Math 7351 1. Measures

Spring 2005

Definition A ring on X is a non-empty collection \mathcal{A} of sets such that $A, B \in \mathcal{A} \Rightarrow A \setminus B \in \mathcal{A}$ and $A \cup B \in \mathcal{A}$. It is a σ -ring if $A_1, A_2, \dots \in \mathcal{A} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$. An algebra (σ -algebra) is a ring (σ -ring) containing the set X.

For algebras one can replace the condition $A \setminus B \in \mathcal{A}$ by $X \setminus B \in \mathcal{A}$. Both (σ -)rings and (σ -)algebras are also closed under finite (countable) intersections.

Definition A measurable space is a pair (X, \mathcal{A}) where \mathcal{A} is a σ -algebra on X.

Definition A measure μ on (X, \mathcal{A}) is a function $\mu: \mathcal{A} \to [0, \infty]$ that is *countably additive*: If $A_i \in \mathcal{A}$ are disjoint sets for $i \in I$, and I is countable, then $\mu(\bigcup_{i \in I} A_i) = \sum_{i \in I} \mu(A_i)$. [Note: we include finite I and empty I, so in particular $\mu(\emptyset) = 0$.]

Definition We say μ is finite if $\mu(X) < \infty$. We say μ is σ -finite if $X = \bigcup_{i=1}^{\infty} X_i$ with $\mu(X_i) < \infty$. We call μ a probability measure if $\mu(X) = 1$.

Definition A measure space is a triple (X, \mathcal{A}, μ) where \mathcal{A} is a σ -algebra on X and μ is a measure on (X, \mathcal{A}) . We say $A \subseteq X$ is μ -measurable if $A \in \mathcal{A}$.

Examples

- 1. If \mathcal{L} is the set of Lebesgue measurable sets and λ is the Lebesgue measure, then $(\mathbb{R}, \mathcal{L}, \lambda)$ is a (σ -finite) measure space. More generally, if $f \geq 0$ is measurable and $\mu(S) = \int_S f(x) dx$ then μ is a measure on $(\mathbb{R}, \mathcal{L})$.
- 2. If X is any set, the counting measure $\mu(A) = |A|$ is a measure on $(X, \mathcal{P}(X))$. It is finite (σ -finite) iff X is finite (countable). More generally, if $w: X \to [0, \infty]$ is any function, then the weighted counting measure $\mu(A) = \sum_{x \in A} w(x)$ is a measure on $(X, \mathcal{P}(X))$.

Lemma 1. Suppose (X, \mathcal{A}, μ) is a measure space. Then

- 1. μ is monotonic: if $A \subseteq B$ then $\mu(A) \leq \mu(B)$.
- 2. μ is countably subadditive: if $A_i \in \mathcal{A}$, I countable, then $\mu(\bigcup_{i \in I} A_i) \leq \sum_{i \in I} \mu(A_i)$.
- 3. If $A_1 \subseteq A_2 \subseteq \ldots$, then $\mu(\bigcup_{i=1}^{\infty} A_i) = \lim_{i \to \infty} \mu(A_i)$.
- 4. If $A_1 \supseteq A_2 \supseteq \ldots$ and $\mu(A_1) < \infty$, then $\mu(\bigcap_{i=1}^{\infty} A_i) = \lim_{i \to \infty} \mu(A_i)$.

Definition (X, \mathcal{A}, μ) is *complete* if $\mu(A) = 0$ implies all subsets of A lie in \mathcal{A} .

Lemma 2. If (X, \mathcal{A}, μ) is a measure space, then there is a unique complete measure space $(X, \hat{\mathcal{A}}, \hat{\mu})$ with $\hat{\mathcal{A}} = \{A \cup E : A \in \mathcal{A}, E \subseteq B \in \mathcal{A}, \mu(B) = 0\}$ and $\hat{\mu}|_{\mathcal{A}} = \mu$.

The space $(X, \hat{\mathcal{A}}, \hat{\mu})$ is called the *completion* of (X, \mathcal{A}, μ) .

Math 7351 2. Signed Measures Spring 2005

Definition Given a measurable space (X, \mathcal{A}) , a signed measure is a countably additive function $\mu: \mathcal{A} \to \mathbb{R}$ such that either $\mu(\mathcal{A})$ is never $+\infty$ or it is never $-\infty$. We call μ finite if $\mu(\mathcal{A})$ is never $\pm\infty$.

The conditions on $\pm \infty$ imply we never get $\infty - \infty$ in the 'countably additive' property.

Definition A set $A \in \mathcal{A}$ is *positive* if $\mu(B) \ge 0$ for all $B \subseteq A$, *negative* if $\mu(B) \le 0$ for all $B \subseteq A$, and *null* if $\mu(B) = 0$ for all $B \subseteq A$, $B \in \mathcal{A}$.

Theorem (Hahn decomposition) If μ is a signed measure, then any $A \in \mathcal{A}$ can be written as disjoint union $A = A^+ \cup A^-$ where A^+ is positive and A^- is negative.

Proof. W.l.o.g., assume μ is never +∞. Pick any $B_0 \subseteq A$ with $\mu(B_0) \neq -\infty$. If there is a $C_0 \subseteq B_0$ with $\mu(C_0) < 0$, pick C_0 with $\mu(C_0) < \frac{1}{2} \inf\{\mu(C) : C \subseteq B_0\}$ (< -1 if $\inf = -\infty$) and let $B_1 = B_0 \setminus C_0$. Repeat this process to get a sequence $B_0 \supseteq B_1 \supseteq B_2 \supseteq \ldots$ and let $B = \bigcap B_n$. Then $\mu(B_0 \setminus B) = \sum \mu(C_i) < 0$, so $\mu(B) \ge \mu(B_0)$. By assumption $\mu(B) < \infty$, so $\mu(C_i) \to 0$. Thus if $C \subseteq B$ and $\mu(C) < 0$ then some $\mu(C_i) > \frac{1}{2}\mu(C)$, contradicting the choice of C_i . Thus B is positive and $\sup\{\mu(B) : B \subseteq A\} = \sup\{\mu(B) : B \subseteq A, B \text{ positive}\}$. Thus we can find a sequence of positive sets B_i with $\mu(B_i) \to \sup\{\mu(B) : B \subseteq A\}$. Let $A^+ = \bigcup B_i$. If $C \subseteq A^+$ then $C = \bigcup(B_i \cap C \setminus \bigcup_{j < i} B_j)$ is a disjoint union of subsets of the B_i , so $\mu(C) \ge 0$. Thus A^+ is positive and $\mu(A^+) = \mu(B_i) + \mu(A^+ \setminus B_i) \ge \mu(B_i)$ for all i, so $\mu(A^+) = \sup\{\mu(B) : B \subseteq A\}$. Let $A^- = A \setminus A^+$. If $C \subseteq A^-$ with $\mu(C) > 0$ then $\mu(A^+ \cup C) > \mu(A^+)$, a contradiction. Hence A^- is negative.

Note: The decomposition $A = A^+ \cup A^-$ is not unique in general.

Definition A (signed) measure μ is supported on a subset $A \in \mathcal{A}$ if $\mu(B) = \mu(B \cap A)$ for all $B \in \mathcal{A}$. Equivalently, $\mu(B) = 0$ for all $B \subseteq A^c$. Two (signed) measures μ and ν are mutually singular, $\mu \perp \nu$, if they are supported on disjoint sets.

Theorem (Jordan decomposition) If μ is a signed measure then $\mu = \mu^+ - \mu^-$ where μ^{\pm} are mutually singular measures, at least one of which is finite. Moreover, this decomposition is unique.

Proof. Write $X = X^+ \cup X^-$ as above and set $\mu^+(A) = \mu(A \cap X^+)$ and $\mu^-(A) = -\mu(A \cap X^-)$. Then $\mu = \mu^+ - \mu^-$ and μ^{\pm} are mutually singular measures. Assume now that $\mu = \mu^+ - \mu^- = \nu^+ - \nu^-$ and $X = Y^+ \cup Y^-$ with ν^{\pm} supported on Y^{\pm} . Now if $A \subseteq X^+ \cap Y^-$, $\mu(A) = \mu^+(A) = -\nu^-(A)$, so $\mu^+(A) = -\nu^-(A) = 0$. Hence if $A \subseteq X^+$ then $\nu^-(A) = 0$ and $\mu(A) = \mu^+(A) = \nu^+(A)$. Similarly if $A \subseteq X^-$ then $\nu^+(A) = 0$, so for any A, $\mu^+(A) = \nu^+(A)$. Thus $\mu^+ = \nu^+$, so by subtraction, $\mu^- = \nu^-$.

Exercise: Suppose f is integrable. Show that $\mu(S) = \int_S f(x) dx$ is a signed measure. Give an expression for $\mu^{\pm}(S)$.

Math 7351 3. Constructing Measures Spring 2005

Definition A semiring on X is a non-empty collection \mathcal{I} of subsets of X such that

S1. $I, J \in \mathcal{I} \Rightarrow I \cap J \in \mathcal{I}$,

S2. $I, J \in \mathcal{I} \Rightarrow I \setminus J$ is a finite disjoint union of elements of \mathcal{I} .

A semialgebra is a semiring containing X.

Examples

- 1. The set of all half-open intervals $(a, b], a, b \in \mathbb{R}$.
- 2. The set of rectangles $A \times B$ in $X \times Y$.

Lemma 1. Let \mathcal{I} be a semiring.

- 1. If $A_1, \ldots, A_n \in \mathcal{I}$, then \exists disjoint I_1, \ldots, I_N with each A_i a union of some I_i s.
- 2. Any element of the ring generated by \mathcal{I} is a finite disjoint union of elements of \mathcal{I} ,
- 3. Any countable union of elements of \mathcal{I} is a disjoint countable union of elements of \mathcal{I} .

Proof. 1. Induction: replace I_i with $I_i \cap A_{n+1}$ and the disjoint sets with union $I_i \setminus A_{n+1}$. By induction on N one can also decompose $A_{n+1} \setminus \bigcup_{i=1}^{N} I_i$ as a disjoint union.

2. Clear. 3. Write $\bigcup A_i$ as a disjoint union of $A_i \setminus \bigcup_{j < i} A_j$, each of which is a finite disjoint union of elements of \mathcal{I} .

We say a function $l: \mathcal{I} \to [0, \infty]$ is a *measure* on \mathcal{I} if it is countably additive when defined: if $I_i \in \mathcal{I}$, are disjoint, I is countable, and $\bigcup_{i \in I} I_i \in \mathcal{I}$, then $l(\bigcup_{i \in I} I_i) = \sum_{i \in I} l(I_i)$.

We shall prove:

Theorem (Carathéodory) Suppose l is a measure on the semiring \mathcal{I} . Then there is an extension of l to a measure μ on some σ -algebra containing \mathcal{I} . Moreover, this measure is uniquely determined on the σ -ring generated by $\mathcal{I}_{\text{fin}} = \{I \in \mathcal{I} : l(I) < \infty\}.$

Definition Suppose \mathcal{I} is any collection of subsets of X and $l: \mathcal{I} \to [0, \infty]$ any function. Define for any $A \subseteq X$, $\mu^*(A) = \inf_{A \subseteq \bigcup I_i} \sum_i l(I_i)$, where the infimum is over all countable collections of $I_i \in \mathcal{I}$ with $A \subseteq \bigcup I_i$.

We include finite and empty collections, so in particular $\mu^*(\emptyset) = 0$. Also, if there is no countable collection of I_i with $A \subseteq \bigcup I_i$ then $\mu^*(A) = \infty$.

Lemma 2. For any $l: \mathcal{I} \to [0, \infty]$, μ^* is an outer measure, *i.e.*,

1. μ^* is monotonic: if $A \subseteq B$ then $\mu^*(A) \leq \mu^*(B)$,

2. μ^* is countably subadditive: if $\{A_i : i \in I\}$ is countable, $\mu^*(\bigcup_{i \in I} A_i) \leq \sum_{i \in I} \mu^*(A_i)$.

Definition If μ^* is an outer measure, we say $A \subseteq X$ is μ^* -measurable if for all $E \subseteq X$, $\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \setminus A)$. [Subadditivity $\Rightarrow \leq$, so we only need \geq .]

Lemma 3. The set \mathcal{A} of all μ^* -measurable sets is a σ -algebra and the restriction of μ^* to \mathcal{A} is a complete measure.

Proof. Clearly A = X is measurable and A is measurable iff $X \setminus A$ is measurable. Suppose A_1, A_2, \ldots are measurable and let $A = \bigcup A_i$. Define inductively $E_0 = E$ and $E_{i+1} = E_i \setminus A_i$. By measurability of A_i , $\mu^*(E_i) = \mu^*(E_i \cap A_i) + \mu^*(E_{i+1})$. Hence

$$\mu^*(E) = \sum_{i=1}^n \mu^*(E_i \cap A_i) + \mu^*(E_{n+1}).$$

However $E \setminus A \subseteq E_{n+1}$, so $\mu^*(E) \ge \sum_{i=1}^n \mu^*(E_i \cap A_i) + \mu^*(E \setminus A)$ for all n. Thus $\mu^*(E) \ge \sum_{i=1}^\infty \mu^*(E_i \cap A_i) + \mu^*(E \setminus A).$ (1)

However, $\bigcup (E_i \cap A_i) = E \cap A$, so by subadditivity, $\mu^*(E \cap A) \leq \sum_{i=1}^{\infty} \mu^*(E_i \cap A_i)$. Thus

$$\mu^*(E) \ge \mu^*(E \cap A) + \mu^*(E \setminus A),$$

as required. (If there are only finitely many A_i , set the other $A_i = \emptyset$.) If A_i are disjoint and μ^* -measurable, take E = A so that $E_i \cap A_i = A_i$ and (1) gives $\mu^*(A) \ge \sum_{i=1}^{\infty} \mu^*(A_i)$. Since μ^* is countably subadditive, $\mu^*(A) = \sum_{i=1}^{\infty} \mu^*(A_i)$. For completeness, note that if $\mu^*(A) = 0$ and $B \subseteq A$ then $\mu^*(E \cap B) \le \mu^*(A) = 0$ and $\mu^*(E \setminus B) \le \mu^*(E)$, so $\mu^*(E) \ge \mu^*(E \cap B) + \mu^*(E \setminus B)$ and so B is μ^* -measurable. \Box

Lemma 4. If \mathcal{I} is a semiring and l is a measure on \mathcal{I} then every $I \in \mathcal{I}$ is μ^* -measurable and $\mu^*(I) = l(I)$.

Proof. Fix $I \in \mathcal{I}$. Assume $E \subseteq \bigcup I_i$ and $\mu^*(E) \ge \sum l(I_i) - \varepsilon$. Now $\mu^*(E \cap I) \le \sum_i l(I_i \cap I)$, and $\mu^*(E \setminus I) \le \sum_{i,j} l(I_{i,j})$ where $I_i \setminus I = \bigcup_j I_{i,j}$ is a disjoint union. But by assumption $l(I_i) = l(I_i \cap I) + \sum_j l(I_{i,j})$. Thus $\mu^*(E) \ge \mu^*(E \cap I) + \mu^*(E \setminus I) - \varepsilon$. Since this is true for all $\varepsilon > 0$, I is μ^* -measurable. Clearly $\mu^*(I) \le l(I)$. Suppose $I \subseteq \bigcup I_i$. Let $J_i = I \cap I_i \setminus \bigcup_{j < i} I_j$. By Lemma 1, both J_i and $I_i \setminus J_i$ are finite disjoint unions of elements of \mathcal{I} , $J_i = \bigcup I_{i,j}$, $I_i \setminus J_i = \bigcup I'_{i,j}$. But I is a disjoint union of the J_i , so $l(I) = \sum_i \sum_j l(I_{i,j})$. Now $l(I_i) = \sum_j l(I_{i,j}) + \sum_j l(I'_{i,j})$, so $\sum_i l(I_i) \ge l(I)$ and thus $\mu^*(I) = l(I)$.

Lemma 5. If \mathcal{I} is a semiring and l is a measure on \mathcal{I} then any extension of l to a measure ν on a σ -algebra containing \mathcal{I} satisfies $\nu \leq \mu^*$. Moreover, $\nu = \mu^*$ on the σ -ring generated by \mathcal{I}_{fin} .

Proof. Let A be ν -measurable. If $A \subseteq \bigcup I_i$ then $\nu(A) \leq \sum \nu(I_i) = \sum l(I_i)$, so $\nu(A) \leq \mu^*(A)$. Now assume A is in the σ -ring generated by \mathcal{I}_{fn} . Then $A \subseteq \bigcup I_i$ for some $I_i \in \mathcal{I}_{\text{fn}}$. (The collection of all such A is a σ -ring and contains \mathcal{I}_{fn}). Thus by Lemma 1, $A \subseteq \bigcup I_i$ for some disjoint $I_i \in \mathcal{I}_{\text{fn}}$. Now $\nu(I_i \setminus A) + \nu(I_i \cap A) = \nu(I_i) = \mu^*(I_i) = \mu^*(I_i \setminus A) + \mu^*(I_i \cap A)$, and $\nu \leq \mu^*$, so $\nu(I_i \cap A) = \mu^*(I_i \cap A)$ and $\nu(A) = \sum \nu(I_i \cap A) = \sum \mu^*(I_i \cap A) = \mu^*(A)$. \Box

Example Suppose $\mu(A) = |A|$ and $\nu(A) = 2|A|$ for $A \subseteq \mathbb{R}$. Let $\mathcal{I} = \{(a, b] : a, b \in \mathbb{R}\}$. Then $\mu|_{\mathcal{I}} = \nu|_{\mathcal{I}}$ but $\mu \neq \nu$ on singletons, which are in the σ -ring generated by \mathcal{I} .

The Carathéodory Theorem follows from Lemmas 3–5.

Math 7351 4. Lebesgue-Stieltjes Spring 2005

Let \mathcal{B} be the Borel sets of \mathbb{R} . If μ is a finite measure on $(\mathbb{R}, \mathcal{B})$, then the *cumulative* distribution function of μ is

$$F(x) = \mu((-\infty, x]).$$

Note that $\mu((a, b]) = F(b) - F(a)$ for all $a \leq b$ and F is an increasing function of x that is continuous on the right:

$$F(a) \le \lim_{x \to a^+} F(x) \le \lim_n F(a + \frac{1}{n}) = \mu(\bigcap_n (-\infty, a + \frac{1}{n}]) = \mu((-\infty, a]) = F(a).$$

Theorem If F is an increasing real valued function that is continuous on the right, then there is a unique measure μ_F on $(\mathbb{R}, \mathcal{B})$ with $\mu_F((a, b]) = F(b) - F(a)$ for all $a \leq b$.

Proof. Let $\mathcal{I} = \{(a, b] : a \leq b\}$. Then \mathcal{I} is a semiring. Define $l: \mathcal{I} \to [0, \infty]$ by l((a, b]) = F(b) - F(a). We shall show that l is a measure on \mathcal{I} .

Suppose $(a, b] = \bigcup_{i=1}^{\infty} (a_i, b_i]$ is a disjoint union. For any N one can define $(c_j, d_j], j \leq N$, to be $(a_i, b_i], i \leq N$, ordered in increasing order of a_i . Set $d_0 = a$ and $c_{N+1} = b$. Then

$$a = d_0 \le c_1 \le d_1 \le c_2 \le \dots \le d_N \le c_{N+1} = b,$$

$$F(b) - F(a) = \sum_{i=1}^N (F(d_i) - F(c_i)) + \sum_{i=0}^N (F(c_{i+1}) - F(d_i)) \ge \sum_{i=1}^N (F(b_i) - F(a_i)),$$

since F increasing. Thus $l((a,b]) \ge \sum_{i=1}^{N} l((a_i,b_i])$ for each N, so $l((a,b]) \ge \sum_{i=1}^{\infty} l((a_i,b_i])$.

Fix $\varepsilon > 0$. Then there is a δ with $F(a+\delta) < F(a) + \varepsilon$ and δ_i with $F(b_i + \delta_i) < F(b_i) + \varepsilon/2^i$. The open sets $(a_i, b_i + \delta_i)$ cover the compact set $[a + \delta, b]$. Hence there is a finite collection of sets $(a_i, b_i + \delta_i]$ that cover $(a + \delta, b]$. Inductively removing any $(a_i, b_i + \delta_i]$ that lie in some other $(a_j, b_j + \delta_j]$ and ordering the remaining sets by a_i , we obtain intervals $(c_i, d_i]$ with $c_{i+1} \leq d_i$. Setting $d_0 = a + \delta$, $c_{N+1} = b$, we may assume this also holds with i = 0, N. Since F is increasing

$$F(b) - F(a+\delta) = \sum_{i=1}^{N} (F(d_i) - F(c_i)) - \sum_{i=0}^{N} (F(d_i) - F(c_{i+1})) \le \sum (F(b_i + \delta_i) - F(a_i)).$$

Thus

$$F(b) - F(a) \le \sum (F(b_i) - F(a_i)) + \varepsilon + \sum \varepsilon/2^i.$$

So $l((a,b]) \leq \sum_{i=1}^{\infty} l((a_i,b_i]) + 2\varepsilon$ for any $\varepsilon > 0$. Hence *l* is a measure on \mathcal{I} .

Finally, the σ -ring generated by $\mathcal{I}_{\text{fin}} = \mathcal{I}$ contains all open intervals since $(a, b) = \bigcup (a_i, b_i]$ when a_i decreases to $a \in [-\infty, \infty)$ and b_i increases to $b \in (-\infty, \infty]$. Thus it contains all open sets (each is a countable union of open intervals), and so all Borel sets. The result now follows from Carathéodory.

Examples 1. Lebesgue measure can be constructed as the special case F(x) = x. 2. Let F be the Cantor Ternary function. Then μ_F is supported on a set of Lebesgue measure zero (the Cantor set), but is zero on all singletons.

One can extend this result to (finite) signed measures, if we replace the condition that F is increasing by the condition that F is has bounded variation, since in this case one can write F = G - H where G and H are (bounded) increasing functions and define $\mu_F = \mu_G - \mu_H$.

Math 7351 5. Product Measures Spring 2005

Theorem (Weak Monotone Convergence Theorem) Suppose (X, \mathcal{A}, μ) is a measure space and $A, A_i \in \mathcal{A}, c, c_i \geq 0$. If $c\mu(A) > \sum_{i=1}^{\infty} c_i\mu(A_i)$ then $\exists x \in A : c > \sum_{i: x \in A_i} c_i$.

Proof. Pick $\gamma < c$ and $\alpha < \mu(A)$ so that $\gamma \alpha > \sum_{i=1}^{\infty} c_i \mu(A_i)$. Let $S_n = \{x \in A : \sum_{i \leq n, x \in A_i} c_i > \gamma\}$. Then S_n is a union of intersections of the sets A_1, \ldots, A_n , so is measurable. If $\bigcup S_n = A$ then $\mu(S_n) \to \mu(A)$, so $\exists N : \mu(S_N) > \alpha$. Let I_1, \ldots, I_M be disjoint elements of \mathcal{A} such that each $A_i, i \leq N$, and A can be written as a union of some of the I_s . Then S_N is a disjoint union of some of the I_s and

$$\sum_{i=1}^{\infty} c_i \mu(A_i) \ge \sum_{i=1}^{N} \sum_{I_s \subseteq A_i} c_i \mu(I_s) = \sum_{I_s} \sum_{i \le N, I_s \subseteq A_i} c_i \mu(I_s) \ge \sum_{I_s \subseteq S_N} \gamma \mu(I_s) > \gamma \alpha,$$

a contradiction. Hence $\bigcup S_n \neq A$ and there is an $x \in A$ with $c > \gamma \ge \sum_{i: x \in A_i} c_i$. \Box

Theorem If (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) are measure spaces then there is a measure $\mu \times \nu$ on the σ -algebra $\mathcal{A} \otimes \mathcal{B}$ generated by $\mathcal{A} \times \mathcal{B}$ with $(\mu \times \nu)(A \times B) = \mu(A)\nu(B)$ for all $A \in \mathcal{A}$, $B \in \mathcal{B}$. Moreover, if μ and ν are both σ -finite then this measure is unique and σ -finite.

Proof. Let $\mathcal{I} = \{A \times B : A \in \mathcal{A}, B \in \mathcal{B}\}$ and let $l(A \times B) = \mu(A)\nu(B)$. Now $(A \times B) \cap (A' \times B') = (A \cap A') \times (B \cap B')$ and $(A \times B) \setminus (A' \times B')$ is the disjoint union of $(A \setminus A') \times B$ and $A' \times (B \setminus B')$. Hence the measurable rectangles form a semiring.

Suppose $A \times B = \bigcup_{i=1}^{\infty} (A_i \times B_i)$ is a disjoint union. Let $c = \nu(B)$, $c_i = \nu(B_i)$, then for all $x, B = \bigcup_{i: x \in A_i} B_i$, so $c \leq \sum_{i: x \in A_i} c_i$. By WMCT, $l(A \times B) = c\mu(A) \leq \sum c_i\mu(A_i) = \sum l(A_i \times B_i)$. Now fix N and construct disjoint I_1, \ldots, I_M so that each $A_i, i \leq N$, is a union of some of the I_s .

$$\sum_{i=1}^{N} \mu(A_i)\nu(B_i) \leq \sum_{i \leq N} \sum_{I_s \subseteq A_i} \mu(I_s)\nu(B_i) \leq \sum_{I_s \subseteq A} \mu(I_s) \sum_{i \leq N, I_s \subseteq A_i} \nu(B_i) \leq \sum_{I_s \subseteq A} \mu(I_s)\nu(B) \leq \mu(A)\nu(B).$$

Letting $N \to \infty$ gives $\sum l(A_i \times B_i) \le l(A \times B)$. Thus l is a measure and the result follows from Carathéodory.

Define $\mu \times \nu$ to be the completion of $\mu \times \nu$, with σ -algebra $\mathcal{A} \otimes \mathcal{B}$. If $E \subseteq X \times Y$, define the section of E at x to be $E_x = \{y : (x, y) \in E\}$. We say a property holds μ -a.e. if the set of points where it fails has μ -measure zero.

Lemma If E is $\mu \times \nu$ -measurable, then E_x is ν -measurable for all $x \in X$.

Proof. The set $\{E \subseteq X \times Y : E_x \text{ is } \nu\text{-measurable for all } x\}$ is a σ -algebra and contains all measurable rectangles $A \times B$, so contains $\mathcal{A} \otimes \mathcal{B}$.

Note that this is not true for $\mu \times \nu$ measurable sets. E.g., if S is a non Lebesgue measurable set in \mathbb{R} then $E = \{x\} \times S \subseteq \{x\} \times \mathbb{R}$ is a subset of a set of measure zero, so is $\lambda \lambda$ -measurable, but E_x is not measurable.

Math 7351 6. Infinite Products Spring 2005

Suppose $(X_i, \mathcal{A}_i, \mu_i)$, i = 1, 2, ... are measure spaces with $\mu_i(X_i) = 1$, we shall construct a measure on $X = \prod X_i$.

Definition A cylinder set is a set of the form $A = \prod A_i$ where $A_i \in A_i$ and $A_i = X_i$ for all but finitely many *i*.

Theorem There exists a unique probability measure on the σ -algebra generated by cylinder sets of $X = \prod X_i$ in which each cylinder set $\prod A_i$ gets measure $\prod \mu_i(A_i)$.

Note: $\prod \mu_i(A_i)$ is really a finite product since $\mu_i(A_i) = 1$ for all but finitely many *i*'s.

Proof. For each N and each cylinder set $A = \prod A_i$, define $A^{(N)} = \prod_{i>N} A_i$ and $A_{(N)} = \prod_{i\leq N} A_i$, so that one can regard A as a product $A_{(N)} \times A^{(N)}$. Since A is a cylinder set, $A^{(N)} = X^{(N)}$ for sufficiently large N. Define $l(A) = \prod \mu_i(A_i)$, and more generally $l(A^{(N)}) = \prod_{i>N} \mu_i(A_i)$. By the existence of finite product measures, there are measures $\mu_{(N)}$ on X with $\mu_{(N)}(A) = l(A)$ for all cylinder sets with $A^{(N)} = X^{(N)}$.

Suppose A and A_i are cylinder sets with A a disjoint union of the A_i . Now $A \supseteq \bigcup_{i=1}^n A_i$, and for sufficiently large N, $A^{(N)} = A_1^{(N)} = \cdots = A_n^{(N)} = X^{(N)}$. Thus $l(A) = \mu_{(N)}(A) \ge \sum_{i=1}^n \mu_{(N)}(A_i) = \sum_{i=1}^n l(A_i)$. Letting $n \to \infty$, $l(A) \ge \sum_{i=1}^\infty l(A_i)$.

Suppose $l(A) > \sum_{i=1}^{\infty} l(A_i)$. We shall construct a point $x = (x_1, x_2, ...) \in A$ that is not in any A_i . Assume we have defined $x_1, ..., x_{N-1}$ and let $X_{N-1} = \{x_1\} \times \cdots \times \{x_{N-1}\} \times X^{(N-1)}$ be the set of all points in X with first N-1 components equal to x_i . Assume that $X_{N-1} \cap A \neq \emptyset$ and

$$l(A^{(N-1)}) > \sum_{i:X_{N-1}\cap A_i \neq \emptyset} l(A_i^{(N-1)}).$$

Since $X_0 = X$, this holds for N = 1. Write $c = l(A^{(N)})$ and $c_i = l(A_i^{(N)})$. Then $l(A^{(N-1)}) = c\mu_N((A_i)_N)$ and $l(A_i^{(N-1)}) = c_i\mu_N((A_i)_N)$. Thus by the WMCT there exists an $x_N \in (A)_N$ (so $X_N \cap A \neq \emptyset$) with

$$l(A^{(N)}) = c > \sum_{i:X_{N-1} \cap A_i \neq \emptyset, x_N \in (A_i)_N} c_i = \sum_{i:X_N \cap A_i \neq \emptyset} l(A^{(N)}).$$

Now fix *i*. If $(x_1, \ldots) \in A_i$ then for sufficiently large N, $l(A_i^{(N)}) = 1 \ge l(A^{(N)})$, a contradiction. But for large enough N, $A^{(N)} = X^{(N)}$, so $(x_1, \ldots) \in X_N \subseteq A$. Thus $A \neq \bigcup A_i$, a contradiction. Hence l is a measure on \mathcal{I} . The result now follows from Carathéodory.

Surprisingly, the extension of this result to uncountable products is easy. Indeed, for any set A in the σ -algebra generated by cylinder sets, there is a countable I such that A is also in the σ -algebra generated by cylinder sets $\prod A_i$ with $A_i = X_i$ for $i \notin I$. Thus the measure need only be defined on countable products.

Math 7351 7. Measurable Functions Spring 2005

Definition A function $f: (X, \mathcal{A}) \to (Y, \mathcal{B})$ between measurable spaces is called *measurable* if for all $B \in \mathcal{B}$, $f^{-1}[B] \in \mathcal{A}$.

Definition A function $f: (X, \mathcal{A}) \to \mathbb{R}^*$ is measurable iff it is measurable with respect to the Borel σ -algebra on \mathbb{R}^* .

Note: we do not in general use complete measures on Y since this may make many 'nice' functions non-measurable. In particular, if we use Lebesgue measurable sets then there exist continuous functions that are not measurable: Take two Cantor-like sets with $\lambda(C_1) > 0 = \lambda(C_2)$ and construct a continuous bijection $f: [0, 1] \to [0, 1], f[C_1] = C_2$, by making it map each interval of $[0, 1] \setminus C_1$ linearly onto the corresponding interval of $[0, 1] \setminus C_2$. Then any non-measurable subset $E \subseteq C_1$ is the inverse image of the measurable set $f(E) \subseteq C_2$.

Since $\{B : f^{-1}[B] \in \mathcal{A}\}$ is a σ -algebra on Y, it is enough to check the condition on any set of B's that generate \mathcal{B} as a σ -algebra. In particular, $f : X \to \mathbb{R}^*$ is measurable iff $f^{-1}[(a, \infty)]$ is measurable for all $a \in \mathbb{R}$, or even just all $a \in \mathbb{Q}$.

Lemma 1. For functions (X, \mathcal{A}) to \mathbb{R}^*

- 1. If $(X, \mathcal{A}) = (\mathbb{R}, \mathcal{B})$ or $(\mathbb{R}, \mathcal{L})$, then any continuous function is measurable.
- 2. The characteristic function χ_S is measurable iff $S \in \mathcal{A}$.
- 3. If f_n are measurable then $\sup_n f_n$, $\inf_n f_n$, $\overline{\lim} f_n$, and $\underline{\lim} f_n$ are measurable.
- 4. If f, g are measurable then f + g, f g, fg and f/g are measurable as functions on the set where they are defined. The set where they are defined is also measurable.

Definition A simple function is a measurable function $\phi: X \to \mathbb{R}$ such that $\phi[X]$ is finite. Equivalently $\phi = \sum_{i=1}^{n} a_i \chi_{S_i}$ where S_i are measurable subsets of $X, a_i \in \mathbb{R}$, and χ_S is the characteristic function of S. We may choose the S_i to be disjoint.

Lemma 2. If $f: X \to [0, \infty]$ is measurable, then there exists an increasing sequence of simple functions $0 \le \phi_1 \le \phi_2 \le \ldots$ with $\phi_n \to f$ pointwise.

Lemma 3. If $f: X \to Y$ is any function and (Y, \mathcal{B}) is a measurable space, then $\sigma(f) = \{f^{-1}[B] : B \in \mathcal{B}\}$ is a σ -algebra on X.

We call $\sigma(f)$ the σ -algebra on X generated by f. The function $f: (X, \mathcal{A}) \to (Y, \mathcal{B})$ is measurable iff $\sigma(f) \subseteq \mathcal{A}$.

More generally, if f_1, f_2, \ldots are functions on X to a measurable space, $\sigma(f_1, f_2, \ldots)$ is the σ -algebra generated by all the $\sigma(f_i)$'s and is the smallest σ -algebra on X making all the f_i measurable.

Example The (uncompleted) σ -algebra defined on a product space (finite or infinite) is just $\sigma(\pi_1, \pi_2, ...)$ where π_i is the projection map onto the *i*'th coordinate.

Math 7351 8. Integration Spring 2005

Lemma If $f: X \to [0, \infty]$ is a measurable function, then the shadow of $f, S(f) = \{(x, y) : 0 \le y < f(x)\}$ is a $(\mu \times \lambda)$ -measurable subset of $X \times \mathbb{R}$.

Proof. Clear for simple functions, and $S(f) = \bigcup S(\phi_n)$ where $\phi_1 \leq \phi_2 \leq \ldots, \phi_n \to f$. \Box

Definition If $f: X \to [0, \infty]$ is measurable, the *integral* of f is $\int f d\mu = (\mu \times \lambda)(S(f))$. If $f: X \to \mathbb{R}^*$ is measurable and $\int |f| d\mu < \infty$ then we say f is *integrable* and define $\int f d\mu = \int f_+ d\mu - \int f_- d\mu$ where $f_+(x) = \max\{f(x), 0\}, f_-(x) = \max\{-f(x), 0\}$.

Clearly $\int \phi d\mu = \sum_{i=1}^{n} a_i \mu(S_i)$ for any simple non-negative $\phi = \sum_{i=1}^{n} a_i \chi_{S_i}$.

Theorem (Monotone Convergence Theorem) If $0 \le f_1 \le f_2 \le ...$ is an increasing sequence of non-negative measurable functions on X, then $\int \lim f_n d\mu = \lim \int f_n d\mu$

Proof. $S(f_1) \subseteq S(f_2) \subseteq \ldots$ and $S(f) = \bigcup S(f_n)$.

Corollary If $f: X \to [0, \infty]$ is measurable then $\int f d\mu = \sup_{\phi} \int \phi d\mu$ where the supremum is taken over simple ϕ with $0 \le \phi \le f$.

Proof.
$$S(\phi) \subseteq S(f)$$
, so $\int \phi \leq \int f$, and if $0 \leq \phi_1 \leq \ldots, \phi_n \to f$, then $\int \phi_n \to \int f$. \Box

Note, this gives an alternative definition of the integral, and shows that it does not depend on the choice of $\mu \times \lambda$ when μ is not σ -finite.

Theorem Suppose $f, g: X \to [0, \infty]$ are measurable, (resp. $f, g: X \to \mathbb{R}^*$ integrable).

- 1. If $f \leq g$ then $\int f d\mu \leq \int g d\mu$
- 2. If $c \geq 0$ (resp. $c \in \mathbb{R}$) then $\int cf d\mu = c \int f d\mu$
- 3. $\int (f+g) d\mu = \int f d\mu + \int g d\mu$
- 4. If $f \ge 0$ then $\int f d\mu = 0$ iff f = 0 a.e.

Proof. For 2 and 3 with $f, g \ge 0$ prove it first with simple functions and take limits. For $4, \Rightarrow, \int f d\mu \ge \frac{1}{N} \mu \{x : f(x) > \frac{1}{N}\}$ and $\{x : f(x) > 0\} = \bigcup \{x : f(x) > \frac{1}{N}\}$. \Box

Theorem (Fatou's Lemma) If $f_i \ge 0$ are non-negative measurable functions then $\int \underline{\lim} f_n d\mu \le \underline{\lim} \int f_n d\mu$.

Proof. If $g_n = \inf_{r \ge n} f_r$ then g_n is increasing and $\int \underline{\lim} f_n d\mu = \int \lim g_n d\mu = \lim \int g_n d\mu \le \lim_n \inf_{r \ge n} \int f_r d\mu = \underline{\lim} \int f_n d\mu$.

Theorem (Dominated Convergence Theorem) If g is integrable and $|f_n| \leq g$ and f_n converges pointwise then $\int \lim f_n = \lim \int f_n$.

Proof. Apply Fatou to $g - f_n$ and $g + f_n$.

Math 7351 9. Fubini-Tonelli Spring 2005

Definition A collection \mathcal{M} of subsets of X is a monotone class if whenever $A_1 \subseteq A_2 \subseteq \ldots$, $A_i \in \mathcal{M}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{M}$ and whenever $A_1 \supseteq A_2 \supseteq \ldots$, $A_i \in \mathcal{M}$, then $\bigcap_{i=1}^{\infty} A_i \in \mathcal{M}$.

Lemma 1. If \mathcal{A} is an algebra, then the smallest monotone class \mathcal{M} containing \mathcal{A} is equal to the σ -algebra $\sigma(\mathcal{A})$ generated by \mathcal{A} .

Proof. The intersection of all monotone classes $\supseteq \mathcal{A}$ is a monotone class, so \mathcal{M} exists. Let $\mathcal{M}(A) = \{B \subseteq X : A \cup B, A \setminus B, B \setminus A \in \mathcal{M}\}$. Then $\mathcal{M}(A)$ is a monotone class. If $A \in \mathcal{A}$ then $\mathcal{A} \subseteq \mathcal{M}(A)$, so $\mathcal{M} \subseteq \mathcal{M}(A)$. But then (reversing the roles of A and B), if $A \in \mathcal{M}$ then $\mathcal{A} \subseteq \mathcal{M}(A)$, so $\mathcal{M} \subseteq \mathcal{M}(A)$. But then \mathcal{M} is closed under finite unions and differences, so is a ring. If $A_i \in \mathcal{M}$, then $\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} (\bigcup_{i=1}^n A_i) \in \mathcal{M}$ and as $X \in \mathcal{A} \subseteq \mathcal{M}, \mathcal{M}$ is a σ -algebra. Thus $\sigma(\mathcal{A}) \subseteq \mathcal{M}$, but $\sigma(\mathcal{A})$ is a monotone class, so $\sigma(\mathcal{A}) = \mathcal{M}$.

Lemma 2. Suppose (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) are σ -finite measure spaces. If E is a $\mu \times \nu$ -measurable set and $g(x) = \nu(E_x)$, then g exists, is μ -measurable, and $\mu \times \nu(E) = \int g d\mu$.

Proof. First assume μ and ν are finite. Consider $\mathcal{M} = \{E \subseteq X \times Y : g(x) = \nu(E_x) \text{ exists},$ is measurable, and $\mu \times \nu(E) = \int g \, d\mu \}$. Then \mathcal{M} contains all measurable rectangles, and is closed under finite disjoint unions, so contains the algebra generated by measurable rectangles. But \mathcal{M} is a monotone class (use the fact that μ and ν are finite, and the DCT for $\int g \, d\mu$). Thus $\mathcal{M} \supseteq \mathcal{A} \otimes \mathcal{B}$. For σ -finite μ and ν , write $X \times Y$ as a union of increasing finite rectangles $X_i \times Y_i$, prove the result for $E \cap (X_i \times Y_i)$ and take limits. \Box

Corollary 3. If (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) are complete σ -finite measure spaces, E is $\mu \times \nu$ -measurable, and $g(x) = \nu(E_x)$, then g exists μ -a.e., is μ -measurable, and $\mu \times \nu(E) = \int g d\mu$.

Proof. If E is $\mu \times \nu$ -measurable and $\mu \times \nu(E) = 0$ then by Lemma 2, $\int g d\mu = 0$, so g = 0 a.e.. Thus if E is a subset of a set of $\mu \times \nu$ -measure zero then g = 0 a.e., and the result holds. Writing E as a union of a $\mu \times \nu$ -measurable set and a subset of a set with $\mu \times \nu$ -measure zero gives the result.

Theorem (Fubini-Tonelli) If (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) are σ -finite measure spaces and $f: X \times Y \to \mathbb{R}^*$ is non-negative and $\mu \times \nu$ -measurable, then $f(x, .): Y \to \mathbb{R}^*$ is ν -measurable for all $x \in X$, $g(x) = \int f(x, y) d\nu$ is μ -measurable and $\int f(x, y) d(\mu \times \nu) = \iint f(x, y) d\nu d\mu$. Similarly, if f is $\mu \times \nu$ -integrable, then f(x, .) is ν -integrable for μ -a.e. $x \in X$, $g(x) = \int f(x, y) d\nu$ is μ -integrable and $\int f(x, y) d(\mu \times \nu) = \iint f(x, y) d\nu d\mu$.

Proof. Lemma 2 shows that this holds when $f = \chi_E$. Thus by linearity it holds for simple functions, and MCT implies it holds for all non-negative measurable f. For integrable f, apply result to f^{\pm} , |f|, and use $\iint |f| d\nu d\mu < \infty$ to show f(x, .) is ν -integrable μ -a.e.. \Box

A corresponding result holds for $\mu \times \nu$ provided μ and ν are complete and we replace 'all $x \in X$ ' with ' μ -a.e. $x \in X$ '.

Example $\int_0^\infty \int_0^\infty \frac{x^2 - y^2}{(x^2 + y^2 + 1)^2} \, dx \, dy \neq \int_0^\infty \int_0^\infty \frac{x^2 - y^2}{(x^2 + y^2 + 1)^2} \, dy \, dx.$

Math 7351 10. Radon-Nikodym Spring 2005

Definition If μ and ν are two signed measures on a measurable space (X, \mathcal{A}) then we say ν is absolutely continuous with respect to μ , $\nu \ll \mu$, iff every μ -null set is ν -null. We say ν is singular with respect to μ , $\nu \perp \mu$, if they are mutually singular, i.e., ν is supported on a μ -null set.

Theorem (Radon-Nikodym) Let μ and ν be (positive) measures on the same measurable space (X, \mathcal{A}) , with $\nu \ll \mu$ and $\mu \sigma$ -finite. Then there exists a measurable function $f: X \to [0, \infty]$ such that $\nu(A) = \int_A f d\mu$ for all $A \in \mathcal{A}$. Moreover if f and g are two such functions then $f = g \mu$ -a.e..

Proof. Assume first that μ is finite. Then for all $\alpha \in \mathbb{Q}$, $\alpha \ge 0$, $\nu - \alpha \mu$ is a signed measure. Let $X = X_{\alpha}^+ \cup X_{\alpha}^-$ be a corresponding Hahn decomposition. We may assume $X_0^+ = X$. Note that X_{α}^{\pm} may not be monotonic in α due to the non-uniqueness of the decompositions. Nevertheless, if $\alpha > \beta$ and $E = X_{\alpha}^+ \setminus X_{\beta}^+$, then $\alpha \mu(E) \le \nu(E) \le \beta \mu(E)$, so $\mu(E) = 0$, Define $f(x) = \sup\{\alpha \in \mathbb{Q} : x \in X_{\alpha}^+\} \in [0, \infty]$. Then $\{x : f(x) > a\} = \bigcup_{\alpha > a} X_{\alpha}^+$ is measurable, so f is a measurable function.

Fix a measurable E, and N > 0, and let $E_i = E \cap f^{-1}[[\frac{i}{N}, \frac{i+1}{N})]$. Then $E_i \subseteq X^-_{(i+1)/N}$, so $\nu(E_i) \leq \frac{i+1}{N}\mu(E_i)$. Also $E_i \subseteq X^+_{\beta} \cup \bigcup_{\alpha > \beta} (X^+_{\alpha} \setminus X^+_{\beta})$ for all $\beta < \frac{i}{N}$. Thus $\nu(E_i) \geq \nu(E_i \cap X^+_{\beta}) \geq \beta\mu(E_i \cap X^+_{\beta}) = \beta\mu(E_i)$. Thus $\nu(E_i) \geq \frac{i}{N}\mu(E_i)$. But $\frac{i}{N} \leq f \leq \frac{i+1}{N}$ on E_i , so $\frac{i}{N}\mu(E_i) \leq \int_{E_i} f d\mu \leq \frac{i+1}{N}\mu(E_i)$. Thus

$$-\frac{1}{N}\mu(E_i) \le \nu(E_i) - \int_{E_i} f \, d\mu < \frac{1}{N}\mu(E_i).$$

If we let $E_{\infty} = E \cap f^{-1}[\{\infty\}]$ then $E \setminus E_{\infty} = \bigcup E_i$ is a disjoint union. Thus by MCT and countable additivity of ν and μ ,

$$-\frac{1}{N}\mu(E \setminus E_{\infty}) \le \nu(E \setminus E_{\infty}) - \int_{E \setminus E_{\infty}} f \, d\mu \le \frac{1}{N}\mu(E \setminus E_{\infty}).$$

Since this holds for all N and $\mu(E) < \infty$, $\nu(E \setminus E_{\infty}) = \int_{E \setminus E_{\infty}} f \, d\mu$. Finally, if $\mu(E_{\infty}) > 0$ then $\nu(E_{\infty}) > \alpha \mu(E_{\infty})$ for arbitrarily large α 's, so $\nu(E_{\infty}) = \int_{E_{\infty}} f \, d\mu = \infty$. On the other hand, if $\mu(E_{\infty}) = 0$ then $\nu(E_{\infty}) = 0$ since $\nu \ll \mu$, and $\nu(E_{\infty}) = \int_{E_{\infty}} f \, d\mu = 0$. Thus by addition $\nu(E) = \int_{E} f \, d\mu$.

For σ -finite μ , write $X = \bigcup X_i$ with $\mu(X_i) < \infty$ and disjoint. We can define f_i on X_i by $\nu(A \cap X_i) = \int_{A \cap X_i} f_i d\mu$. Now let $f = \sum f_i \chi_{X_i}$ and use MCT. For uniqueness, let $E = \{x : f(x) - g(x) > \frac{1}{n} \text{ and } g(x) < n\} \cap X_i$. Then $\nu(E) = \int f d\mu \ge \frac{1}{n}\mu(E) + \int g d\mu = \nu(E)$, which implies $\mu(E) = 0$ (note that $\int g d\mu < \infty$). Taking unions over all n and i we get $\mu(\{x : f(x) > g(x)\}) = 0$ and similarly $\mu(\{x : f(x) < g(x)\}) = 0$. Thus $f = g \mu$ -a.e.. \Box

Definition We define a *Radon-Nikodym derivative of* ν *with respect to* μ , $\frac{d\nu}{d\mu}$, to be this f. Note that it is only defined up to equality μ -a.e..

Note that if f is any non-negative measurable function then $\nu(E) = \int_E f d\mu$ defines a measure with $\nu \ll \mu$ and Radon-Nikodym derivative $\frac{d\nu}{d\mu} = f \mu$ -a.e..

Corollary (Lebesgue Decomposition) If (X, \mathcal{A}, μ) is a σ -finite measure space, then any σ -finite measure ν on (X, \mathcal{A}) can be written in the form $\nu = \nu_c + \nu_s$ where $\nu_c \ll \mu$ and $\nu_s \perp \mu$.

Proof. Let $\psi = \nu + \mu$, then ψ is σ -finite and $\mu \ll \psi$. Write $\mu(E) = \int_E f \, d\psi$ and let $X = A \cup B$ where $A = \{x : f(x) > 0\}$ and $B = \{x : f(x) = 0\}$. Define $\nu_c(E) = \nu(E \cap A)$ and $\nu_s(E) = \nu(E \cap B)$. Then $\nu = \nu_c + \nu_s$, ν_s is supported on B and $\mu(B) = 0$, so $\nu_s \perp \mu$. If $\mu(E) = 0$ then $\psi(E \cap A) = 0$, so $\nu_c(E) = \nu(E \cap A) \leq \psi(E \cap A) = 0$, and $\nu_c \ll \mu$. \Box

Recall the Lebesgue-Stieltjes measure on $(\mathbb{R}, \mathcal{B})$ given by $\mu_F((a, b]) = F(b) - F(a)$ for some increasing right-continuous function F. We generally denote the integral with respect to μ_F by $\int f(x) dF$.

Theorem The Lebesgue-Stieltjes measure μ_F is absolutely continuous with respect to Lebesgue measure λ iff F is an absolutely continuous function. In this case $\frac{d\mu_F}{d\lambda} = F'$ λ -a.e..

Proof. If $\mu_F \ll \lambda$ then by Radon-Nikodym, $F(b) - F(a) = \mu_F((a, b]) = \int_{(a, b]} \frac{d\mu_F}{d\lambda} d\lambda$. But then $F(x) = F(a) + \int_a^x \frac{d\mu_F}{d\lambda}(t) dt$ and $\frac{d\mu_F}{d\lambda}(t) \ge 0$ is measurable, so F(x) is absolutely continuous. Conversely, suppose F is absolutely continuous, then F' exists a.e., and $F(b) - F(a) = \int_a^b F'(x) dx$. Define $\mu(E) = \int_E F'(x) dx$. Then μ is a measure on $(\mathbb{R}, \mathcal{B})$ and $\mu((a, b]) = \mu_F((a, b])$. Let $\mathcal{M} = \{E \subseteq (n, n+1] : \mu(E) = \mu_F(E)\}$. Then \mathcal{M} is a monotone class (using $\mu_F((n, n+1]) < \infty$ for decreasing limits). But \mathcal{M} also contains (a, b] for $n \le a < b \le n+1$ and is closed under finite disjoint unions, so contains the algebra on (n, n+1] generated by half-open intervals. Thus \mathcal{M} contains all Borel sets in (n, n+1]. Finally, for arbitrary $E \in \mathcal{B}, \mu_F(E) = \sum_n \mu_F(E \cap (n, n+1]) = \sum_n \mu(E \cap (n, n+1]) = \mu(E)$, so $\mu = \mu_F$. But then $\mu_F(E) = \int_E F'(x) dx$, so if $\lambda(E) = 0$ then $\mu_F(E) = 0$, so $\mu_F \ll \lambda$. Finally, $F' = \frac{d\mu_F}{d\lambda} \lambda$ -a.e. by uniqueness of the Radon-Nikodym derivative.

- 1. If $\nu \ll \mu$, then $\int f \, d\nu = \int f \frac{d\nu}{d\mu} \, d\mu$.
- 2. If $\psi \ll \nu \ll \mu$, then $\frac{d\psi}{d\mu} = \frac{d\psi}{d\nu} \frac{d\nu}{d\mu} \mu$ -a.e.
- 3. If $\psi, \nu \ll \mu$, then $\frac{d(\psi+\nu)}{d\mu} = \frac{d\psi}{d\mu} + \frac{d\nu}{d\mu} \mu$ -a.e.
- 4. Extend the Radon-Nikodym theorem to the case when ν is a signed measure.

Math 7351 11. Probability Spring 2005

One can construct a model of probability using measure theory. The measure space (X, \mathcal{A}, μ) is usually denoted $(\Omega, \mathcal{A}, \mathbb{P})$, where Ω is the *sample space*, or the set of possible *outcomes*. The σ -algebra \mathcal{A} is the set of all *events*, and \mathbb{P} is a probability measure which assigns to each event $E \in \mathcal{A}$ a *probability* $\mathbb{P}(E) \in [0, 1]$. An event occurs *almost surely* or a.s., if $\mathbb{P}(E) = 1$, or equivalently $\mathbb{P}(\text{not } E) = 0$.

A random variable is a measurable function on Ω (usually to \mathbb{R} and usually denoted in upper case X, Y, \ldots , lower case variables typically denote constants). We write, for example, $\mathbb{P}(X > c)$ as a shorthand for $\mathbb{P}(\{\omega \in \Omega : X(\omega) > c\})$. The σ -algebra $\sigma(X) = \{X^{-1}[B] : B$ Borel} is the set of events that can be described in terms of the value of X as ' $X \in B$ '.

The expectation or mean of a random variable X is the integral of X, $\mathbb{E}(X) = \int X(\omega) d\mathbb{P}$. If we write 1_E for the characteristic function of the event E, then $\mathbb{P}(E) = \mathbb{E}(1_E)$. If $\mathbb{E}|X| < \infty$ then the variance of X is $\operatorname{Var}(X) = \mathbb{E}(X^2) - (\mathbb{E}X)^2 = \mathbb{E}((X - \mathbb{E}X)^2)$. Note that $\operatorname{Var}(X) \ge 0$ and may be $+\infty$ even if $\mathbb{E}|X| < \infty$.

Any real-valued random variable gives rise to a probability measure on $(\mathbb{R}, \mathcal{B})$ by setting $\mu(B) = \mathbb{P}(X \in B)$ for any Borel set B. The *cumulative distribution function* of a random variable is the function $F(c) = \mathbb{P}(X \leq c)$. The measure μ is just the Lebesgue-Stieltjes measure corresponding to F. If F is absolutely continuous, then f = F' is called the *probability density function* of X, and is just the Radon-Nikodym derivative $\frac{d\mu}{d\lambda}$. Note that $\mathbb{E}X = \int x \, dF = \int x f(x) \, dx$ when defined.

If \mathcal{A}_1 and \mathcal{A}_2 are two sub- σ -algebras of \mathcal{A} , we say \mathcal{A}_1 and \mathcal{A}_2 are *independent* if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$ for all $A \in \mathcal{A}_1$, $B \in \mathcal{A}_2$. Two events A and B are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$, or equivalently the σ -algebras generated by $\{A\}$ and $\{B\}$ are independent. Two random variables X and Y are independent if $\sigma(X)$ and $\sigma(Y)$ are independent. In other words, any event describable in terms of X is independent of any event describable in terms of σ -algebras \mathcal{A}_i are independent if each \mathcal{A}_i is independent of the σ -algebra generated by all the others, and similarly for events and random variables. If one is given random variables X_i on different probability spaces $(\Omega_i, \mathcal{A}_i, \mathbb{P}_i)$, one can construct a probability space on which all the X_i are independent by taking the product space with the product measure.

Warning: Suppose X_1, \ldots, X_{n-1} are independent random variables that take the values 0 or 1 each with probability $\frac{1}{2}$. Let $X_n \in \{0, 1\}$ be the sum $X_1 + \cdots + X_{n-1} \mod 2$. Then any subset of the X_i 's of size < n are independent, but X_1, \ldots, X_n are not independent.

- 1. If X_1, X_2, \ldots are random variables with $\sum \mathbb{E}|X_i| < \infty$ then $\mathbb{E}(\sum X_i) = \sum \mathbb{E}(X_i)$.
- 2. If X_1, \ldots, X_n are *independent* random variables with $\mathbb{E}|X_i| < \infty$ then $\mathbb{E}(\prod_{i=1}^n X_i) = \prod_{i=1}^n \mathbb{E}(X_i)$ and $\operatorname{Var}(\sum X_i) = \sum \operatorname{Var}(X_i)$.
- 3. Tchebychev's Inequality: If $\mathbb{E}|X| < \infty$ and t > 0 then $\mathbb{P}(|X \mathbb{E}X| \ge t) \le \operatorname{Var}(X)/t^2$.

Theorem (Kolmogorov's 0–1 law) Suppose X_1, X_2, \ldots are independent random variables and E is a tail event, i.e., an event such that for all n, E only depends on the values of X_{n+1}, X_{n+2}, \ldots Then $\mathbb{P}(E) = 0$ or 1.

Proof. The set \mathcal{M} of all events that are independent of E is a monotone class: If $\mathbb{P}(E \cap A_i) = \mathbb{P}(E)\mathbb{P}(A_i)$ and $A_i \in \mathcal{M}$ is a monotonic sequence, then the limit $A = \bigcup A_i$ or $\bigcap A_i$ satisfies $\mathbb{P}(E \cap A) = \lim \mathbb{P}(E \cap A_i) = \mathbb{P}(E) \lim \mathbb{P}(A_i) = \mathbb{P}(E)\mathbb{P}(A)$, so $A \in \mathcal{M}$. Now $E \in \sigma(X_{n+1}, X_{n+2}, \ldots)$, so E is independent of $\sigma(X_1, \ldots, X_n)$. Thus $\mathcal{C} = \bigcup_n \sigma(X_1, \ldots, X_n) \subseteq \mathcal{M}$. But \mathcal{C} is an algebra (check this), so \mathcal{M} contains the σ -algebra generated by \mathcal{C} , which is just $\sigma(X_1, X_2, \ldots)$. But then $E \in \mathcal{M}$, so E is independent of E. But then $\mathbb{P}(E) = \mathbb{P}(E \cap E) = \mathbb{P}(E)\mathbb{P}(E)$, so $\mathbb{P}(E) = 0$ or 1.

Example Events such as ' $\overline{\lim} X_i \leq c$ ' and ' $\lim \frac{1}{n} \sum_{i=1}^n X_i = c$ ' are tail events.

Example Consider \mathbb{Z}^2 and join neighboring (horizontally or vertically adjacent) points independently with probability p. Then the probability that there is an infinite connected subset of \mathbb{Z}^2 is either 0 or 1. (In fact it is 1 for p > 0.5 and 0 for $p \leq 0.5$, but this is very much harder to prove).

Conditional Expectation

In elementary probability theory, one defines the conditional probability of A given B as $\mathbb{P}(A \mid B) = \mathbb{P}(A \cap B)/\mathbb{P}(B)$. This works as long as $\mathbb{P}(B) > 0$. But there are many instances when we would like to apply conditional probability when $\mathbb{P}(B) = 0$. More specifically, if Z is a random variable, we would like to define $\mathbb{P}(A \mid Z = z)$ as a function $\phi(z)$ even when $\mathbb{P}(Z = z) = 0$. If we consider $\mathbb{P}(A \mid Z) = \phi(Z)$, then what we are asking for is a new random variable that depends only on the value of Z, i.e., is $\sigma(Z)$ -measurable.

We first define conditional expectation. Given a σ -algebra $\mathcal{A}_0 \subseteq \mathcal{A}$ and an integrable random variable X ($\mathbb{E}|X| < \infty$), define for $A \in \mathcal{A}_0$, $\mu(A) = \mathbb{E}(I_A X)$. Then μ is a signed measure on (Ω, \mathcal{A}_0) . Also, $\mu \ll \mathbb{P}$, so by the Radon-Nikodym theorem, there exists an \mathcal{A}_0 -measurable Y such that $\mathbb{E}(I_A X) = \mathbb{E}(I_A Y)$ for all $A \in \mathcal{A}_0$. This random variable Yis denoted $\mathbb{E}(X \mid \mathcal{A}_0)$ and is called the *conditional expectation of* X given \mathcal{A}_0 . It is only defined up to equality a.s.. We define, for example, $\mathbb{E}(X \mid Y, Z)$ to be $\mathbb{E}(X \mid \sigma(Y, Z))$. Conditional probability is defined by, for example, $\mathbb{P}(E \mid \mathcal{A}_0) = \mathbb{E}(1_E \mid \mathcal{A}_0)$.

Lemma Assuming all relevant quantities are defined,

- 1. $\mathbb{E}(X \mid Y) = \phi(Y)$ a.s. for some Borel measurable $\phi \colon \mathbb{R} \to \mathbb{R}$,
- 2. if X and \mathcal{A}_0 are independent then $\mathbb{E}(X \mid \mathcal{A}_0) = \mathbb{E}X$ a.s.,
- 3. if X is \mathcal{A}_0 -measurable then $\mathbb{E}(XY \mid \mathcal{A}_0) = X \mathbb{E}(Y \mid \mathcal{A}_0)$ a.s.,
- 4. if $\mathcal{A}_1 \subseteq \mathcal{A}_0 \subseteq \mathcal{A}$ then $\mathbb{E}(X \mid \mathcal{A}_1) = \mathbb{E}(\mathbb{E}(X \mid \mathcal{A}_0) \mid \mathcal{A}_1)$ a.s., in particular $\mathbb{E}(X) = \mathbb{E}(\mathbb{E}(X \mid \mathcal{A}_0)).$

Math 7351 12. L_p spaces

Spring 2005

Suppose (X, \mathcal{A}, μ) is a measure space and $f: X \to \mathbb{R}^*$ is measurable. Define $||f||_p = (\int |f|^p d\mu)^{1/p}$ for $1 \le p < \infty$ and $||f||_{\infty} = \operatorname{ess\,sup} |f| = \inf\{c: \mu\{x: |f(x)| > c\} = 0\}.$

Lemma $f = g \ a.e. \Rightarrow ||f||_p = ||g||_p \ and \ ||f||_p = 0 \ iff \ f = 0 \ a.e.$

Theorem (Minkowski) $||f + g||_p \le ||f||_p + ||g||_p$

$$Proof. \ |x|^p \text{ convex} \Rightarrow \left| \frac{\|f\|}{\|f\| + \|g\|} \frac{f}{\|f\|} + \frac{\|g\|}{\|f\| + \|g\|} \frac{g}{\|g\|} \right|^p \le \frac{\|f\|}{\|f\| + \|g\|} \left| \frac{f}{\|f\|} \right|^p + \frac{\|g\|}{\|f\| + \|g\|} \left| \frac{g}{\|g\|} \right|^p. \text{ Now } \int. \square$$

Define $L^p(X, \mathcal{A}, \mu)$ to be $\{f : ||f||_p < \infty\}/\sim$, where $f \sim g$ iff f = g a.e..

Lemma $L_p(X, \mathcal{A}, \mu)$ is a vector space, and $\|.\|_p$ induces a norm on $L^p(X, \mathcal{A}, \mu)$.

Theorem (Riesz-Fischer) $L^p(X, \mathcal{A}, \mu)$ is complete wrt $\|.\|_p$, so is a Banach space.

Proof. First show that L^p is complete iff $\sum ||f_n||_p < \infty \Rightarrow \sum f_n$ converges in L^p . Now $\sum ||f_n||_p < \infty$ gives $g(x) = \sum |f_n(x)| \in L^p$ by MCT, so $g < \infty$ a.e., and $f(x) = \sum f_n(x)$ converges a.e.. Apply DCT to show $||f - \sum_1^N f_n||_p \to 0$, (dominate with $|g|^p$). \Box

Theorem (Hölder) If $\frac{1}{p} + \frac{1}{q} = 1$, $f \in L^p$, $g \in L^q$ then $\int |fg| d\mu \leq ||f||_p ||g||_q$.

Proof. Use Young's inequality $ab \leq \frac{a^p}{p} + \frac{b^q}{q}$ with $a = \frac{|f|}{\|f\|_p}$, $b = \frac{|g|}{\|g\|_q}$. Now \int .

Lemma For $p < \infty$, simple L^p functions are dense in L^p .

Proof. Let $0 \le \phi_1 \le \phi_2 \le \cdots \Rightarrow |f|$, then $\psi_n = \phi_n \operatorname{sgn} f$ is simple, $\|\psi_n\|_p = \|\phi_n\|_p \le \|f\|_p$ and $\|f - \psi_n\|_p \to 0$ by DCT (dominate by $|f|^p$).

Lemma For $p < \infty$, the support supp $f = \{x : f(x) \neq 0\}$ of any $f \in L^p$ is σ -finite.

Proof. supp $f = \bigcup_n \{x : |f(x)| > \frac{1}{n}\}$, and $\mu\{x : |f(x)| > \frac{1}{n}\} \le \int (n|f|^p) = n^p ||f||_p^p < \infty$. \Box

Theorem (Riesz Representation Theorem) Let F be a bounded linear functional on $L^p(X, \mathcal{A}, \mu)$, $1 \leq p < \infty$ and suppose either p > 1 or (X, \mathcal{A}, μ) σ -finite. Then there is a unique function $g \in L^q(X, \mathcal{A}, \mu)$, $\frac{1}{p} + \frac{1}{q} = 1$, such that

$$F(f) = \int fg \quad \text{for all } f \in L^p(X, \mathcal{A}, \mu).$$

Moreover, for all such g, the above formula defines a linear functional with $||F|| = ||g||_q$. Proof. Assume first that μ is finite. Now $\chi_E \in L^p$ for any E. Define $\nu(E) = F(\chi_E) \in \mathbb{R}$. Claim 1: ν is a finite signed measure. Finite clear. If $E = \bigcup E_i$ is disjoint, then $\forall N \ge n_0$: $\mu(E \setminus F_N) < \varepsilon$ where $F_N = \bigcup_{i=1}^N E_i$, so $|\nu(E) - \sum_{1}^{N} \nu(E_i)| = |F(\chi_E - \sum_{i=1}^{N} \chi_{E_i})| = |F(\chi_{E \setminus F_N})| \le ||F|| ||\chi_{E \setminus F_N}||_p \le ||F|| \varepsilon^{1/p}$. Hence $\nu(E) = \sum_{1}^{\infty} \nu(E_i)$.

Claim 2: $\nu \ll \mu$. $\mu(E) = 0 \Rightarrow |\nu(A)| = |F(\chi_A)| \le ||F|| ||\chi_A||_p = 0$ for any $A \subseteq E$.

Now by the Radon-Nikodym theorem $F(\chi_E) = \nu(E) = \int_E g \, d\mu = \int \chi_E g \, d\mu$. So by linearity, $F(\phi) = \int \phi g \, d\mu$ for any simple function ϕ .

Claim 3: $||g||_q \leq ||F||$, in particular $g \in L^q$.

Let $0 \le \phi_1 \le \phi_2 \le \dots \to |g|^{q/p}$. Then $\|\phi_n\|_p^p = \int \phi_n^p = \int \phi_n^{p/q+1} \le \int |g|\phi_n = F(\phi_n \operatorname{sgn} g) \le \|F\| \|\phi_n\|_p$. Hence $\|\phi_n\|_p^{p-1} \le \|F\|$, and so $\int \phi_n^p \le \|F\|^{p/(p-1)} = \|F\|^q$. But $\int \phi_n^p \to \int |g|^q$ by MCT, so $\|g\|_q \le \|F\|$. For $q = \infty$ let $E = \{x : |g(x)| > c\}$, then $c\mu(E) \le \int_E |g| = F(\chi_E \operatorname{sgn} g) \le \|F\| \|\chi_E\|_1 = \|F\|\mu(E)$, so if $c > \|F\|$ then $\mu(E) = 0$.

Claim 4: $F(f) = \int fg$. Let $\phi_n \to f$ in L^p , then $|F(f) - \int fg| \leq |F(f) - F(\phi_n)| + |f(\phi_n) - \int \phi_n g| + |\int \phi_n g - \int fg| \leq |F|| ||f - \phi_n||_p + 0 + ||g||_q ||f - \phi_n||_p \to 0$, the last term by Hölder.

Claim 5: g is unique a.e. (even if μ not finite). Let g_1 and g_2 be two such g's. Then for $f \in L^p$, $\int f(g_1 - g_2) = 0$. For any E with $\mu(E) < \infty$, $f = \operatorname{sgn}(g_1 - g_2)\chi_E \in L^p$. Then $\int_E |g_1 - g_2| = 0$, so $g_1 = g_2$ a.e. on E. But $\{x : g_1(x) \neq 0 \text{ or } g_2(x) \neq 0\}$ is σ -finite, so $g_1 = g_2$ a.e.

Now assume μ is σ -finite. Write $X = \bigcup X_n$ with $X_1 \subseteq X_2 \subseteq \ldots$ and $\mu(X_n) < \infty$. By considering the finite measure $\mu_n(A) = \mu(A \cap X_n)$, we can define g_n by $F(f) = \int g_n f \, d\mu$ when supp $f \subseteq X_n$. W.l.o.g. $g_n(x) = 0$ for $x \notin X_n$ and $g_n(x) = g_m(x)$ for all $x \in X_n \cap X_m$ (by a.e. uniqueness of g_n). Note that $\|g_n\|_q \leq \|F\|_{L^p(X_n)} \leq \|F\|_{L^p(X)}$, so if $g(x) = \lim g_n(x)$ then $\|g\|_q \leq \|F\|$ by MCT. If $f \in L^p$ let $f_n = f\chi_{X_n}$. Then $|F(f) - \int gf| \leq |F(f) - F(f_n)| + |F(f_n) - \int g_n f| + |\int g_n f - \int gf| \leq \|F\| \|f - f_n\|_p + 0 + |\int g_n f - \int gf|$. But $f_n \to f$, so $\|f - f_n\|_p \to 0$ by DCT (dominate by |f|), and $\int g_n f \to \int gf$ by DCT (dominate by |gf| and use Hölder). Thus $F(f) = \int gf$ and $\|g\|_q \leq \|F\|$.

Now assume μ is arbitrary but p > 1, so $q < \infty$. For all σ -finite E, define g_E so that $F(f) = \int fg_E$ when $\operatorname{supp} f \subseteq E$. W.l.o.g. $g_E(x) = 0$ when $x \notin E$. Now $||g_E||_q \leq ||F||_{L^p(E)} \leq ||F||_{L^p(X)}$, and if $E \subseteq E'$ then $||g_E||_q \leq ||g_{E'}||$ since $g_E = g_{E'}$ a.e. on E. Thus we can choose an increasing sequence $E_1 \subseteq E_2 \subseteq \ldots$ with $||g_{E_i}||_q \to \sup_E ||g_E||_q$. Let $E = \bigcup E_i$ and suppose $f \in L^p$. If $F(f\chi_{X\setminus E}) \neq 0$ then since $\operatorname{supp} f$ is σ -finite, there exists an $F \subseteq X \setminus E$ with $\mu(F) < \infty$ and $F(f\chi_F) \neq 0$. Thus $||g_F||_q > 0$. But $||g_{E\cup F}||_q^q = ||g_E||_q^q + ||g_F||_q^q > ||g_E||_q^q$, a contradiction. Hence $F(f) = F(f\chi_E) = \int g_E f d\mu$ for all $f \in L^p$.

Finally, $|F(f)| = |\int fg| \le ||f||_p ||g||_q$, so $||F|| \le ||g||_q$, and thus $||F|| = ||g||_q$.

Math 7351 13. Hausdorff Dimension Spring 2005

Lemma 1. Let (X, d) be a metric space and μ^* an outer measure such that $\mu^*(A \cup B) = \mu^*(A) + \mu^*(B)$ when d(A, B) > 0. Then all Borel sets in X are μ^* -measurable.

Proof. We show closed sets are measurable. We need $\mu^*(E) \ge \mu^*(E \cap A) + \mu^*(E \setminus A)$ for any E and any closed A. W.l.o.g. $\mu^*(E) < \infty$. Since A is closed, $A = \{x : d(x, A) = 0\}$. Let $A_{\varepsilon} = \{x : d(x, A) < \varepsilon\}$. Let $R_n = \{x \in E : \frac{1}{n+1} < d(x, A) \le \frac{1}{n}\}$. Then $d(R_n, R_m) > 0$ when $|n - m| \ge 2$. Hence $\sum_{n=1}^N \mu^*(R_{2n}) = \mu^*(\bigcup_{n=1}^N R_{2n}) \le \mu^*(E) < \infty$, so $\sum_{n=1}^\infty \mu^*(R_{2n})$ converges. Similarly $\sum_{i=1}^\infty \mu^*(R_{2n+1})$ converges. Fix $\varepsilon > 0$. Then for some $N, \sum_{n=N}^\infty \mu^*(R_n) < \varepsilon$. But $E \setminus A = (E \setminus A_{1/N}) \cup \bigcup_{n=N}^\infty R_n$, so $\mu^*(E \setminus A) \le \mu^*(E \setminus A_N) + \varepsilon$ by countable subadditivity. Hence $\mu^*(E \cap A) + \mu^*(E \setminus A) \le \mu^*(E \cap A) + \mu^*(E \setminus A_{1/N}) + \varepsilon \le \mu^*(E) + \varepsilon$ since $d(E \cap A, E \setminus A_{1/N}) \ge \frac{1}{N}$. Now let $\varepsilon \to 0$. \Box

For $\alpha > 0$ define $m_{\alpha}^{(\varepsilon)}(A) = \inf \sum_{i=1}^{\infty} r_i^{\alpha}$ where the infimum is over all collections of balls $B_{r_i}(x_i)$ with $A \subseteq \bigcup_{i=1}^{\infty} B_{r_i}(x_i)$ and $r_i \leq \varepsilon$. Define $\mu^*(A) = \lim_{\varepsilon \to 0} m_{\alpha}^{(\varepsilon)}(A)$.

Lemma 2. For any metric space (X, d), μ^* exists, is an outer measure, and $\mu^*(A \cup B) = \mu^*(A) + \mu^*(B)$ when d(A, B) > 0.

Proof. First note that $m_{\alpha}^{(\varepsilon)}$ increases as ε decreases, so $\mu^* = \lim_{\varepsilon} m_{\alpha}^{(\varepsilon)} = \lim_{n} m_{\alpha}^{(1/n)}$ exists. The functions $m_{\alpha}^{(\varepsilon)}$ are monotonic and countably subadditive: if $A = \bigcup A_i$, choose $B_{r_{ij}}(x_{ij})$ so that $\sum_j r_{ij}^{\alpha} < m_{\alpha}^{(\varepsilon)} + \delta/2^i$. Then $m_{\alpha}^{(\varepsilon)}(A) \leq \sum_{ij} r_{ij}^{\alpha} = \sum m_{\alpha}^{(\varepsilon)}(A_i) + \delta$. Hence μ_{α}^* is monotonic and countably subadditive: $\mu^*(A) = \lim_{n} \mu_{\alpha}^{(1/n)}(A) \leq \overline{\lim_{n}} \sum_i \mu_{\alpha}^{(1/n)}(A_i) = \sum_i \lim_{\alpha} \mu_{\alpha}^{(1/n)}(A_i) = \sum_i \lim_{\alpha} \mu_{\alpha}^{(1/n)}(A_i) = \sum_i \mu^*(A_i)$ by discrete MCT. Finally, if $\varepsilon < d(A, B)/2$ then $m_{\alpha}^{(\varepsilon)}(A \cup B) = m_{\alpha}^{(\varepsilon)}(A) + m_{\alpha}^{(\varepsilon)}(B)$, so if d(A, B) > 0 then $\mu^*(A \cup B) = \mu^*(A) + \mu^*(B)$.

Definition The Borel measure μ_{α} that arises from μ_{α}^* is called the *Hausdorff measure* of dimension α . The *Hausdorff dimension* of a set A is dim $A = \sup\{\alpha : \mu_{\alpha}(A) > 0\}$.

Lemma 3. If $\alpha < \dim A$ then $\mu_{\alpha}(A) = \infty$.

Proof. If $\alpha < \beta$ then $m_{\beta}^{(\varepsilon)} \leq \varepsilon^{\beta-\alpha} m_{\alpha}^{(\varepsilon)}$. Thus if $\mu_{\beta}(A) > 0$ then $m_{\alpha}^{(\varepsilon)}(A) \geq \varepsilon^{\alpha-\beta} \mu_{\beta}(A) \to \infty$ as $\varepsilon \to 0$.

- 1. Show that μ_n is (up to a constant factor) the Lebesgue measure on \mathbb{R}^n .
- 2. Show that the Cantor set has Hausdorff dimension $\frac{\log 2}{\log 3}$.

Math 7351 14. Contents

Spring 2005

Definition Let \mathcal{K} be the set of compact subsets of a Hausdorff topological space X. A *content* on X is a function $\lambda \colon \mathcal{K} \to [0, \infty)$ which is

- 1. monotone: $K_1 \subseteq K_2 \Rightarrow \lambda(K_1) \leq \lambda(K_2);$
- 2. finitely additive: $K_1 \cap K_2 = \emptyset \Rightarrow \lambda(K_1 \cup K_2) = \lambda(K_1) + \lambda(K_2)$; and
- 3. finitely subadditive: $\lambda(K_1 \cup K_2) = \lambda(K_1) + \lambda(K_2)$ for any $K_1, K_2 \in \mathcal{K}$.

Lemma If X is Hausdorff and A and B are disjoint compact sets then there exist disjoint open sets $U \supseteq A$ and $V \supseteq B$.

Proof. Fix $x \in A$. Then for all $y \in B$, there exists disjoint open U_y , V_y with $x \in U_y$, $y \in V_y$. The V_y cover B, so a finite collection V_{y_i} do. Then $U = \bigcap U_{y_i}$ and $V = \bigcup V_{y_i}$ are disjoint open sets with $x \in U$ and $B \subseteq V$. Now repeat this process with each x to get such sets $U^{(x)}$ and $V^{(x)}$. Since the $U^{(x)}$ cover A, a finite subcollection do. Then $U = \bigcup U^{(x_i)}$ and $V = \bigcap V^{(x_i)}$ are as required.

Lemma A content λ gives rise to a measure μ on $(X, \sigma(\mathcal{K}))$ with $\mu(\mathring{K}) \leq \lambda(K) \leq \mu(K)$.

Proof.

Define the *inner content* of an open set U by $\lambda_*(U) = \sup_{K \subseteq U} \lambda(K)$.

Define for any set A, $\mu^*(A) = \inf_{U \supseteq A} \lambda_*(U)$.

Use K, K_i etc., to denote compact sets and U, U_i , etc., to denote open sets.

Both λ_* and μ^* are clearly monotone. Suppose $K \subseteq U_1 \cup U_2$. Then $K \setminus U_1$ and $K \setminus U_2$ are disjoint compact sets, so there are disjoint open $V_i \supseteq K \setminus U_i$. Then $K_i = K \setminus V_i$ are compact, $K_i \subseteq U_i$ and $K_1 \cup K_2 = K$. By induction, if $K \subseteq \bigcup_{n=1}^N U_i$ then there exists compact $K_i \subseteq U_i$ with $\bigcup_{i=1}^N K_i = K$. Now suppose $K \subseteq \bigcup_{i=1}^\infty U_i$. By compactness, $K \subseteq \bigcup_{i=1}^N U_i$ for some N, so we have $K_i \subseteq U_i$, $K = \bigcup K_i$, $i \leq N$, and $\lambda(K) \leq \sum_{i=1}^N \lambda(K_i) \leq \sum_{i=1}^\infty \lambda_*(U_i)$. Taking supremums over $K \subseteq U = \bigcup U_i$, $\lambda_*(U) \leq \sum \lambda_*(U_i)$ and so λ_* is countably subadditive. Countable subadditivity of μ^* follows. Hence μ^* is an outer measure.

Fix any E and pick $U \supseteq E$. Then

$\lambda_*(U) \ge \sup_{K' \subseteq U \setminus K, K'' \subseteq U \setminus K'} \lambda(K' \cup K'') \qquad K' \cup$	$\cup K'' \subseteq U$
$\geq \sup_{K' \subseteq U \setminus K, K'' \subseteq U \setminus K'} (\lambda(K') + \lambda(K'')) \qquad K' \cap$	$\Lambda K'' = \emptyset$
$\geq \sup_{K' \subseteq U \setminus K} (\lambda(K') + \lambda_*(U \setminus K')) \qquad U \setminus L$	K' is open, definition of λ_*
$\geq \lambda_*(U \setminus K) + \mu^*(E \cap K) \qquad \qquad E \cap$	$K \subseteq U \setminus K'$, definition of μ^*
$\geq \mu^*(E \setminus K) + \mu^*(E \cap K) \qquad E \setminus A$	$K \subseteq U \setminus K$, definition of μ^*

Taking infimums over U we get $\mu^*(E) \ge \mu^*(E \setminus K) + \mu^*(E \cap K)$, so K is measurable.

Finally, $\mu^*(U) = \inf_{U' \supseteq U} \lambda_*(U') = \lambda_*(U)$, so $\mu^*(\mathring{K}) = \lambda_*(\mathring{K}) = \sup_{K' \subseteq K^\circ} \lambda(K') \leq \lambda(K)$. \mathring{K} is measurable since it is the difference of two compact sets K and $K \setminus \mathring{K}$. Also, $\mu^*(K) = \inf_{U \supseteq K} \sup_{K' \subseteq U} \lambda(K') \geq \inf_U \lambda(K) = \lambda(K)$.

Math 7351 15. Haar Measure Spring 2005

Definition A topological group is a topological space G which is also a group. Moreover, both the multiplication $\times : G \times G \to G$ and the inverse $()^{-1} : G \to G$ are continuous (in the case of \times , continuity is with respect to the product topology on $G \times G$).

Examples

- 1. \mathbb{R} under +. More generally \mathbb{R}^n with vector addition.
- 2. $\mathbb{R} \setminus \{0\}$ under \times . More generally the general linear group $GL_n(\mathbb{R})$ of all invertible $n \times n$ matrices with entries in \mathbb{R} . Multiplication is matrix multiplication. Topology can be given by considering $GL_n(\mathbb{R})$ as a subset of \mathbb{R}^{n^2} .
- 3. The special linear group $SL_n(\mathbb{R})$ (matrices of determinant 1) and the orthogonal group $O_n(\mathbb{R})$ (matrices A with $AA^T = I$) are topological subgroups of $GL_n(\mathbb{R})$.

Lemma If U is an open neighborhood of 1 in a topological group G then there exists an open neighborhood V of 1 such that $V^{-1}V = \{x^{-1}y : x, y \in V\} \subseteq U$.

Proof. By continuity of the map $(x, y) \to x^{-1}y$, there exists a $V_1 \times V_2$ containing (1, 1) with $V_1^{-1}V_2 \subseteq U$. Take $V = V_1 \cap V_2$.

Definition A left Haar measure is a measure μ on the Borel sets of G such that

- 1. μ is left invariant: if $g \in G$ then $\mu(gA) = \mu(A)$.
- 2. μ is outer regular: $\mu(A) = \inf\{\mu(U) : \text{open } U \supseteq A\}.$
- 3. If K is compact then $\mu(K) < \infty$.
- 4. If U is open then $\mu(U) > 0$.

Note $\int \chi_A(gx) d\mu(x) = \int \chi_{g^{-1}A}(x) d\mu(x) = \mu(g^{-1}A) = \mu(A) = \int \chi_A(x) d\mu$, so by standard arguments $\int f(gx) d\mu(x) = \int f(x) d\mu(x)$ for any integrable f.

Examples

- 1. Lebesgue measure on $(\mathbb{R}^n, +)$ is both a left and a right Haar measure.
- 2. The measure $\mu(E) = \int_E \frac{dx}{|x|}$ on $(\mathbb{R} \setminus \{0\}, \times)$ is a Haar measure.

Definition A subset of G is σ -bounded if it can be covered by a countable union of compact sets.

- 1. If K is compact then there exists a compact G_{δ} -set K' with $K \subseteq K'$, $\mu(K) = \mu(K')$. $[\mu(K) = \inf\{\mu(U) : U \supseteq K\}$, choose $U_i \supseteq K$ with $\mu(U_i) \to \mu(K)$ and inductively define $K_{i+1} \subseteq \mathring{K_i} \cap U_i$ with $K \subseteq \mathring{K_{i+1}}$. Then $K' = \bigcap K_i = \bigcap \mathring{K_i}$.
- 2. If K is a compact G_{δ} -set and G is σ -bounded then $\{(x, y) : xy \in K\}$ is measurable in $G \times G$. [Show the compact set $\{(x, y) : xy \in K\} \cap (K' \times K')$ is measurable first.]

Definition For any two sets A and B, define [A:B] to be the minimum n such that A can be covered with n left translates of B, $A = \bigcup_{i=1}^{n} g_i B$. Note that if K is compact and U has non-empty interior then $[K:U] < \infty$.

Theorem If G is a σ -bounded locally compact Hausdorff topological group, then there exists a left Haar measure on G. Moreover, it is unique up to multiplication by a positive constant.

Proof. Let \mathcal{K} be the set of compact subsets of G. If U is any open set then $K \cap U = K \setminus (K \setminus U)$ is a difference of compact sets, so lies in $\sigma(\mathcal{K})$. Since G is σ -bounded, $G = \bigcup_{i=1}^{\infty} K_i$, so $U = \bigcup_{i=1}^{\infty} (K_i \cap U) \in \sigma(\mathcal{K})$. Thus $\sigma(\mathcal{K})$ contains all Borel sets.

By local compactness, there is a compact set K_0 with $1 \in \mathring{K}_0$. Define for all open $U \ni 1$ the function $\lambda_U(K) = [K:U]/[K_0:U]$. Note that λ_U is subadditive and monotone, but not necessarily additive. Now $[K:U] \leq [K:K_0][K_0:U]$, so $0 \leq \lambda_U(K) \leq [K:K_0] < \infty$ for all $K \in \mathcal{K}$. Consider λ_U as an element of the space $P = \prod_{K \in \mathcal{K}} [0, [K:K_0]]$ which is compact by Tychonoff. For each $U \ni 1$, let $S_U \subseteq P$ be the closure of $\{\lambda_V : 1 \in V \subseteq U\}$. Clearly each S_U is closed and any finite intersection $\bigcap_{i=1}^n S_{U_i}$ is non-empty since it contains $\lambda_{\cap U_i}$. Hence $\bigcap_{U \ni 1} S_U \neq \emptyset$. Let $\lambda \in \bigcap_{U \ni 1} S_U$. Suppose K and K' are disjoint compact sets. Then $1 \notin K^{-1}K'$, and $K^{-1}K'$ is compact (continuous image of $K \times K'$), so closed. Thus there is an open $U \ni 1$ with $U^{-1}U \cap K^{-1}K' = \emptyset$, so $KU^{-1} \cap K'U^{-1} = \emptyset$. In this case $[K \cup K':V] = [K:V] + [K':V]$ for all $V \subseteq U$. Hence $\lambda'(K \cup K') = \lambda'(K) + \lambda'(K')$ for all $\lambda' \in S_U$ (the set of such λ' is closed and contains all $\lambda_V, V \subseteq U$). In particular $\lambda(K \cup K') = \lambda(K) + \lambda(K')$. Hence λ is a content on G and gives rise to a measure μ on $(G, \sigma(\mathcal{K}))$. Now $\lambda_U(gK) = \lambda_U(K)$ for all U, K, and g, so $\lambda(gK) = \lambda(K)$. Thus $\mu(gA) = \mu(A)$ for all $A \in \sigma(\mathcal{K})$. Finally, $\lambda \in P$, so $\lambda(K) \leq [K:K_0] < \infty$. Now $K' = KK_0$ is compact and $K \subseteq \mathring{K}'$, so $\mu(K) \leq \mu(\mathring{K}') \leq \lambda(K') < \infty$. Clearly $\lambda(K_0) = 1$, and if U is non-empty and open, $K_0 \subseteq \bigcup_{i=1}^n g_i K_0$, so $1 \leq n\mu(U)$, and $\mu(U) > 0$.

Uniqueness: Let \mathcal{K}_0 be the set of compact G_{δ} sets, and assume ν and μ are two left Haar measures. Fix $A \in \mathcal{K}_0$ with non-empty interior, so $0 < \mu(A), \nu(A) < \infty$. Define $c(g) = \mu(A)/\mu(Ag^{-1})$, so that $\mu(A) = \int \chi_A(xg)c(g) d\mu(x)$. Note $\mu(Ag^{-1}) = \int \chi_{\{xg \in A\}}(x,g) d\mu(x)$ so is measurable as a function of g (Fubini). Then for any $B \in \mathcal{K}_0$

$$\begin{split} \mu(A)\nu(B) &= \iint \chi_A(xy)c(y)\chi_B(y) \, d\mu(x)d\nu(y) \\ &= \iint \chi_A(y)c(x^{-1}y)\chi_B(x^{-1}y) \, d\nu(y)d\mu(x) & \left[\int f(y)d\nu = \int f(x^{-1}y)d\nu \right] \\ &= \iint \chi_A(y)c((y^{-1}x)^{-1})\chi_B((y^{-1}x)^{-1}) \, d\mu(x)d\nu(y) & \left[x^{-1}y = (y^{-1}x)^{-1} \right] \\ &= \iint \chi_A(y)c(x^{-1})\chi_B(x^{-1}) \, d\mu(x)d\nu(y) & \left[\int f(y^{-1}x)d\mu = \int f(x)d\mu \right] \\ &= \nu(A)\int c(x^{-1})\chi_B(x^{-1}) \, d\mu(x). \end{split}$$

(All functions measurable in $G \times G$ when $A, B \in \mathcal{K}_0$). Applying the same argument with ν replaced by μ gives $\int c(x^{-1})\chi_B(x^{-1})d\mu(x) = \mu(B)$, so $\mu(A)\nu(B) = \nu(A)\mu(B)$ and if $\alpha = \nu(A)/\mu(A)$ then $\mu(B) = \alpha\nu(B)$ for all $B \in \mathcal{K}_0$. Pick $K', K'' \in \mathcal{K}_0$ so that $K \subseteq K', K''$ and $\mu(K) = \mu(K'), \nu(K) = \nu(K'')$, then $\mu(K) = \mu(K' \cap K'') = \nu(K' \cap K'') = \nu(K)$, so $\mu = \alpha\nu$ on \mathcal{K} and hence on $\sigma(\mathcal{K})$.