Math 7351 1. Measures Spring 2005

Definition A ring on X is a non-empty collection A of sets such that A,B € A =
A\Be Aand AUBec A. Ttisao-ring if Aj,Ay,---€ A= J A € A
An algebra (o-algebra) is a ring (o-ring) containing the set X.

For algebras one can replace the condition A\ B € Aby X \ B € A.
Both (o-)rings and (o-)algebras are also closed under finite (countable) intersections.

Definition A measurable space is a pair (X, .A) where A is a o-algebra on X.

Definition A measure ;i on (X, .A) is a function p: A — [0, 00] that is countably additive:
If A; € A are disjoint sets for i € I, and I is countable, then pu(|J,c; Ai) = D, 1(As).
[Note: we include finite I and empty I, so in particular p(0) = 0.]

Definition We say pu is finite if u(X) < oo. We say p is o-finite if X = [J;2, X; with
w(X;) < co. We call p a probability measure if pu(X) = 1.

Definition A measure space is a triple (X, A, ) where A is a o-algebra on X and p is a
measure on (X, A). We say A C X is p-measurable if A € A.

Examples

1. If £ is the set of Lebesgue measurable sets and A is the Lebesgue measure, then
(R, L, \) is a (o-finite) measure space. More generally, if f > 0 is measurable and
1(S) = [ f(x)dz then p is a measure on (R, £).

2. If X is any set, the counting measure pu(A) = |A| is a measure on (X, P(X)). It is
finite (o-finite) iff X is finite (countable). More generally, if w: X — [0, 00] is any
function, then the weighted counting measure u(A) = > ., w(x) is a measure on
(X, P(X)).

Lemma 1. Suppose (X, A, n) is a measure space. Then

1. p is monotonic: if A C B then u(A) < u(B).

2. p is countably subadditive: if A; € A, I countable, then p(U,c; Ai) < > s 11(As).

3. If Ay T Ay C ..o, then p(Up; Ai) = limy oo p1(A;).

4. If Ay D Ay D ... and pu(Ar) < oo, then u(Nioy Ai) = lim;oo u(A;).

Definition (X, A, ) is complete if ;1(A) = 0 implies all subsets of A lie in A.

Lemma 2. If (X, A, pn) is a measure space, then there is a unique complete measure

space (X, A, 1) with A={AUE:Ac A, ECBe A, u(B) =0} and fi|4 = p.

The space (X, A, ft) is called the completion of (X, A, u).
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Definition Given a measurable space (X, .A), a signed measure is a countably additive
function px: A — R such that either p(A) is never +o0 or it is never —oco. We call p finite
if u(A) is never £oo.

The conditions on 0o imply we never get co — oo in the ‘countably additive’ property.

Definition A set A € A is positive if u(B) > 0 for all B C A, negative if p(B) < 0 for
all BC A, and null if p(B) =0for all BC A, B € A.

Theorem (Hahn decomposition) If u is a signed measure, then any A € A can be
written as disjoint union A = AT U A~ where A" is positive and A~ is negative.

Proof. W.l.o.g., assume p is never +oo. Pick any By C A with u(Bg) # —oo. If there is a
Co C By with u(Cp) < 0, pick Cy with u(Cp) < 2inf{u(C): C C By} (< —1 if inf = —00)
and let By = By \ Cp. Repeat this process to get a sequence By 2O By O By O ... and let
B =B, Then pu(By\ B) =>_ u(C;) <0, so u(B) > u(By). By assumption u(B) < oo,
so 11(C;) — 0. Thus if C' C B and p(C) < 0 then some p(C;) > +u(C), contradicting the
choice of C;. Thus B is positive and sup{u(B) : B C A} = sup{u(B) : B C A, B positive}.
Thus we can find a sequence of positive sets B; with u(B;) — sup{u(B) : B C A}. Let
At =JB;. If C C A" then C = |Y(B; N C \ U,;B;) is a disjoint union of subsets of
the B;, so u(C) > 0. Thus AT is positive and u(A") = u(B;) + (AT \ B;) > w(B;) for
all 4, so u(A*) =sup{u(B): B C A}. Let A= = A\ A*. If C C A~ with u(C) > 0 then
u(ATUC) > (A1), a contradiction. Hence A~ is negative. O

Note: The decomposition A = AT U A~ is not unique in general.

Definition A (signed) measure p is supported on a subset A € A if u(B) = u(B N A) for
all B € A. Equivalently, u(B) = 0 for all B C A°. Two (signed) measures p and v are
mutually singular, ulv, if they are supported on disjoint sets.

Theorem (Jordan decomposition) If i is a signed measure then = p*—p~ where p*
are mutually singular measures, at least one of which is finite. Moreover, this decomposition
1S UNLQUeE.

Proof. Write X = XtTUX ™ as above and set u*(A) = p(ANXT) and = (A) = —p(ANX 7).
Then p = pt — p~ and p* are mutually singular measures. Assume now that u =
pt—p~ =vt —v~and X = YT UY ™ with v* supported on Y*. Now if AC Xt NY~,
u(A) = pt(A) = —v=(A), so ut(A) = —v(A) = 0. Hence if A C X then v~ (A) =0
and u(A) = pt(A) = vt(A). Similarly if A € X~ then vT(A4) = 0, so for any A,
ut(A) =v*(A). Thus pt = vt so by subtraction, u= = v~. O

Exercise: Suppose f is integrable. Show that u(S) = fs f(z)dx is a signed measure.
Give an expression for p*(9).
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Definition A semiring on X is a non-empty collection Z of subsets of X such that
Sl. I,.JeZT=1INnJel,
S2. I,J €T = I\ J is a finite disjoint union of elements of Z.

A semialgebra is a semiring containing X.

Examples
1. The set of all half-open intervals (a,b], a,b € R.
2. The set of rectangles A x Bin X x Y.

Lemma 1. Let Z be a semiring.

1. If Ay,..., A, €I, then 3 disjoint Iy,..., Iy with each A; a union of some I;s.

2. Any element of the ring generated by I is a finite disjoint union of elements of I,

3. Any countable union of elements of L is a disjoint countable union of elements of L.
Proof. 1. Induction: replace I; with I; N A, 11 and the disjoint sets with union I; \ A,.
By induction on N one can also decompose A, 11\ Ujlv I; as a disjoint union.

2. Clear. 3. Write |J A; as a disjoint union of A; \ U;-;A;, each of which is a finite disjoint
union of elements of Z. O

We say a function [: Z — [0, 00] is a measure on Z if it is countably additive when defined:
if I; € Z, are disjoint, I is countable, and |J,.; [; € Z, then I({J,c; L) = >, 1(L).

We shall prove:

Theorem (Carathéodory) Supposel is a measure on the semiring Z. Then there is an
extension of | to a measure i on some o-algebra containing . Moreover, this measure is
uniquely determined on the o-ring generated by Zg, = {I € T : I(I) < oo}.

Definition Suppose Z is any collection of subsets of X and I: Z — [0, 0o| any function.
Define for any A C X, pu*(A) = infacyyr, Y, {(;), where the infimum is over all countable
collections of I; € Z with A C |J ;.

We include finite and empty collections, so in particular p*()) = 0.
Also, if there is no countable collection of I; with A C |J I; then p*(A) = oc.

*

Lemma 2. Forany l: T — [0,00], p
1. u* is monotonic: if A C B then p*(A) < u*(B),
2. p* is countably subadditive: if {A; : 1 € I} is countable, p*(J;c; Ai) < D e i (As).

1§ an outer measure, i.e.,

Definition If p* is an outer measure, we say A C X is p*-measurable if for all E C X,
W (E)=p (ENA)+u(E\A). [Subadditivity =<, so we only need >.]



Lemma 3. The set A of all p*-measurable sets is a o-algebra and the restriction of u*
to A is a complete measure.

Proof. Clearly A = X is measurable and A is measurable iff X \ A is measurable. Suppose
Ay, Ay, ... are measurable and let A = [ J A;. Define inductively Ey = E and E; 1 = E;\ A;.
By measurability of A;, u*(FE;) = pu*(E; N A;) + p*(Fiy1). Hence

P (E) =320 1 (BN A + (B
However E\ A C E, 41, s0 u*(E) > >0 w* (E;NA;) + p*(E\ A) for all n. Thus

pH(E) = 32w (BN Ay) + (B A). (1)
However, J(E; N A;) = EN A, so by subadditivity, u*(ENA) <>, w*(E; N 4;). Thus

W (E) 2 (B 1 A) + (B A),

as required. (If there are only finitely many A;, set the other A; = ().)
If A; are disjoint and p*-measurable, take £ = A so that E; N A; = A; and (1) gives
p(A) > 3% w*(A;). Since p* is countably subadditive, p*(A) =2, p*(A4;).
For completeness, note that if y*(A) = 0 and B C A then p*(F N B) < p*(A) = 0 and
W (E\ B) < pu*(E),so p*(E) > p"(ENB)+ u*(E\ B) and so B is p*-measurable. O

Lemma 4. If 7T is a semiring and | is a measure on L then every I € T is pu*-measurable
and p*(I) =1(I).

Proof. Fix I € Z. Assume E C |J1; and p*(E) > > I(1;)—e. Now p*(ENI) <Y . I(L;NI),
and p*(E\ 1) < >, U(L;;) where I; \ I = J; [;; is a disjoint union. But by assumption
UL) = UL )+ > 2,0(y;). Thus p*(E) > p*(ENI)+ p(E\I)— e Since this is
true for all € > 0, I is p*-measurable. Clearly p*(I) < [(I). Suppose I C [JI;. Let
Ji =1N1;\Uj<;l;. By Lemma 1, both J; and I; \ J; are finite disjoint unions of elements
of Z, Jy = U1, I;\ Ji = UI};. But I is a disjoint union of the J;, so {(1) = >, >, I(1; ;).
Now I(I;) = >, 1(Li ;) + 225 U1 ;), so 3, U(1;) = I(I) and thus p*(I) = (). O

Lemma 5. If 7 is a semiring and | is a measure on I then any extension of | to a
measure v on a o-algebra containing I satisfies v < p*. Moreover, v = p* on the o-ring
generated by Lgy,.

Proof. Let A be v-measurable. If A C |JI; then v(A) < > v(;) = > I(L;), so v(A) <
1 (A). Now assume A is in the o-ring generated by Zg,. Then A C |JI; for some I; € Zy,,.
(The collection of all such A is a o-ring and contains Zg, ). Thus by Lemma 1, A C |J I; for
some disjoint I; € Tg,,. Now v(L;\ A)+v([;NA) = v(l;) = p*(1;) = p* (L \A) +p*(1;NA),
and v < p*,sov([;NA)=p*(I;NA) and v(A) => v(;NA)=> u(LNA)=p*(A). O

Example Suppose u(A) = |A| and v(A) = 2|A| for A C R. Let Z = {(a,b] : a,b € R}.
Then p|z = v|z but p # v on singletons, which are in the o-ring generated by Z.

The Carathéodory Theorem follows from Lemmas 3-5.
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Let B be the Borel sets of R. If p is a finite measure on (R, B), then the cumulative
distribution function of u is

F(z) = p((—o0, ]).
Note that p((a,b]) = F(b) — F(a) for all a < b and F' is an increasing function of = that
is continuous on the right:

F(a) <lim, o+ F(z) < lim, F(a+ +) = p(), (=00, a + 2]) = p((—00,a]) = F(a).

Theorem If F is an increasing real valued function that is continuous on the right, then
there is a unique measure pup on (R, B) with pp((a,b)) = F(b) — F(a) for all a <b.

Proof. Let Z = {(a,b] : a < b}. Then 7 is a semiring. Define [: Z — [0, 00] by I((a, b]) =
F(b) — F(a). We shall show that [ is a measure on Z.

e}

Suppose (a,b] = |J,-,(a;, b;] is a disjoint union. For any NN one can define (¢;,d;], j < N,
to be (a;, b;], i < N, ordered in increasing order of a;. Set dy = a and ¢y = b. Then

a=dy<ci <dy <y <o <dy <ceyy =0,

F(b) = F(a) = 31, (F(di) = F(e:) + X (Flein) = F(di) 2 320, (F(bi) = Flay),
since F' increasing. Thus I((a,b]) > S2, 1((as, by]) for each N, so 1((a, b]) > 3222 1((as, by]).

Fix € > 0. Then there is a § with F'(a+6) < F(a)+¢ and §; with F(b;+6;) < F(b;)+¢/2".
The open sets (a;, b; + ;) cover the compact set [a + 6§, b]. Hence there is a finite collection
of sets (a;, b; + 9;] that cover (a + 9,b]. Inductively removing any (a;,b; + 9;] that lie in
some other (a;,b; + J;] and ordering the remaining sets by a;, we obtain intervals (c;, d;]
with ¢; 11 < d;. Setting dy = a+ 0, cyy1 = b, we may assume this also holds with ¢ = 0, N.
Since F' is increasing

F(b) = Fla+0) = Y00 (F(di) = F(er) = S5 (F(di) = Flcinn)) < S(F(bi+6) — F(ai))-
Thus F(b) — F(a) < S (F(b;) — F(a;)) + e+ > ¢/2%
So I((a,b]) <302, U((az, bi]) + 2¢ for any € > 0. Hence [ is a measure on Z.

Finally, the o-ring generated by Zg, = Z contains all open intervals since (a,b) = |J(a;, b;]
when a; decreases to a € [—00,00) and b; increases to b € (—o0, 00]. Thus it contains all
open sets (each is a countable union of open intervals), and so all Borel sets. The result
now follows from Carathéodory. O

Examples 1. Lebesgue measure can be constructed as the special case F(z) = .
2. Let F be the Cantor Ternary function. Then ug is supported on a set of Lebesgue
measure zero (the Cantor set), but is zero on all singletons.

One can extend this result to (finite) signed measures, if we replace the condition that F' is
increasing by the condition that F'is has bounded variation, since in this case one can write
F =G — H where G and H are (bounded) increasing functions and define pup = pg — py-
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Theorem (Weak Monotone Convergence Theorem) Suppose (X, A, i) is a measure
space and A, A; € A, ¢,c; > 0. If cu(A) > 377 cip(Ay) then Ix € Are >, cq

Proof. Pick v < ¢ and o < p(A) so that ya > Y2 cu(A;). Let S, = {z € A :
ZaneAi ¢; > ~v}. Then S, is a union of intersections of the sets Ay,..., A,, so is mea-
surable. If S, = A then u(S,) — p(A), so AN: u(Sy) > a. Let I1,..., Iy be disjoint
elements of A such that each A;, i < N, and A can be written as a union of some of the I.
Then Sy is a disjoint union of some of the I; and

[e's) N
> an(A) =D an(I) Z o anll) = Y (L) >y,
i=1 i=1 I,CA; I, i<N,I,CA; I,CSn

a contradiction. Hence |J.S,, # A and there is an x € A with ¢ > v > >~ O

i: TEA; Ci

Theorem If (X, A, pn) and (Y,B,v) are measure spaces then there is a measure p X v on
the o-algebra A @ B generated by A x B with (u X v)(A x B) = u(A)v(B) for all A € A,

B € B. Moreover, if pu and v are both o-finite then this measure is unique and o-finite.

Proof. Let Z={Ax B:Ae€ A, Be B} andlet [(Ax B)=pu(A)r(B). Now (A x B)N
(A xB')=(ANA")x(BNB') and (Ax B)\ (A’ x B) is the disjoint union of (A\ A") x B
and A’ x (B\ B’). Hence the measurable rectangles form a semiring.

Suppose A X B = Ufol(Ai X B;) is a disjoint union. Let ¢ = v(B), ¢; = v(B;), then for
all z, B = ;. yea, Bi» 80 ¢ < 37 pea ¢io By WMCT, (A x B) = cu(A) < 3 cip(Ai) =
ZZ(A x B;). Now fix N and construct disjoint Iy,..., Iy so that each A;, i < N, is a
union of some of the I.

oA < 30 S I (B) < 3 p(l) Y v(B) £ 3 u()v(B) < plAw(B).

i<N I,CA; I;CA <N, I,CA; I;CA

Letting N — oo gives > I(A; X B;) <I(A x B). Thus [ is a measure and the result follows
from Carathéodory. O

Define 1xv to be the completion of 1 x v, with o-algebra A®B.
If EC X xY, define the section of F at = to be E, = {y: (z,y) € E}.
We say a property holds p-a.e. if the set of points where it fails has u-measure zero.

Lemma If E is i X v-measurable, then E, is v-measurable for all v € X.

Proof. The set {E C X xY : E, is v-measurable for all z} is a o-algebra and contains all
measurable rectangles A x B, so contains A ® B. ]

Note that this is not true for . x» measurable sets. E.g., if S is a non Lebesgue measurable
set in R then F = {x} xS C {x} xR is a subset of a set of measure zero, so is AA-measurable,
but E, is not measurable.
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Suppose (X;, A;, 11;), 1 = 1,2,... are measure spaces with u;(X;) = 1, we shall construct a
measure on X = [[ X,.

Definition A cylinder set is a set of the form A = [[ A; where A; € A; and A; = X for
all but finitely many 4.

Theorem There exists a unique probability measure on the o-algebra generated by cylinder
sets of X = [[ X, in which each cylinder set [] A; gets measure [] pi(A;).

Note: [ pi(A4;) is really a finite product since y;(A;) = 1 for all but finitely many 4’s.

Proof. For each N and each cylinder set A = [] A4;, define AN = [Lion Ai and Ay =
_A;, so that one can regard A as a product Ay x AN, Since A is a cylinder
i<N (N)

set, AN = XW) for sufficiently large N. Define I(A) = [] ui(4;), and more generally

I(AM™)) = TT,. v ti(A;). By the existence of finite product measures, there are measures

pvy on X with gy (A) = I(A) for all cylinder sets with AN = XV,

Suppose A and A; are cylinder sets with A a disjoint union of the 4;. Now A D [J;_, 4;,
and for sufficiently large N, AW) = A§N) = =AY = XM Thus I(A) = iy (A) >
et by (Ai) = 3252, I(Ay). Letting n — oo, 1(A) > 3077, 1(Ay).

Suppose [(A) > Y2 I(A;). We shall construct a point x = (x1, 29, ...) € A that is not in
any A;. Assume we have defined z,,...,2y_; and let Xy_; = {z1} x-- - x{oy_1} x XV
be the set of all points in X with first N — 1 components equal to x;. Assume that

XN_1 N A 7é @ and
(AND) > N (AY),

X N_1NA;FD

Since Xy = X, this holds for N = 1. Write ¢ = {(A™) and ¢; = [(A™)). Then (AN =
cun((A)n) and l(AgN_l)) = ¢;iun((A4;)n). Thus by the WMCT there exists an xy € (A)y
(so Xy NA#0D) with

(A = ¢ > > =Y U(AM)

2 XN_1NA#D, znE(Ai)N 1 X NNA;#£D

Now fix i. If (z1,...) € A; then for sufficiently large N, l(AZ(N)) =1 > 1(AM), a
contradiction. But for large enough N, AM) = XM 50 (11,...) € Xy C A. Thus
A # |JA;, a contradiction. Hence [ is a measure on Z. The result now follows from
Carathéodory. O

Surprisingly, the extension of this result to uncountable products is easy. Indeed, for any
set A in the o-algebra generated by cylinder sets, there is a countable I such that A is
also in the o-algebra generated by cylinder sets [[ A; with A; = X, for @ ¢ I. Thus the
measure need only be defined on countable products.
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Definition A function f: (X, A) — (Y, B) between measurable spaces is called measurable
if for all B e B, f~'[B] € A.

Definition A function f: (X,.A) — R* is measurable iff it is measurable with respect to
the Borel g-algebra on R*.

Note: we do not in general use complete measures on Y since this may make many ‘nice’
functions non-measurable. In particular, if we use Lebesgue measurable sets then there
exist continuous functions that are not measurable: Take two Cantor-like sets with A(CY) >
0 = A(Cy) and construct a continuous bijection f: [0,1] — [0, 1], f[C] = Cs, by making it
map each interval of [0, 1] \ C} linearly onto the corresponding interval of [0, 1] \ Cy. Then
any non-measurable subset 2 C (] is the inverse image of the measurable set f(E) C Cs.

Since {B : f7![B] € A} is a o-algebra on Y, it is enough to check the condition on any
set of B’s that generate B as a c-algebra. In particular, f: X — R* is measurable iff
f7'[(a, 00]] is measurable for all a € R, or even just all a € Q.

Lemma 1. For functions (X, A) to R*
1. If (X, A) = (R,B) or (R, L), then any continuous function is measurable.
2. The characteristic function xs is measurable iff S € A.
3. If f, are measurable then sup,, f,, inf, f,, im f,, and lim f, are measurable.
4

. If f, g are measurable then f+ g, f —g, fg and f/g are measurable as functions on
the set where they are defined. The set where they are defined is also measurable.

Definition A simple function is a measurable function ¢: X — R such that ¢[X] is finite.
Equivalently ¢ = """ | a;xs, where S; are measurable subsets of X, a; € R, and yg is the
characteristic function of S. We may choose the .S; to be disjoint.

Lemma 2. [f f: X — [0,00] is measurable, then there exists an increasing sequence of
simple functions 0 < ¢1 < ¢o < ... with ¢, — f pointwise.

Lemma 3. If f: X =Y is any function and (Y, B) is a measurable space, then o(f) =
{f7'[B] : B € B} is a o-algebra on X.

We call o(f) the o-algebra on X generated by f. The function f: (X, A) — (Y,B) is
measurable iff o(f) C A.

More generally, if fi, fo, ... are functions on X to a measurable space, o(f1, fo,...) is the
o-algebra generated by all the o(f;)’s and is the smallest o-algebra on X making all the
fi; measurable.

Example The (uncompleted) o-algebra defined on a product space (finite or infinite) is
just o(my, 7o, ... ) where m; is the projection map onto the i’th coordinate.
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Lemma If f: X — [0, 00| is a measurable function, then the shadow of f, S(f) = {(z,v) :
0<y< f(z)} is a (u x X)-measurable subset of X x R.

Proof. Clear for simple functions, and S(f) = |JS(¢,) where ¢y < po < ..., 0, — f. O
Definition If f: X — [0, 00] is measurable, the integral of fis [ fdu = (ux X\)(S(f)).

If f: X — R* is measurable and [ |f|du < oo then we say f is integrable and define
[ Fdu=[ frdu— [ f-duwhere f,(x) = max{f(x),0}, f(x) = max{—f(x), 0}.

Clearly [¢dp = >""  a;u(S;) for any simple non-negative ¢ = > . . a;Xs. .
=1 =1 i

Theorem (Monotone Convergence Theorem) If 0 < f; < fo < ... is an increasing
sequence of non-negative measurable functions on X, then [lim f, dpu =lim [ f,, dp
Proof. S(f1) € S(f) C ... and S(f) = US(f,). 0

Corollary If f: X — [0, 00] is measurable then [ fdu = sup,, [ ¢ dp where the supremum
is taken over simple ¢ with 0 < ¢ < f.

Proof. S(¢) CS(f),s0 [¢< [f,andif 0< ¢ <..., ¢, — f, then [ ¢, = [ f. O

Note, this gives an alternative definition of the integral, and shows that it does not depend
on the choice of p x A when g is not o-finite.

Theorem Suppose f,g: X — [0,00] are measurable, (resp. f,g: X — R* integrable).
1.If f<gthen [ fdu < [gdp
2. If ¢>0 (resp. ce R) then [cfdu=c [ fdu
8 [(f+g)du= [ fdu+ [gdpu
4. If f>0then [ fdu=0iff f=0 ae.

Proof. For 2 and 3 with f, g > 0 prove it first with simple functions and take limits.

For 4, =, [ fdu> +p{z: f(z) > +} and {z: f(z) >0} = U{z: f(z) > +}. O
Theorem (Fatou’s Lemma) If f; > 0 are non-negative measurable functions then
[lim f, dp < lim [ f, dp.

Proof. 1t g, = inf,~,, f, then g, is increasing and fh_mfn du = f lim g, dp = limfgn dp <
lim,, inf, >, f frdu = hﬂf fndp. O
Theorem (Dominated Convergence Theorem) If g is integrable and |f,| < g and

fn converges pointwise then [lim f, = lim [ f,.

Proof. Apply Fatou to g — f,, and g + f,. O
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Definition A collection M of subsets of X is a monotone class if whenever A; C Ay C ...,
A; € M, then J;2, A; € M and whenever A D Ay D ..., A; € M, then 2, A; € M.

Lemma 1. If A is an algebra, then the smallest monotone class M containing A is equal
to the o-algebra o(A) generated by A.

Proof. The intersection of all monotone classes O A is a monotone class, so M exists. Let
M(A)={BC X:AUB, A\ B, B\ A€ M}. Then M(A) is a monotone class. If A € A
then A C M(A), so M C M(A). But then (reversing the roles of A and B), if A € M
then A C M(A), so M C M(A). But then M is closed under finite unions and differences,
so is aring. If A; € M, then [J)2 A, =2, (U, A) e Mand as X € A C M, M is
a o-algebra. Thus o(A) C M, but o(.A) is a monotone class, so o(A) = M. O

Lemma 2. Suppose (X, A, n) and (Y, B,v) are o-finite measure spaces. If E is a ju X v-
measurable set and g(x) = v(E,), then g exists, is p-measurable, and p x v(E) = [ gdpu.

Proof. First assume p and v are finite. Consider M ={E C X xY : g(z) = v(E,) exists,
is measurable, and p x v(E) = [ gdu}. Then M contains all measurable rectangles, and
is closed under finite disjoint unions, so contains the algebra generated by measurable
rectangles. But M is a monotone class (use the fact that g and v are finite, and the DCT
for [gdu). Thus M D A® B. For o-finite p and v, write X X Y as a union of increasing
finite rectangles X; x Y;, prove the result for £ N (X; x Y;) and take limits. O

Corollary 3. If (X, A, ) and (Y,B,v) are complete o-finite measure spaces, E is uxv-
measurable, and g(x) = v(E,), then g exists p-a.e., is p-measurable, and uxv(E) = [ gdpu.

Proof. If E is p x v-measurable and p x v(E) = 0 then by Lemma 2, [gdp = 0, so
g = 0 a.e.. Thus if F is a subset of a set of ; X v-measure zero then g = 0 a.e., and the
result holds. Writing F as a union of a u x v-measurable set and a subset of a set with
[t X v-measure zero gives the result. O

Theorem (Fubini-Tonelli) If (X, A,u) and (Y,B,v) are o-finite measure spaces and
f: XxY — R s non negative and pXxv-measurable, then f(x, ) Y — R* is v-measurable
forallz e X, g(x ffxyduzs,umeasumbleandffxy (uxv) = [[f(z,y)dvdpu.

Similarly, if f is p x v-integrable, then f(x,.) is v-integrable for p-a.e. x € X, g(x) =
[ f(x,y) dv is p-integrable and [ f(z,y)d(pxv) = [[ f(z,y)dvdp (= [[ f(z,y)dudv).

Proof. Lemma 2 shows that this holds when f = xg. Thus by linearity it holds for simple
functions, and MCT implies it holds for all non-negative measurable f. For integrable f,
apply result to f*, |f|, and use [[|f|dvdp < oo to show f(z,.) is v-integrable p-a.e.. O

A corresponding result holds for uxv provided p and v are complete and we replace ‘all
x € X with ‘p-a.e. x € X'.

Example [ x2+y2+1 dady # [°f° mdydx
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Definition If ¢ and v are two signed measures on a measurable space (X, .A) then we say
v is absolutely continuous with respect to u, v < u, iff every p-null set is v-null. We say v
is singular with respect to p, v L u, if they are mutually singular, i.e., v is supported on a
p-null set.

Theorem (Radon-Nikodym) Let p and v be (positive) measures on the same measur-
able space (X, A), with v < pu and p o-finite. Then there exists a measurable function
f: X —=[0,00] such that v(A) = [, fdu for all A€ A. Moreover if f and g are two such
functions then f = g p-a.e..

Proof. Assume first that p is finite. Then for all @ € Q, a > 0, v — apu is a signed measure.
Let X = X} U X be a corresponding Hahn decomposition. We may assume X = X.
Note that X* may not be monotonic in o due to the non-uniqueness of the decompositions.
Nevertheless, if o > f and E = X} \ X7, then au(E) < v(E) < u(E), so u(E) = 0,
Define f(z) = sup{a € Q : # € XI} € [0,00]. Then {z : f(z) > a} = U, X is

measurable, so f is a measurable function.

Fix a measurable E, and N > 0, and let E; = EN f7'[[%,51)]. Then E; C Xty

so v(E;) < HAu(E;). Also E; € X7 U Uass(Xd\ X5) for all g < +. Thus v(E;) >
(E OX+) > Bu(E;NX5) = Bu(E ) Thus v(E;) > +u(E;). But + < f <t on Ej, so
N,u <fE fd,u<%1,u(E) Thus
—N1(Ey) S V(E;) = [g [du < gu(E).
If we let B, = EN f~[{c0}] then E \ EOO = |J E; is a disjoint union. Thus by MCT and
countable additivity of v and p,

_%N(E \ EOO) < V(E \ EOO) - fE\Eoo fdu < %N(E \ Eoo)'

Since this holds for all N and u(F) < oo, v(E \ Ey) = fE\E fdu. Finally, if u(Ey) > 0
then v(Fw) > au(Ey) for arbitrarily large a’s, so u( fE fdu = o00. On the other
hand, if u(Ey) = 0 then v(Ey) = 0 since v < pu, and V( fE fdp = 0. Thus by
addition v(E) = [, fdpu.

For o-finite p, write X = |JX; with u(X;) < oo and disjoint. We can define f; on X; by
v(ANX;) = fAmXi fidp. Now let f = > fixx, and use MCT. For uniqueness, let £ =
{z: f(z)—g(z) > L and g(z) < n} N X;. Then v(E) = [ fdu> tp(E)+ [gdp=v(E),
which implies u(E) = 0 (note that [ gdu < co). Taking unions over all n and i we get
pw{x: f(z) > g(x)}) = 0 and similarly p({z : f(z) < g(x)}) =0. Thus f =g prae.. O

Definition We define a Radon-Nikodym derivative of v with respect to p, d , to be this f.
Note that it is only defined up to equality p-a.e..

Note that if f is any non-negative measurable function then v(E) = [ 5 J du defines a
measure with v < ;1 and Radon-Nikodym derlvatlve = f p-a.e..



Corollary (Lebesgue Decomposition) If (X, A, u) is a o-finite measure space, then
any o-finite measure v on (X, A) can be written in the form v = v, + v, where v, < | and
vl p.

Proof. Let ¢ = v + p, then ¢ is o-finite and p < . Write u(E) = [, fdi and let
X =AU B where A ={x: f(x) >0} and B = {x: f(x) = 0}. Define v.(E) =v(ENA)
and vs(E) = v(EN B). Then v = v, + v, vs is supported on B and u(B) = 0, so v,L p.
If u(E)=0then p(FNA)=0,s0v.(E)=v(ENA) <¢Y(ENA)=0, and v, < p. O

Recall the Lebesgue-Stieltjes measure on (R, B) given by pr((a,b]) = F(b) — F(a) for some
increasing right-continuous function F. We generally denote the integral with respect to

pr by [ f(z)dF

Theorem The Lebesgue-Stieltjes measure pp is absolutely continuous with respect to

Lebesgue measure X iff F' is an absolutely continuous function. In this case dc‘l‘—/\F = F
A-a.e..

Proof. 1f pp < A then by Radon-Nikodym, F(b) — F(a) = ur(( fab] '!;Td)\
But then F(x) )+ [ d”“F ) dt and d”F E(t) > 0is measurable, SO F ( ) is absolutely

contmuous Conversely, suppose F is absolutely continuous, then F” exists a.e., and F'(b) —
f F'(z)dx. Define u(E) = [, F'(x)dz. Then p is a measure on (R,B) and

((a b)) = ((a b)). Let M ={E C (n,n+1]: u(E) = pup(E)}. Then M is a monotone
class (using pr((n,n + 1]) < oo for decreasing limits). But M also contains (a,b] for
n <a<b<n+1and is closed under finite disjoint unions, so contains the algebra on
(n,n + 1] generated by half-open intervals. Thus M contains all Borel sets in (n,n + 1].
Finally, for arbitrary E € B, p,F(E) => ur(EN(n,n+1]) => pw(EN(n,n+1]) = u(E),

s0 p = pp. But then pp(E) = [, F'(z)dz, so if \(E) = 0 then pp(E) =0, so up < A.
Finally, F' = d“F A-a.e. by unlqueness of the Radon-Nikodym derivative. O
Exercises

1. Ifu(u,thenffdy:ffgd

2. If v < v < p, then d“ﬁ:‘gﬁgz -2

3. If ¢, v < pi, then <w+v>_dw+duuae

4. Extend the Radon-Nikodym theorem to the case when v is a signed measure.
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One can construct a model of probability using measure theory. The measure space
(X, A, ) is usually denoted (€2, A,P), where €2 is the sample space, or the set of pos-
sible outcomes. The o-algebra A is the set of all events, and P is a probability measure
which assigns to each event E € A a probability P(E) € [0,1]. An event occurs almost
surely or a.s., if P(F) = 1, or equivalently P(not E) = 0.

A random variable is a measurable function on €2 (usually to R and usually denoted in upper
case X, Y,..., lower case variables typically denote constants). We write, for example,
P(X > ¢) as a shorthand for P({w € Q : X(w) > ¢}). The o-algebra o(X) = {X'[B]: B
Borel} is the set of events that can be described in terms of the value of X as ‘X € B’.

The expectation or mean of a random variable X is the integral of X, E(X) = [ X (w) dP.
If we write 1g for the characteristic function of the event E, then P(E) = E(1lg). If
E|X| < oo then the variance of X is Var(X) = E(X?) — (EX)? = E((X —EX)?). Note
that Var(X) > 0 and may be +oo even if E|X| < oc.

Any real-valued random variable gives rise to a probability measure on (R, B) by setting
u(B) = P(X € B) for any Borel set B. The cumulative distribution function of a random
variable is the function F(c¢) = P(X < ¢). The measure p is just the Lebesgue-Stieltjes
measure corresponding to F. If F' is absolutely continuous, then f = F’ is called the
probability density function of X, and is just the Radon-Nikodym derivative Zl—’;\‘. Note that
EX = [2dF = [ xf(z)dz when defined.

If A; and A, are two sub-o-algebras of A, we say A; and A, are independent if P(ANB) =
P(A)P(B) for all A € Ay, B € Ay. Two events A and B are independent if P(AN B) =
P(A)P(B), or equivalently the o-algebras generated by {A} and {B} are independent.
Two random variables X and Y are independent if ¢(X) and o(Y) are independent. In
other words, any event describable in terms of X is independent of any event describable
in terms of Y. More generally, any number of o-algebras A; are independent if each A;
is independent of the o-algebra generated by all the others, and similarly for events and
random variables. If one is given random variables X; on different probability spaces
(€, A;,IP;), one can construct a probability space on which all the X; are independent by
taking the product space with the product measure.

Warning: Suppose Xi,... X, are independent random variables that take the values
0 or 1 each with probability % Let X, € {0,1} be the sum X; +---+ X,,_; mod 2. Then
any subset of the X;’s of size < n are independent, but X, ..., X,, are not independent.

Exercises
1. If Xy, X5, ... are random variables with Y E|X;| < co then E(}_ X)) = > E(X)).

2. If X1,..., X, are independent random variables with E|X;| < co then E(J]_, X;) =
[T-, E(X;) and Var(}_ X;) = > Var(X;).
3. Tchebychev’s Inequality: If E|X| < oo and ¢ > 0 then P(|X —EX| > t) < Var(X)/t%



Theorem (Kolmogorov’s 0—1 law) Suppose X1, Xs, ... are independent random vari-

ables and F is a tail event, i.e., an event such that for all n, E only depends on the values
of Xos1, Xpio,.... Then P(E) =0 or 1.

Proof. The set M of all events that are independent of E is a monotone class: If P(ENA;) =
P(E)P(A;) and A; € M is a monotonic sequence, then the limit A = (JA; or [ A4;
satisfies P(F N A) = imP(E N A;) = P(E)limP(A4;) = P(E)P(A), so A € M. Now E €
0(Xn41, Xnt2,...), so E is independent of o(Xy,...,X,). ThusC =, 0(X1,...,X,) C
M. But C is an algebra (check this), so M contains the o-algebra generated by C, which
is just o(Xy, Xs,...). But then F € M, so E is independent of E. But then P(F) =
P(ENE)=P(E)P(E), so P(E)=0or 1. O

Example Events such as ‘lim X; < ¢’ and ‘lim % Z?:l X; = ¢ are tail events.

Example Consider Z* and join neighboring (horizontally or vertically adjacent) points
independently with probability p. Then the probability that there is an infinite connected
subset of Z? is either 0 or 1. (In fact it is 1 for p > 0.5 and 0 for p < 0.5, but this is very
much harder to prove).

Conditional Expectation

In elementary probability theory, one defines the conditional probability of A given B as
P(A | B) = P(ANB)/P(B). This works as long as P(B) > 0. But there are many instances
when we would like to apply conditional probability when P(B) = 0. More specifically,
if Z is a random variable, we would like to define P(A | Z = z) as a function ¢(z) even
when P(Z = z) = 0. If we consider P(A | Z) = ¢(Z), then what we are asking for is a new
random variable that depends only on the value of Z, i.e., is 0(Z)-measurable.

We first define conditional expectation. Given a o-algebra Ay C A and an integrable
random variable X (E|X| < 00), define for A € Ay, u(A) = E(I4X). Then p is a signed
measure on (2, Ap). Also, p < P, so by the Radon-Nikodym theorem, there exists an
Ap-measurable Y such that E(14X) = E([4Y) for all A € Ay. This random variable Y’
is denoted E(X | Ap) and is called the conditional expectation of X given Ay. It is only
defined up to equality a.s.. We define, for example, E(X | Y, Z) to be E(X | o(Y, Z)).
Conditional probability is defined by, for example, P(E | Ag) = E(1g | Ay).

Lemma Assuming all relevant quantities are defined,

E(X |Y)=0¢(Y) a.s. for some Borel measurable ¢: R — R,
if X and Ay are independent then E(X | Ag) = EX a.s.,
if X is Ag-measurable then E(XY | Ay) = XE(Y | Ao) a.s.,

if Ay C Ay C AthenE(X | A)=EEX]|A)|A) as.,
in particular E(X) = E(E(X | Ay)).

e v o~



Math 7351 12. L, spaces Spring 2005

Suppose (X, A, u) is a measure space and f: X — R* is measurable. Define ||f||, =
([1f[Pdp)t/P for 1 < p < oo and || f||lec = esssup |f| = inf{c: p{z : |f(z)| > ¢} = 0}.

Lemma f =g a.c. = |[fl, = lgll, and |[fll, =0 iff f =0 a.c.

Theorem (Minkowski) ||/ + gll, < [[fll» + [lgll»

t P 4l

[ If1I+llgll

/1

IFl f lall g |?
+ S ATl

FIg LA = A+l gl

9
llgl

P
Proof. |z|P convex = .Now [. O

Define LP(X, A, 1) to be {f : || f|l, < 00}/ ~, where f ~ g iff f =g a.e..
Lemma L,(X, A, ) is a vector space, and ||.||, induces a norm on LP(X, A, u).

Theorem (Riesz-Fischer) LP(X,A,p) is complete wrt |.||,, so is a Banach space.

Proof. First show that L? is complete iff ) || full, < 00 = >_ f,, converges in LP.
Now > || full, < oo gives g(x) = > |fu(z)| € LP by MCT, so g < oo a.e., and f(z) =
> fu(x) converges a.e.. Apply DCT to show ||f — Zf fnllp = 0, (dominate with |g|?). O

Theorem (Hélder) If L+ 1 =1, f € L?, ge L% then [|fgldu <||f],llgll,

Yo 3 : aP LA — _ _f] _ gl
Proof. Use Young’s inequality ab < > T3 with a = 7l b= Tl Now [. O

Lemma For p < oo, simple LP functions are dense in LP.

Proof. Let 0 < ¢y < ¢p < -+ — |f], then ¢, = ¢ sgn f is simple, [[¢nlp = [|dnlly < [[f]l
and ||f — ]|, — 0 by DCT (dominate by |f|P). O

Lemma For p < oo, the support supp f = {z : f(x) # 0} of any f € LP is o-finite.
Proof. supp f = U, {z : [f(2)| > 3}, and pla : [f(2)] > 1} < [(nlfPP) =n?| f|l} < 0. O

Theorem (Riesz Representation Theorem) Let F' be a bounded linear functional on
LP(X, A ), 1 < p < oo and suppose either p > 1 or (X, A, u) o-finite. Then there is a
unique function g € LU(X, A, u), % + é =1, such that

PP = [ 9 forall f € (X Ap).
Moreover, for all such g, the above formula defines a linear functional with ||F|| = ||g]|,-
Proof. Assume first that p is finite. Now yg € LP for any E. Define v(E) = F(xg) € R.

Claim 1: v is a finite signed measure.
Finite clear. If E' = J E; is disjoint, then VN > ng: u(E \ Fy) < € where Fy = Uf\il E;,



so [V(E) = 320 v(B)| = |F(xe — ity xz,)
Hence v(E) = Y " v(E;).

= [F(xe\ny)| < IFllIxeweyllp < [l

Claim 2: v < p.
p(E) = 0= [v(A)] = [F(xa)| < [FlllIxall, = 0 for any A C E.

Now by the Radon-Nikodym theorem F(xg) = v(E) = [,gdp = [ xpgdup. So by linear-
ity, F'(¢) = [ ¢gdp for any simple function ¢.

Claim 3: ||g|l, < || F]|, in particular g € LA.

Let 0 < ¢1 < ¢p < -+ — |g|”. Then [|¢nlls = [ ¢ = [ &%/ """ < [|glén = Fgnsgng) <
IE|[l|énllp- Hence [|gnllp~t < [[F]|, and so [ ¢ < [[F[P/®=Y = |[F||%. But [ ¢ — [lg|
by MCT, so ||g|ly < ||[F]|. For ¢ = oo let E = {x : |g(z)| > c}, then cu(E) < [, |g] =
F(xgsgng) < HFHHXEH1 = [[Fl|u(E), so if ¢ > |[F'|| then p(E) = 0.

Claim 4: F(f) = [ fg.

Let¢n—>f1an then |F(f)— [ fgl < |F(f)=F ()| +|f(¢n) = [ ongl+| [ ¢ng—[ fol <
VFIf = onllp + 04 lgllgllf — énll, = 0, the last term by Hoélder.

Claim 5: g is unique a.e. (even if y not finite).

Let ¢; and go be two such g’s. Then for f € LP, [ f(g1 — g2) = 0. For any E with
p(E) < oo, f=sgn(gi — g2)xe € LP. Then [,]g1 — g2| = 0, 50 g1 = g a.e. on E. But
{z: g1(x) # 0 or go(x) # 0} is o-finite, so g1 = go a.e..

Now assume p is o-finite. Write X = | X,, with X; C X, C ... and u(X,) < co. By
considering the finite measure ju,(A4) = p(AN X,), we can define g, by F(f) = [ gof du
when supp f C X,,. W.lo.g. gn(x) =0 for z ¢ X,, and g,(z) = gm( ) for all z € X, N X,
(by a.e. uniqueness of g,). Note that ||gn|lq < [ F|lzr(x,) < ||F||Lp , so if g(x) = lim g, ()
then [glly < [[F by MCT. If f € L7 let f, = fxx,. Then [F(f)— | 9f] < |F(f)—F(f)|+
|F(fn) — fgnf‘"i_‘fgnf fgf’<HF”Hf anp"i_O"i_‘fgnf fgf| But f, = f, so
|f = full, = 0 by DCT (dominate by |f|), and [ g,f — [ ¢gf by DCT (dominate by |gf]
and use Holder). Thus F(f) = [gf and ||g|l, < ||F||.

Now assume g is arbitrary but p > 1, so ¢ < oo. For all o-finite F, define g so that
F(f) = [ fgr when supp f C E. W.lo.g. gg(z) = 0 when 2 ¢ E. Now |ggll, <
|Fllerey < ||F||lee(x), and if B C E' then |lgpll; < ||ger]| since gg = gpr a.e. on E.
Thus we can choose an increasing sequence F; C FEy C i — supg ||lgg|l4-
Let £ = |JE; and suppose f € LP. If F(fxx\g) # 0 then since supp f is o-finite,
there exists an F' C X \ £ with u(F) < oo and F(fxr) # 0. Thus ||gr|l, > 0. But

lgporlle = llgelli+lgelld > el a contradiction. Hence F(f) = F(fxr) = [ grf du for
all f € L.

Finally, |[F'(f)| = | [ fgl < I fllsllgllg, so [ F]] < llgllg, and thus [ F]| = [[g]l,- O
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Lemma 1. Let (X,d) be a metric space and u* an outer measure such that p*(AU B) =
W (A) + p*(B) when d(A, B) > 0. Then all Borel sets in X are p*-measurable.

Proof. We show closed sets are measurable. We need p*(E) > p*(ENA) + p*(E \ A) for
any E and any closed A. W.lLo.g. u*(E) < oco. Since A is closed, A = {z : d(z,A) =
0}. Let A. = {z : d(z,A) < e} Let R, = {z € E: =7 < d(z,A) < L}, Then
d(Rp, Ry) > 0 when |n —m| > 2. Hence 320, p*(Ra,) = (U, Ran) < p*(E) < o0,
50 > o j*(Ray,) converges. Similarly > pi*(Rayq1) converges. Fix e > 0. Then for
some N, > p1*(R,) < e. But E\A = (E\Ay/n)UU,_y Ry, so p*(E\A) < p*(E\An)+e
by countable subadditivity. Hence p*(ENA)+p*(E\A) < p*(ENA)+p* (E\Ayn)+e <
p(ENA)U(E\ Aiyn))+e < p*(E)+esince d(ENAE\Ayy) > ~. Nowlete — 0. O
For a > 0 define m(A) = inf > oo, where the infimum is over all collections of balls

B, (z;) with A C | J:2, By, (x;) and r; < e. Define p*(A) = lim,._,o m(s)(A).

Lemma 2. For any metric space (X,d), pu* exists, is an outer measure, and p*(AU B) =
w(A) + p*(B) when d(A, B) > 0.

)

Proof. First note that m& increases as e decreases, so p* = lim, mg’ = lim,, m&™ exists.
The functions m’ are monotonic and countably subadditive: if A = U Aj, choose B, (i)

7 5) 5 *
so that » .78 < m& + §/21. Then m{(A) < DT = S mi(4,) + 6. Hence e
is monotonic and countably subadditive: p*(A) = lim, u&/™(A) < Tim, 32, u&/™ (A) =
> lim p$/™ (A;) = 32 p*(A;) by discrete MCT. Finally, if & < d(A, B)/2 then m{ (AU
B) = m(A) + mE (B), so if d(A, B) > 0 then pu*(AU B) = u*(A) + pu*(B). O

Definition The Borel measure p, that arises from ) is called the Hausdorff measure of
dimension «. The Hausdorff dimension of a set A is dim A = sup{a : ua(A) > 0}.

Lemma 3. If a <dim A then p,(A) = oo.
Proof. If a < /3 then m(;) < B~ Thus if ps(A) > 0 then mi(A) > e Pug(A) — oo
as € — 0. ad
Exercises

1. Show that p, is (up to a constant factor) the Lebesgue measure on R™.

2. Show that the Cantor set has Hausdorfl dimension %.
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Definition Let K be the set of compact subsets of a Hausdorff topological space X.
A content on X is a function \: K — [0, 00) which is

1. monotone: K7 C Ky = ANK7) < AM(Ky);
2. finitely additive: K3 N Ky =0 = MK U Ky) = M(K;) + A(K>); and
3. finitely subadditive: \(K; U K3) = A(K7) + A(K>) for any K, Ky € K.

Lemma If X is Hausdorff and A and B are disjoint compact sets then there exist disjoint
open sets U D A and V DO B.

Proof. Fix x € A. Then for all y € B, there exists disjoint open Uy, V, with z € U,,
y € V. The V, cover B, so a finite collection V,, do. Then U = U, and V = JV,, are
disjoint open sets with x € U and B C V. Now repeat this process with each x to get such
sets U™ and V@, Since the U® cover A, a finite subcollection do. Then U = |JU®)
and V = V@) are as required. O

Lemma A content \ gives rise to a measure p on (X, o(K)) with /L(I%) < AK) < u(K).

Proof.

Define the inner content of an open set U by A\, (U) = supgcy A(K).

Define for any set A, u*(A) = infy-a A (U).

Use K, K; etc., to denote compact sets and U, U;, etc., to denote open sets.

Both A, and p* are clearly monotone. Suppose K C U; UUs. Then K\ Uy and K \ U; are
disjoint compact sets, so there are disjoint open V; O K\U;. Then K; = K\ V; are compact,
K; CU; and KUK, = K. By induction, if K C ngl U; then there exists compact K; C U;
with Uf\il K; = K. Now suppose K C ;= U;. By compactness, K C Uf\il U, for some N,
so we have K; C U;, K = JK;, i < N, and \(K) < SV, AN(K;) < 32, A\(U;). Taking
supremums over K C U = JU;, \(U) < > A (U;) and so A, is countably subadditive.
Countable subadditivity of p* follows. Hence p* is an outer measure.

Fix any E and pick U O E. Then

M(U) > supgocin . gorcoe AUEUK”) K'UK"CU
> supgrcpnk, krcovg (MK +AK"))  K'NK" =10
> supgorcn i (AK) + A (U \ K7)) U\ K’ is open, definition of A,
>MUNK)+p*(ENK) ENK CU\ K/, definition of u*
> (E\K)+ p"(ENK) E\ K CU\ K, definition of u*

Taking infimums over U we get u*(F) > p*(E\ K) + p*(E N K), so K is measurable.

Finally, 4*(U) = infyrsp A(U') = A (U), so g (K) = A(K) = supgrcge A(K') < A(K).
K is measurable since it is the difference of two compact sets K and K\ K. Also, p*(K) =
infyoi supgrcy A(K') > infy AM(K) = M(K). O
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Definition A topological group is a topological space G which is also a group. Moreover,
both the multiplication x: G' x G — G and the inverse ()™': G — G are continuous (in
the case of x, continuity is with respect to the product topology on G x G).

Examples
1. R under +. More generally R™ with vector addition.

2. R\ {0} under x. More generally the general linear group GL,(R) of all invertible
n X n matrices with entries in R. Multiplication is matrix multiplication. Topology
can be given by considering GL,(R) as a subset of R™".

3. The special linear group SL,(R) (matrices of determinant 1) and the orthogonal group
O,(R) (matrices A with AAT = I) are topological subgroups of GL,(R).

Lemma If U is an open neighborhood of 1 in a topological group G then there exists an
open neighborhood V- of 1 such that V=V ={z 7y 2,y e V} C U.

Proof. By continuity of the map (z,y) — 2~ 'y, there exists a V; x V5 containing (1, 1)
with V'V, C U. Take V = V; N V5. O

Definition A left Haar measure is a measure p on the Borel sets of GG such that
1. p is left invariant: if g € G then u(gA) = p(A).
2. p is outer regular: u(A) = inf{u(U) : open U D A}.
3. If K is compact then pu(K) < oc.
4. If U is open then pu(U) > 0.

Note [ xa(gz)du(x) = fxg 14( x) du(x) u(g—tA) = = [ xa(x)dp, so by standard
arguments [ f(gz)du(z) = [ f(z)du(z) for any mtegrable f.

Examples
1. Lebesgue measure on (R",+) is both a left and a right Haar measure.

2. The measure p(E) = [, & far on (R {0}, x) is a Haar measure.

Definition A subset of G is o-bounded if it can be covered by a countable union of
compact sets.

Exercises
1. If K is compact then there exists a compact Gs-set K’ with K C K', u(K) = p(K’).
(n(K) = inf{u(U) : U 2O K}, choose U; O K with u(U;) — p(K) and inductively
define K;;; C K; NU; with K C Kp. Then K' = K, = K, ]
2. If K is a compact Gs-set and G is o-bounded then {(x,y) : zy € K} is measurable
in G x G. [Show the compact set {(x,y) : xy € K} N (K’ x K') is measurable first.]



Definition For any two sets A and B, define [A:B] to be the minimum n such that A
can be covered with n left translates of B, A = (J._, ¢;B. Note that if K is compact and
U has non-empty interior then [K:U] < oo.

Theorem If G is a o-bounded locally compact Hausdorff topological group, then there
exists a left Haar measure on G. Moreover, it is unique up to multiplication by a positive
constant.

Proof. Let IC be the set of compact subsets of G. If U is any open set then K N U =
K\ (K \U) is a difference of compact sets, so lies in (k). Since G is o-bounded,
G=UZ, KisoU =, (K;,NU) € o(K). Thus o(K) contains all Borel sets.

By local compactness, there is a compact set Ky with 1 € [30. Define for all open U > 1
the function Ay (K) = [K:U]/[K(:U]. Note that Ay is subadditive and monotone, but not
necessarily additive. Now [K:U] < [K:Ky|[Ko:U], so 0 < A\y(K) < [K:Kj] < oo for all
K € K. Consider Ay as an element of the space P = []c,[0, [K:Ko]] which is compact
by Tychonoff. For each U 3 1, let Sy € P be the closure of {\y : 1 € V C U}. Clearly
cach Sy is closed and any finite intersection ();_, Sy, is non-empty since it contains Aqy, .
Hence (5, Su # 0. Let X\ € Nus1 Su. Suppose K and K’ are disjoint compact sets.
Then 1 ¢ K 'K’, and K~'K’ is compact (continuous image of K x K'), so closed. Thus
there is an open U > 1 with UT'UN KK’ = 0, so KU'N K'U™' = (. In this case
[KUK"V] = [K:V] 4+ [K"V] for all V C U. Hence N(K UK') = N(K) + N(K’) for
all X € Sy (the set of such X is closed and contains all Ay, V' C U). In particular
MK UK') = MK) + MK'). Hence X is a content on G and gives rise to a measure p
n (G,0(K)). Now Ay(gK) = A\y(K) for all U, K, and ¢, so A(gK) = AK). Thus
w1(gA) = p(A) for all A € ¢(K). Finally, A € P, so \(K) < [K:K;| < co. Now K’ = KK,
is compact and K C [8’, so u(K) < ,u(lg’) < AK') < 00. Clearly AM(Kp) =1, and if U is
non-empty and open, Koy C |J;_; g;Ko, so 1 <nu(U), and pu(U) > 0.

Uniqueness: Let Ky be the set of compact Gy sets, and assume v and p are two left Haar
measures. Fix A € Ky with non-empty interior, so 0 < u(A),v(A) < oo. Define ¢(g) =

p(A)/u(Ag™), so that u(A) = [ xa(zg)c(g) du(w). Note p(Ag™") = [ X(zgeay (2, g) dp(x)
so is measurable as a function of g (Fubini). Then for any B € K,
(A fIXA:ry xp(y) dyu(x)dv(y)
= ffXA ) p(x7ly) d ( Jdp(x) [/ ()dv=[f(z""y)dv]
= [/ xa@)e((y ') xp((y~'2) ™) du(z)dv(y) [27'y = (y~'2)" ]
= ffXA (e )xp(=™") du(z)dv(y) [ fy~ @)dp= [ f(x)dp]
= v(A) [e(z™)xp(z™") du(z).
(All functions measurable in G x G when A, B € Ky). Applying the same argument with
v replaced by p gives [c(xz ) xp(z™hdu(z) = u(B), so u(Av(B) = v(A)u(B) and if
a =v(A)/u(A) then u(B) = av(B) for all B € Ky. Pick K', K" € Ky so that K C K', K"
and p(K) = u(K'), v(K) = v(K"), then p(K) = up(K'N K") = v(K'N K") = v(K), so
= av on K and hence on o(K). O



