ε. Define µ∗(A) = limε→0m

(ε)
α (A).

Lemma 2. For any metric space (X, d), µ∗ exists, is an outer measure, and µ∗(A∪B) =
µ∗(A) + µ∗(B) when d(A,B) > 0.

Proof. First note that m
(ε)
α increases as ε decreases, so µ∗ = limεm

(ε)
α = limnm

(1/n)
α exists.

The functions m
(ε)
α are monotonic and countably subadditive: if A =

∪
Ai, choose Brij(xij)

so that
∑

j r
α
ij < m

(ε)
α + δ/2i. Then m

(ε)
α (A) ≤

∑
ij r

α
ij =

∑
m

(ε)
α (Ai) + δ. Hence µ∗

α

is monotonic and countably subadditive: µ∗(A) = limn µ
(1/n)
α (A) ≤ limn

∑
i µ

(1/n)
α (Ai) =∑

i limµ
(1/n)
α (Ai) =

∑
µ∗(Ai) by discrete MCT. Finally, if ε < d(A,B)/2 then m

(ε)
α (A ∪

B) = m
(ε)
α (A) +m

(ε)
α (B), so if d(A,B) > 0 then µ∗(A ∪B) = µ∗(A) + µ∗(B).

Definition The Borel measure µα that arises from µ∗
α is called the Hausdorff measure of

dimension α. The Hausdorff dimension of a set A is dimA = sup{α : µα(A) > 0}.

Lemma 3. If α < dimA then µα(A) = ∞.

Proof. If α < β then m
(ε)
β ≤ εβ−αm

(ε)
α . Thus if µβ(A) > 0 then m

(ε)
α (A) ≥ εα−βµβ(A) → ∞

as ε→ 0.

Exercises

1. Show that µn is (up to a constant factor) the Lebesgue measure on Rn.

2. Show that the Cantor set has Hausdorff dimension log 2
log 3

.
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Definition Let K be the set of compact subsets of a Hausdorff topological space X.
A content on X is a function λ : K → [0,∞) which is

1. monotone: K1 ⊆ K2 ⇒ λ(K1) ≤ λ(K2);

2. finitely additive: K1 ∩K2 = ∅ ⇒ λ(K1 ∪K2) = λ(K1) + λ(K2); and

3. finitely subadditive: λ(K1 ∪K2) = λ(K1) + λ(K2) for any K1, K2 ∈ K.

Lemma If X is Hausdorff and A and B are disjoint compact sets then there exist disjoint
open sets U ⊇ A and V ⊇ B.

Proof. Fix x ∈ A. Then for all y ∈ B, there exists disjoint open Uy, Vy with x ∈ Uy,
y ∈ Vy. The Vy cover B, so a finite collection Vyi do. Then U =

∩
Uyi and V =

∪
Vyi are

disjoint open sets with x ∈ U and B ⊆ V . Now repeat this process with each x to get such
sets U (x) and V (x). Since the U (x) cover A, a finite subcollection do. Then U =

∪
U (xi)

and V =
∩
V (xi) are as required.

Lemma A content λ gives rise to a measure µ on (X, σ(K)) with µ(
◦
K) ≤ λ(K) ≤ µ(K).

Proof.
Define the inner content of an open set U by λ∗(U) = supK⊆U λ(K).
Define for any set A, µ∗(A) = infU⊇A λ∗(U).
Use K, Ki etc., to denote compact sets and U , Ui, etc., to denote open sets.

Both λ∗ and µ
∗ are clearly monotone. Suppose K ⊆ U1 ∪U2. Then K \U1 and K \U2 are

disjoint compact sets, so there are disjoint open Vi ⊇ K\Ui. ThenKi = K\Vi are compact,
Ki ⊆ Ui andK1∪K2 = K. By induction, ifK ⊆

∪N
n=1 Ui then there exists compactKi ⊆ Ui

with
∪N
i=1Ki = K. Now suppose K ⊆

∪∞
i=1 Ui. By compactness, K ⊆

∪N
i=1 Ui for some N ,

so we have Ki ⊆ Ui, K =
∪
Ki, i ≤ N , and λ(K) ≤

∑N
i=1 λ(Ki) ≤

∑∞
i=1 λ∗(Ui). Taking

supremums over K ⊆ U =
∪
Ui, λ∗(U) ≤

∑
λ∗(Ui) and so λ∗ is countably subadditive.

Countable subadditivity of µ∗ follows. Hence µ∗ is an outer measure.

Fix any E and pick U ⊇ E. Then

λ∗(U) ≥ supK′⊆U\K, K′′⊆U\K′ λ(K ′ ∪K ′′) K ′ ∪K ′′ ⊆ U

≥ supK′⊆U\K, K′′⊆U\K′(λ(K ′) + λ(K ′′)) K ′ ∩K ′′ = ∅
≥ supK′⊆U\K(λ(K

′) + λ∗(U \K ′)) U \K ′ is open, definition of λ∗
≥ λ∗(U \K) + µ∗(E ∩K) E ∩K ⊆ U \K ′, definition of µ∗

≥ µ∗(E \K) + µ∗(E ∩K) E \K ⊆ U \K, definition of µ∗

Taking infimums over U we get µ∗(E) ≥ µ∗(E \K) + µ∗(E ∩K), so K is measurable.

Finally, µ∗(U) = infU ′⊇U λ∗(U
′) = λ∗(U), so µ

∗(
◦
K) = λ∗(

◦
K) = supK′⊆K◦ λ(K ′) ≤ λ(K).

◦
K is measurable since it is the difference of two compact sets K and K \

◦
K. Also, µ∗(K) =

infU⊇K supK′⊆U λ(K
′) ≥ infU λ(K) = λ(K).
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Definition A topological group is a topological space G which is also a group. Moreover,
both the multiplication × : G × G → G and the inverse ()−1 : G → G are continuous (in
the case of ×, continuity is with respect to the product topology on G×G).

Examples

1. R under +. More generally Rn with vector addition.

2. R \ {0} under ×. More generally the general linear group GLn(R) of all invertible
n× n matrices with entries in R. Multiplication is matrix multiplication. Topology
can be given by considering GLn(R) as a subset of Rn2

.

3. The special linear group SLn(R) (matrices of determinant 1) and the orthogonal group
On(R) (matrices A with AAT = I) are topological subgroups of GLn(R).

Lemma If U is an open neighborhood of 1 in a topological group G then there exists an
open neighborhood V of 1 such that V −1V = {x−1y : x, y ∈ V } ⊆ U .

Proof. By continuity of the map (x, y) → x−1y, there exists a V1 × V2 containing (1, 1)
with V −1

1 V2 ⊆ U . Take V = V1 ∩ V2.

Definition A left Haar measure is a measure µ on the Borel sets of G such that

1. µ is left invariant: if g ∈ G then µ(gA) = µ(A).

2. µ is outer regular: µ(A) = inf{µ(U) : open U ⊇ A}.
3. If K is compact then µ(K) <∞.

4. If U is open then µ(U) > 0.

Note
∫
χA(gx) dµ(x) =

∫
χg−1A(x) dµ(x) = µ(g−1A) = µ(A) =

∫
χA(x) dµ, so by standard

arguments
∫
f(gx) dµ(x) =

∫
f(x) dµ(x) for any integrable f .

Examples

1. Lebesgue measure on (Rn,+) is both a left and a right Haar measure.

2. The measure µ(E) =
∫
E
dx
|x| on (R \ {0},×) is a Haar measure.

Definition A subset of G is σ-bounded if it can be covered by a countable union of
compact sets.

Exercises
1. If K is compact then there exists a compact Gδ-set K

′ with K ⊆ K ′, µ(K) = µ(K ′).
[µ(K) = inf{µ(U) : U ⊇ K}, choose Ui ⊇ K with µ(Ui) → µ(K) and inductively

define Ki+1 ⊆
◦
Ki ∩ Ui with K ⊆

◦
Ki+1. Then K

′ =
∩
Ki =

∩ ◦
Ki.]

2. If K is a compact Gδ-set and G is σ-bounded then {(x, y) : xy ∈ K} is measurable
in G×G. [Show the compact set {(x, y) : xy ∈ K} ∩ (K ′ ×K ′) is measurable first.]



Definition For any two sets A and B, define [A:B] to be the minimum n such that A
can be covered with n left translates of B, A =

∪n
i=1 giB. Note that if K is compact and

U has non-empty interior then [K:U ] <∞.

Theorem If G is a σ-bounded locally compact Hausdorff topological group, then there
exists a left Haar measure on G. Moreover, it is unique up to multiplication by a positive
constant.

Proof. Let K be the set of compact subsets of G. If U is any open set then K ∩ U =
K \ (K \ U) is a difference of compact sets, so lies in σ(K). Since G is σ-bounded,
G =

∪∞
i=1Ki, so U =

∪∞
i=1(Ki ∩ U) ∈ σ(K). Thus σ(K) contains all Borel sets.

By local compactness, there is a compact set K0 with 1 ∈
◦
K0. Define for all open U ∋ 1

the function λU(K) = [K:U ]/[K0:U ]. Note that λU is subadditive and monotone, but not
necessarily additive. Now [K:U ] ≤ [K:K0][K0:U ], so 0 ≤ λU(K) ≤ [K:K0] < ∞ for all
K ∈ K. Consider λU as an element of the space P =

∏
K∈K[0, [K:K0]] which is compact

by Tychonoff. For each U ∋ 1, let SU ⊆ P be the closure of {λV : 1 ∈ V ⊆ U}. Clearly
each SU is closed and any finite intersection

∩n
i=1 SUi

is non-empty since it contains λ∩Ui
.

Hence
∩
U∋1 SU ̸= ∅. Let λ ∈

∩
U∋1 SU . Suppose K and K ′ are disjoint compact sets.

Then 1 /∈ K−1K ′, and K−1K ′ is compact (continuous image of K ×K ′), so closed. Thus
there is an open U ∋ 1 with U−1U ∩ K−1K ′ = ∅, so KU−1 ∩ K ′U−1 = ∅. In this case
[K ∪ K ′:V ] = [K:V ] + [K ′:V ] for all V ⊆ U . Hence λ′(K ∪ K ′) = λ′(K) + λ′(K ′) for
all λ′ ∈ SU (the set of such λ′ is closed and contains all λV , V ⊆ U). In particular
λ(K ∪ K ′) = λ(K) + λ(K ′). Hence λ is a content on G and gives rise to a measure µ
on (G, σ(K)). Now λU(gK) = λU(K) for all U , K, and g, so λ(gK) = λ(K). Thus
µ(gA) = µ(A) for all A ∈ σ(K). Finally, λ ∈ P , so λ(K) ≤ [K:K0] <∞. Now K ′ = KK0

is compact and K ⊆
◦
K ′, so µ(K) ≤ µ(

◦
K ′) ≤ λ(K ′) < ∞. Clearly λ(K0) = 1, and if U is

non-empty and open, K0 ⊆
∪n
i=1 giK0, so 1 ≤ nµ(U), and µ(U) > 0.

Uniqueness: Let K0 be the set of compact Gδ sets, and assume ν and µ are two left Haar
measures. Fix A ∈ K0 with non-empty interior, so 0 < µ(A), ν(A) < ∞. Define c(g) =
µ(A)/µ(Ag−1), so that µ(A) =

∫
χA(xg)c(g) dµ(x). Note µ(Ag

−1) =
∫
χ{xg∈A}(x, g) dµ(x)

so is measurable as a function of g (Fubini). Then for any B ∈ K0

µ(A)ν(B) =
∫∫

χA(xy)c(y)χB(y) dµ(x)dν(y)

=
∫∫

χA(y)c(x
−1y)χB(x

−1y) dν(y)dµ(x) [
∫
f(y)dν=

∫
f(x−1y)dν]

=
∫∫

χA(y)c((y
−1x)−1)χB((y

−1x)−1) dµ(x)dν(y) [ x−1y = (y−1x)−1 ]

=
∫∫

χA(y)c(x
−1)χB(x

−1) dµ(x)dν(y) [
∫
f(y−1x)dµ=

∫
f(x)dµ]

= ν(A)
∫
c(x−1)χB(x

−1) dµ(x).

(All functions measurable in G×G when A,B ∈ K0). Applying the same argument with
ν replaced by µ gives

∫
c(x−1)χB(x

−1)dµ(x) = µ(B), so µ(A)ν(B) = ν(A)µ(B) and if
α = ν(A)/µ(A) then µ(B) = αν(B) for all B ∈ K0. Pick K

′, K ′′ ∈ K0 so that K ⊆ K ′, K ′′

and µ(K) = µ(K ′), ν(K) = ν(K ′′), then µ(K) = µ(K ′ ∩ K ′′) = ν(K ′ ∩K ′′) = ν(K), so
µ = αν on K and hence on σ(K).


