
Math 7350 1. Real Numbers Fall 2004

We assume the usual properties of the rationals Q and define a real number as a set of
rationals x ⊆ Q with the following properties (p, q, r denote rationals, x,y, z denote reals):

D1. x 6= ∅,Q.

D2. If p ∈ x then ∀q < p : q ∈ x.

D3. If p ∈ x then ∃q > p : q ∈ x.

Let the set of reals be denoted by R. For every p ∈ Q, the set [p] = {q ∈ Q : q < p}
satisfies D1–D3, so we identify p ∈ Q with [p] ∈ R. The sets x and xc = Q \ x partition Q,
and one thinks of the real number as the dividing point between the two sets. We define
an order ≤ on R by x ≤ y iff x ⊆ y.

Lemma 1 ≤ is a total ordering on R.

Proof. Since ⊆ is always a partial order, it is enough to show that if x, y ∈ R then either
x ⊆ y or y ⊆ x. Assume x 6⊆ y, so that there exists a p ∈ Q with p ∈ x but p /∈ y. Assume
q ∈ y. Then q < p by D2. Thus q ∈ x by D2. Hence y ⊆ x.

Lemma (Least Upper Bound Axiom)
If a non-empty set of reals has an upper bound, then it has a least upper bound.

Proof. Assume S is a non-empty set of reals with upper bound x1 ∈ R. Let x =
⋃

y∈S y.
Clearly x 6= ∅, and x ⊆ x1 ⊂ Q, so D1 holds. If p ∈ x then p ∈ y for some y ∈ S. If q < p
then q ∈ y ⊆ x, so D2 holds. There is a q > p with q ∈ y, so q ∈ x and D3 also holds.
Thus x ∈ R. Clearly y ≤ x for all y ∈ S, and if y ≤ x′ for all y ∈ S then x =

⋃
y∈S y ⊆ x′,

so x ≤ x′. Thus x is a least upper bound for S.

If S is a non-empty set with an upper bound, we write the least upper bound as sup S. Note
that in general sup S may not lie in S. Define addition on R by x+y = {p+q : p ∈ x, q ∈ y}
and multiplication on R by xy = {r : ∃p ∈ x, p′ /∈ x, q ∈ y, q′ /∈ y : r < pq, p′q, pq′, p′q′}.

Theorem 1 These operations give elements of R, and under these operations R forms
an ordered field, i.e.

1. + is associative, commutative, has identity 0, and inverses −x,

2. × is associative, commutative, has identity 1 6= 0, and inverses x−1 for x 6= 0,

3. × distributes over +: x(y + z) = xy + xz,

4. ≤ is a total order,

5. ≤ respects +: x ≤ y and z ≤ t imply x + z ≤ y + t,

6. ≤ respects ×: x ≤ y and 0 ≤ z imply xz ≤ yz.

Proof. Fairly easy, but tedious, check.



From now on, we can forget the construction of R, and just use the fact that it is an
ordered field and satisfies the least upper bound axiom. These facts are enough to prove
all the results about R that we shall need.

We can now define the usual notions of subtraction, division, and absolute value:

x− y = x + (−y), x
y

= xy−1 for y 6= 0, |x| = max{x,−x}.

Exercise: Using just the ordered field and least upper bound axioms, prove

1. 0x = 0, 2. (−1)x = −x,
3. −(−x) = x, 4. 0 < 1,
5. |x| ≥ 0, 6. |x + y| ≤ |x|+ |y|,
7. x ≤ y ⇒ −y ≤ −x 8. z ≤ 0 and x ≤ y ⇒ xz ≥ yz,

Theorem 2 If F is an ordered field satisfying the least upper bound axiom, then there
exists a bijection f : R→ F such that for all x, y ∈ R,
(a) x ≤ y ⇔ f(x) ≤ f(y), (b) f(x + y) = f(x) + f(y), (c) f(xy) = f(x)f(y).

Proof. (sketch)
1. Define f1 : N → F by f1(0) = 0 and inductively f1(n + 1) = f1(n) + 1. One can show
by induction that (a)–(c) hold for f1.
2. Define f2 : Q→ F by f2(p/q) = f1(p)/f1(q). One can show that this is well defined and
satisfies (a)–(c).
3. Define f : R → F by f(x) = supp∈x f2(p). One can check that this is well defines and
satisfies (a)–(c).
4. Finally, f is injective by (a), and if z ∈ F one can check that z = f({p ∈ Q : f2(p) < z}),
so f is surjective.

Lemma (Archimedean Property) If x, y ∈ R and x > 0 then there exists a natural
number n such that nx > y.

Proof. Let S = {nx : n ∈ N}. This set is non-empty and does not have a least upper
bound: if z = sup S then z−x is not an upper bound, so there exists an n with z−x < nx.
But then (n + 1)x > z, a contradiction. Hence S has no upper bound, and so no y can
exist such that nx ≤ y for all n.

Corollary Between any two real numbers there exists a rational number.

Proof. Assume x < y. Then ∃n ∈ N : n(y − x) > 1. Now ∃s ∈ N : s1 > −xn and
∃t ∈ N : t1 > xn + s. Pick the smallest such t. Then t−s

n
will do.
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Definition A sequence (xi) is increasing (strictly increasing) if i < j implies xi ≤ xj

(xi < xj). A sequence (xi) is decreasing (strictly decreasing) if i < j implies xi ≥ xj

(xi > xj). A sequence is (strictly) monotonic if it is either (strictly) increasing or (strictly)
decreasing. A subsequence of (xi) is a sequence of the form (xni

) where (ni) is strictly
increasing.

Lemma Every sequence has a monotonic subsequence.

Proof. Assume (xn) is a sequence and construct an upper subsequence (xui
) and a lower

subsequence (xlj) as follows. Suppose we have constructed xui
for i < i0 and xlj for j < j0.

Let the last elements of these subsequences be xu = xui0−1
and xl = xlj0−1

(or +∞ and
−∞ if i0 = 0 or j0 = 0 respectively). At each stage there will be infinitely many xn such
that xl ≤ xn ≤ xu. Pick the smallest such n > ui0−1, lj0−1. If there are infinitely many
xm with xn ≤ xm ≤ xu then add xn to the lower subsequence, lj0 = n, otherwise there
are infinitely many xm with xl ≤ xm ≤ xn and we can add xn to the upper subsequence,
ui0 = n. Repeat this process inductively. The subsequence (xun) is decreasing and the
subsequence (xln) is increasing. At least one of these subsequences is infinite.

We define the extended real numbers R? = R∪{−∞}∪{+∞}, with the usual conventions,
∞+ x = ∞, ∞x = −∞ for x < 0, etc. We leave ∞−∞ undefined, but let ∞.0 = 0.
We now extend sup S to arbitrary sets of (extended) reals S by setting sup ∅ = −∞, and
sup S = +∞ if S has no upper bound. We define inf S = − sup{−x : x ∈ S}.
Assume (xn)∞n=0 is an infinite sequence of real numbers and L ∈ R. We define

L is a limit of (xn), limn→∞ xn = L ⇔ ∀ε > 0: ∃n0 : ∀n ≥ n0 : |xn − L| < ε,
L is a cluster (or accumulation) point of (xn) ⇔ ∀ε > 0: ∀n0 : ∃n ≥ n0 : |xn − L| < ε.

Note that ∃n0 : ∀n ≥ n0 : can be translated “for all but finitely many (f.a.b.f.m.) n”,
whereas ∀n0 : ∃n ≥ n0 : can be translated “there exists infinitely many (∃∞-many) n”.
We also allow L = ±∞, by, replacing ∀ε > 0: · · · : |xn − L| < ε by ∀K > 0: · · · : xn > K
when L = +∞, and by ∀K > 0: · · · : xn < −K when L = −∞.

Definition We say (xn)∞n=0 converges or is convergent if lim xn exists and is finite.

Definition We say (xn)∞n=0 is bounded if ∃K > 0: ∀n : |xn| < K.

Lemma Every bounded monotonic sequence converges.

Proof. Assume w.l.o.g., (xn) is increasing and let L = sup xn. Since (xn) is bounded,
L ∈ R. Since L − ε is not an upper bound, ∃n0 : xn0 > L − ε. But (xn) is increasing, so
∀n ≥ n0 : xn > L− ε. But ∀n ≥ n0 : xn ≤ L. Thus |xn − L| < ε and lim xn = L.

Theorem (Bolzano-Weierstrass)Every bounded sequence has a convergent subsequence.

Proof. Pick a monotonic subsequence of (xn).



A sequence (xn) is a Cauchy sequence iff ∀ε > 0: ∃n0 : ∀n,m ≥ n0 : |xn − xm| < ε.

Lemma A sequence is a Cauchy sequence iff it converges.

Proof. If (xn) converges, then ∀ε > 0: ∃n0 : ∀n ≥ n0 : |xn − L| < ε/2. But then ∀n,m ≥
n0 : |xn−xm| ≤ |xn−L|+ |L−xm| ≤ ε/2+ε/2 = ε, and (xn) is Cauchy. Conversely, if (xn)
is Cauchy, pick a monotonic subsequence (xni

). Now ∀ε > 0 : ∃n0 : ∀n,m ≥ n0 : |xn−xm| <
ε/2. But then (xni

) is bounded (most terms by xn0 ± ε/2). If lim xni
= L then by taking

m = ni for large enough i, |xm − L| < ε/2, so |xn − L| < ε. Thus (xn) converges to L.

We can define ‘one-sided’ limits:

limn→∞ an = L ⇔ ∀ε > 0 : f.a.b.f.m. n : an ≤ L + ε and ∃∞-many n : an ≥ L− ε,
limn→∞ an = L ⇔ ∀ε > 0 : f.a.b.f.m. n : an ≥ L− ε and ∃∞-many n : an ≤ L + ε.

And similarly for L = ±∞.

Lemma Let (xn) be a sequence of real numbers and let L ∈ R?.

1. There is at least one cluster point L ∈ R? of (xn),

2. (xn) is bounded iff neither +∞ nor −∞ is a cluster point of (xn),

3. lim xn is the smallest and lim xn is the largest cluster point of (xn) (both exist ∈ R?).

4. lim xn = L exists ⇔ there is exactly one cluster point of (xn), namely L.

5. Any cluster point of a subsequence (xni
) is also a cluster point of (xn).

6. L is a cluster point of (xn) ⇔ there exists a subsequence of (xn) with limit L.

7. limn→∞ xn = limn0 supn≥n0
xn, limn→∞ xn = limn0 infn≥n0 xn.

8. If (xn) is increasing (resp. decreasing), then lim xn = supn xn (resp. infn xn).

9. lim(xn± yn) = lim xn± lim yn, lim xnyn = lim xn lim yn, lim(xn/yn) = lim xn/ lim yn,
provided these expressions are defined (and not ∞.0).

We define the limit of a series
∑∞

i=0 xi as limn→∞
∑n

i=0 xi.

Lemma

1. If
∑∞

i=0 xn converges then lim xn = 0.

2. If
∑∞

i=0 |xn| converges then
∑∞

i=0 xn converges.

The examples
∑

1
n

and
∑ (−1)n

n
show that the converses to these statements are false.

Warning: Don’t interchange limits etc. In general, limn limm xn,m 6= limm limn xn,m.



Math 7350 3. Open and Closed Sets Fall 2004

Definition We say x is in the interior of a set S, if ∃ε > 0: (x − ε, x + ε) ⊆ S. The

interior of S is the set
◦
S of all interior points of S. A set U is open iff U =

◦
U .

Examples (a, b) is open, but [a, b] and [a, b) are not (take x = a). Q is not open.

Lemma 1. ∅ and R are open.
2. The union of any collection of open sets is open.
3. The intersection of any finite collection of open sets is open.

4.
◦
S is open, and is the largest open subset of S,

◦
S =

⋃
open U⊆S U .

Definition We say x is a point of closure of S if ∀ε > 0: (x − ε, x + ε) ∩ S 6= ∅. The
closure S̄ of S is the set of all points of closure of S. A set F is closed iff F = F̄ .

Lemma (S̄)c = (Sc)◦. In particular S is closed iff Sc is open.

Corollary 1. ∅ and R are closed.
2. The intersection of any collection of closed sets is closed.
3. The union of any finite collection of closed sets is closed.
4. S̄ is closed, and is the smallest closed set containing S, S̄ =

⋂
closed F⊇S F .

Note that any set is a union of closed sets (singletons) and an intersection of open sets
(complements of singletons).

Exercise: Show that S1 ∪ S2 = S̄1 ∪ S̄2. Give an example where S1 ∩ S2 6= S̄1 ∩ S̄2.

Lemma L ∈ S̄ iff there exists a sequence (xn) with xn ∈ S such that limn→∞ xn = L.

Proof. ⇒ : ∀n : ∃x ∈ S ∩ (L− 1
n
, L + 1

n
). Set xn to be one such x.

⇐ : ∀ε > 0: ∃n0 : ∀n ≥ n0 : |xn − L| < ε, hence xn0 ∈ S ∩ (L− ε, L + ε).

Example Define the Cantor set by C =
⋂∞

i=0 Ci where C0 = [0, 1], Cn+1 = {x/3 : x ∈
Cn} ∪ {(x + 2)/3 : x ∈ Cn}. Then Cn+1 is obtained from Cn by removing the middle third
of each subinterval of Cn. Cn and hence C is closed. The set C can also be described as all
x ∈ [0, 1] which can be written in base 3, x =

∑∞
i=1 an3−n, with all an ∈ {0, 2}. If x, y ∈ C

with x < y, then there exists z /∈ C with x < z < y. Thus C contains no non-trivial
interval. Moreover, C is uncountable since each choice of (an) gives a distinct x ∈ C.

Definition An interval is a subset I of R such that if x, y ∈ I then ∀z : x ≤ z ≤ y ⇒ z ∈ I.
If inf I < z < sup I then z ∈ I, so I = [a, b], (a, b], [a, b), or (a, b) with a, b ∈ R?.

Definition If S ⊆ R, define an equivalence relation on S by x ∼ y iff [x, y] ⊆ S if x ≤ y
(or [y, x] ⊆ S if y ≤ x). We define a component of S to be an equivalence class of ∼. Note
that components are non-empty intervals (possibly single points).



Lemma Every open set is a disjoint union of countably many open intervals.

Proof. Consider the component interval It of t ∈ U . If x ∈ It then ∃ε > 0: (x−ε, x+ε) ⊆ U ,
so ∀z ∈ (x− ε, x+ ε) : z ∼ x ∼ t and so (x− ε, x+ ε) ⊆ It. In particular It is open, so U =⋃

t∈U It is a disjoint union of open intervals. There are only countably many components
since each component contains a rational (∃ a surjection from Q to components).

Note: Although any open set is countable union of open components, there may be un-
countably many ‘gaps’ between the components (e.g., the complement of the Cantor set).

Definition If S ⊆ ⋃
i∈I Ui then {Ui : i ∈ I} is said to be a cover of S. If the Ui are open,

we call it an open cover. The cover is finite (resp. countable) if I is finite (resp. countable).
We say S is compact if every open cover of S has a finite subcover, i.e., if S ⊆ ⋃

i∈I Ui then
there is a finite I0 ⊆ I such that S ⊆ ⋃

i∈I0
Ui. We say S is connected if whenever U1 and

U2 are open, S ⊆ U1 ∪ U2, and U1 ∩ U2 ∩ S = ∅, then either S ⊆ U1 or S ⊆ U2.

Theorem (Lindelöf) If S ⊆ R, then any open cover of S has a countable subcover.

Proof. For all x ∈ S ⊆ ⋃
i∈I Ui, ∃i ∈ I such that x ∈ Ui and ∃p, q ∈ Q, p < x < q with

x ∈ (p, q) ⊆ Ui. Now for each pair of rationals p < q, pick (if it exists) i ∈ I such that
(p, q) ⊆ Ui. Let I0 be the set of all i chosen. Then I0 is countable and x ∈ ⋃

i∈I0
Ui.

Theorem (Heine-Borel) F is compact iff F is closed and bounded.

Proof. Suppose first that F = [a, b]. Let S = {x ∈ [a, b] : ∃ finite I0 ⊆ I : [a, x] ⊆ ⋃
i∈I0

Ui}.
Clearly a ∈ S and b is an upper bound for S, so c = sup S exists and c ∈ [a, b]. Then
c ∈ Ui0 for some i0 ∈ I, so (c − ε, c + ε) ⊆ Ui0 for some ε > 0. Now ∃d ∈ S : d > c − ε,
and a finite I0 such that [a, d] ⊆ ⋃

i∈I0
Ui. Hence [a, c + ε) ⊆ ⋃

i∈I0∪{i0} Ui. If c < b then c

is not an upper bound for S, and if c = b, [a, b] ⊆ [a, c + ε) has a finite subcover.
In general, if F is bounded, then F ⊆ [a, b] for some a, b ∈ R. Now F c is open and so
[a, b] ⊆ F c∪⋃

Ui has a finite subcover. Removing F c, this still gives a finite subcover of F .
If F is not bounded then F ⊆ ⋃

n∈Z(n− 1, n + 1), but there is no finite subcover.
If F is not closed, pick a point of closure x /∈ F . Then F ⊆ ⋃

ε>0[x− ε, x + ε]c, but there
is no finite subcover.

Corollary If Fi, i ∈ I, are closed, bounded, and
⋂

i∈I0
Fi 6= ∅ for any finite I0,

⋂
i∈I Fi 6= ∅.

Lemma S is connected iff S is an interval.

Proof. ⇒ : If x, y ∈ S and x < z < y, consider U1 = (−∞, z) and U2 = (z,∞).
⇐ : Assume S ⊆ U1 ∪ U2, S 6⊆ Ui. We may assume x, y ∈ S, x ∈ U1, y /∈ U1, x < y. Let
Ix be the component interval of x ∈ U1, which we know is open, say (w, z), x < z ≤ y.
Now z ∈ S, so z ∈ Ui for either i = 1 or i = 2. Let Iz be the component interval of z ∈ Ui.
Then (x, z) ∩ Iz ∩ Ix 6= ∅. If i = 1 this implies Iz = Ix, so z ∈ Ix = (w, z), a contradiction.
If i = 2 then (x, z) ∩ Iz ∩ Ix ⊆ S ∩ U2 ∩ U1, so S ∩ U1 ∩ U2 6= ∅.
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Definition Assume S ⊆ R, a ∈ R, and f : S \ {a} → R. Define limits by

lim
x→a, x∈S

f(x) = L ⇔ ∀ε > 0: ∃δ > 0: ∀x ∈ S : 0 < |x− a| < δ ⇒ |f(x)− L| < ε

One can also define cluster points, lim, and lim similarly. One can also extend the definition
to include L = ±∞, and/or a = ±∞. Results analogous to those of Section 2 hold, except
that if a /∈ S \ {a} then lim f(x) = L is vacuously true for all L but no L is a cluster point.
(If a ∈ S \ {a} then a is called a limit point of S).

Definition Assume S ⊆ R. We say f : S → R is continuous at the point x ∈ S if
∀ε > 0: ∃δ > 0: ∀z ∈ S : |z − x| < δ ⇒ |f(z)− f(x)| < ε, i.e., limz→x, z∈S f(z) = f(x). We
say f is continuous if f is continuous at all x ∈ S.

Definition A subset T of a set S is called relatively open in S if T = S∩U for some open
set U . Alternatively, ∀x ∈ T : ∃δ > 0: ∀z ∈ S : |z − x| < δ ⇒ z ∈ T .

Lemma f : S → R is continuous iff f−1[U ] is relatively open in S for all open sets U .

Theorem If f is a continuous function on a (non-empty) closed and bounded set, then f
is bounded and attains its bounds.

Proof. Assume f [F ] ⊆ ⋃
i∈I Ui, where Ui are open. Then f−1[Ui] = F ∩ Vi for some open

Vi (e.g., Vi = f−1[Ui] ∪ F c).
⋃

f−1[Ui] = f−1[
⋃

Ui] ⊇ f−1[f [F ]] = F , so F ⊆ ⋃
i∈I Vi. Pick

a finite subcover F ⊆ ⋃
i∈I0

Vi. Now f [F ] =
⋃

i∈I0
f [F ∩ Vi] ⊆

⋃
i∈I0

Ui. Hence f [F ] has
a finite subcover, so is closed and bounded. Hence f [F ] contains sup f [F ] and inf f [F ].
Thus f is bounded and attains its bounds.

Theorem (Intermediate value theorem) If f is continuous on an interval I then f [I]
is an interval.

Proof. Pick U1, U2 open with f [I] ⊆ U1∪U2 and U1∩U2∩f [I] = ∅. Write f−1[Ui] = I ∩Vi

where Vi are open. Then I ⊆ V1 ∪ V2, V1 ∩ V2 ∩ I = ∅, thus I ⊆ Vi for some i. But then
f [I] ⊆ f [Vi] ⊆ Ui. Hence f [I] is connected, and so is an interval.

Uniformity

Definition f : S → R is uniformly continuous if ∀ε > 0: ∃δ > 0: ∀x, y ∈ S : |x − y| <
δ ⇒ |f(x)− f(y)| < ε. Note that the δ is independent of x.

Example f(x) = x2 is continuous but not uniformly continuous on R.

Theorem If f is continuous on a closed bounded set F then f is uniformly continuous
on F .



Proof. Fix ε > 0. Then ∀x ∈ F : ∃δx > 0: ∀y ∈ F : |x − y| < δx ⇒ |f(x) − f(y)| < ε/2.
Clearly F ⊆ ⋃

x(x − δx/2, x + δx/2). Pick a finite subcover corresponding to the points
x1, . . . , xn and assume z ∈ (xi − δxi

/2, xi + δxi
/2). If y ∈ F and |z − y| < δxi

/2 then
|xi − y| < δ, so |f(z) − f(y)| ≤ |f(z) − f(xi)| + |f(xi) − f(y)| < ε. Thus if we set
δ = min{δxi

/2} > 0, |z − y| < δ ⇒ |f(z)− f(y)| < ε for all z, y ∈ F .

Definition Suppose (fn) is a sequence of functions fn : S → R.
We say fn converges pointwise to the function f if for all x ∈ S, limn→∞ fn(x) = f(x), i.e.,
∀x ∈ S : ∀ε > 0: ∃n0 : ∀n ≥ n0 : |fn(x)− f(x)| < ε. We say fn converges uniformly to f if
∀ε > 0: ∃n0 : ∀n ≥ n0 : ∀x ∈ S : |fn(x)− f(x)| < ε, i.e., the n0 does not depend on x.

Theorem If fn : S → R are continuous and converge uniformly to f : S → R, then f is
continuous.

Proof. Fix ε > 0. Pick n0 such that |fn0(z) − f(z)| < ε/3 for all z ∈ S. Fix x ∈ S. Now
fn0 is continuous, so ∃δ > 0: ∀y ∈ S : |y − x| < δ ⇒ |fn0(y) − fn0(x)| < ε/3. But then
|f(y)− f(x)| ≤ |f(y)− fn0(y)|+ |fn0(y)− fn0(x)|+ |fn0(x)− f(x)| < ε.

Note: fn(x) = xn converges pointwise but not uniformly on [0, 1] to the non-continuous
function f(x) = 0, x < 1, f(1) = 1.

Borel sets

Definition A Borel set is an element of the σ-algebra, B, generated by all open subsets.

Exercise: Show that B is also the σ-algebra generated by the intervals of the form (a,∞),
or by the intervals of the form by [a,∞), or by intervals of one of these forms with a ∈ Q.

Definition A function f : S → R is Borel measurable if for all B ∈ B, f−1[B] = S ∩ B′

for some B′ ∈ B. Note that it is enough to assume f−1[(a,∞)] = S ∩B′ for all a ∈ R.

Lemma Any continuous function is Borel measurable.

Definition An F -set is a closed set. A G-set is an open set. An Fσ-set is a countable
union of closed sets. A Gδ-set is a countable intersection of open sets. An Fσδ-set is a
countable intersection of Fσ-sets. A Gδσ-set is a countable union of Gδ-sets, etc.

Note that any G-set is also an Fσ-set, and any F -set is a Gδ-set. All Gδσδ... or Fσδσ...-sets
are Borel sets. However, not all Borel sets are of one of these forms. On the other hand,
not every subset of R is a Borel set. Indeed, |B| = |R| < |P(R)|.

Exercises

1. Show that the set of points where f : R→ R is continuous is a Gδ-set.

2. Show that the set of points where the sequence of continuous functions fn : R → R
converges is an Fσδ-set.
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Our aim is to construct a notion of the “length” λ(S) of a subset S ⊆ R. We would like
the following conditions:

1. λ(S) is defined and λ(S) ∈ [0,∞] for all S ⊆ R,

2. λ([a, b]) = λ((a, b)) = b− a,

3. If S1, S2, . . . are disjoint then λ(
⋃

Si) =
∑

λ(Si)

4. λ(a + S) = λ(S) where a + S = {a + x : x ∈ S} is a translate of S.

Unfortunately, no such λ exists. However, if we drop Condition 1 and only require λ to be
defined on a large σ-algebra of subsets, then one can construct such a λ.

Definition A measure µ on a σ-algebra A is a [0,∞]-valued countably additive set func-
tion, i.e., if Si ∈ A, i ∈ I, are disjoint and I is countable, then µ(

⋃
i∈I Si) =

∑
i∈I µ(Si).

We allow I to be empty (so µ(∅) = 0), finite, or countably infinite.

Note: We do not allow uncountable unions: Condition 2 implies λ({x}) = 0, λ([0, 1]) = 1,
but

∑
x∈[0,1] λ({x}) =

∑
0 = 0.

Lemma 1. Any measure µ is monotonic: if A, B ∈ A, A ⊆ B, then µ(A) ≤ µ(B).

Proof. If A,B ∈ A, then B \ A ∈ A and µ(B) = µ(A) + µ(B \ A) ≥ µ(A).

As our first attempt, we define the Lebesgue outer measure of S ⊆ R to be λ∗(S) =
inf∪Ii⊇S

∑
i l(Ii), where the infimum is over all countable unions of open intervals Ii =

(ai, bi) that contain S, and l(Ii) = bi − ai is the length of Ii.

Lemma 2. λ∗ is monotonic, and countably subadditive: if Si, i ∈ I, is a countable
collection of sets then λ∗(

⋃
i Si) ≤

∑
i λ

∗(Si).

Proof. Monotonicity is clear. For subadditivity, choose open intervals Iij so that Si ⊆
⋃

j Iij

and
∑

j l(Iij) ≤ λ∗(Si) + ε/2i, i = 1, 2, . . . . Then λ∗(
⋃

Si) ≤
∑

ij l(Iij) ≤
∑

i λ
∗(Si) + ε.

Since ε > 0 is arbitrary, λ∗(
⋃

Si) ≤
∑

i λ
∗(Si).

Lemma 3. If I is an interval then λ∗(I) = l(I).

Proof. First assume I = [a, b] is closed and bounded. We need to show that if I ⊆ ⋃
Ii

then l(I) ≤ ∑
l(Ii). By compactness of I, we can assume there are only finitely many Ii.

W.l.o.g., we may assume that no Ii is contained in another Ij (otherwise remove it, and use
induction on the number of Ii). Now order the Ii = (ai, bi) so that a1 < a2 < · · · < an (the
ai are distinct, since if ai = aj then either Ii ⊆ Ij or Ij ⊆ Ii). Now it is clear that b1 > a2,
b2 > a3, . . . , bn > b. Hence (b1−a1)+(b2−a2)+· · ·+(bn−an) ≥ bn−a1 ≥ b−a as required.
Conversely, I ⊆ (a − ε, b + ε), so λ∗(I) ≤ b − a + 2ε for any ε > 0. Thus λ∗(I) = b − a.
For general intervals, use monotonicity, e.g., λ∗([a + ε, b− ε]) ≤ λ∗((a, b)) ≤ λ∗([a, b]) and
let ε → 0, or λ∗((−∞, a]) ≥ λ∗([a− n, a]) = n and let n →∞.



It is clear now that λ∗ satisfies all the conditions except countable additivity. However, it
is possible to gain additivity at the expense of being defined on a smaller class of sets.

Definition A set X is Lebesgue measurable if for all A ⊆ R, λ∗(A) = λ∗(A∩X)+λ∗(A\X).

Note we have ≤ by subadditivity, so we only need to check ≥.

Lemma 4. The collection of Lebesgue measurable sets is a σ-algebra.

Proof. Clearly ∅ is measurable. Also if X is measurable, then so is Xc. Thus it is enough
to show that if X1, X2, . . . are measurable, then so is

⋃
Xi. Define inductively A0 = A

and Ai+1 = Ai \Xi. By measurability of Xi, λ∗(Ai) = λ∗(Ai ∩Xi) + λ∗(Ai+1). Hence

λ∗(A) =
∑n

i=1 λ∗(Ai ∩Xi) + λ∗(An+1).

However A \X ⊆ An+1, so λ∗(A) ≥ ∑n
i=1 λ∗(Ai ∩Xi) + λ∗(A \X). Since this is true for

all n, we have
λ∗(A) ≥ ∑∞

i=1 λ∗(Ai ∩Xi) + λ∗(A \X).

However,
⋃

(Ai ∩Xi) = A ∩X, so by subadditivity λ∗(A ∩X) ≤ ∑∞
i=1 λ∗(Ai ∩Xi). Thus

λ∗(A) ≥ λ∗(A ∩X) + λ∗(A \X),

as required. (If there are only finitely many Xi, set the other Xi = ∅.)

Lemma 5. The interval (a,∞) is measurable.

Proof. Assume A ⊆ ⋃
Ii and λ∗(A) ≥ ∑

l(Ii)− ε. Now λ∗(A∩ (a,∞)) ≤ ∑
l(Ii ∩ (a,∞)),

and λ∗(A \ (a,∞)) ≤ ∑
l(Ii ∩ (−∞, a)) + l((a − ε, a + ε)). But l(Ii) = l(Ii ∩ (a,∞)) +

l(Ii ∩ (−∞, a)). Thus λ∗(A) ≥ λ(A ∩ (a,∞)) + λ(A \ (a,∞)) − 3ε. Since this is true for
all ε > 0, (a,∞) is measurable.

Theorem All Borel sets are Lebesgue measurable

Proof. Any σ-algebra that contains all (a,∞) contains all Borel sets.

Definition The Lebesgue measure λ(S) of a Lebesgue measurable set S is λ(S) = λ∗(S).

Lemma 6. Lebesgue measure is a measure on the σ-algebra of Lebesgue measurable sets.

Proof. Since Lebesgue measurable sets form a σ-algebra and λ = λ∗ is countably subaddi-
tive, it only remains to show that if X1, . . . are disjoint measurable sets, then λ(

⋃∞
i=1 Xi) ≥∑∞

i=1 λ(Xi). Let An =
⋃∞

i=n Xi. Then λ(An) = λ(An∩Xn)+λ(An\Xn) = λ(Xn)+λ(An+1).
Thus λ(

⋃∞
i=1 Xi) = λ(A1) =

∑n
i=1 λ(Xi) + λ(An+1) ≥

∑n
i=1 λ(Xi). Now let n →∞.

It is now clear that λ(S) satisfies Conditions 2 to 4 at the beginning of this section.
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Lemma 1. If S is Lebesgue measurable then for all ε > 0, there exists an open set U and
a closed set F with F ⊆ S ⊆ U and λ(U \ F ) < ε.

Proof. Assume first that S ⊆ [0, 1]. Then λ(S) ≥ ∑
l(Ii)− ε ≥ λ(U)− ε where S ⊆ U =⋃

Ii, U open. Similarly λ([0, 1] \ S) ≥ ∑
l(I ′i)− ε ≥ λ(U ′)− ε. Setting F = [0, 1] \ U ′ we

have F closed, F ⊆ S and λ(U \ F ) < 2ε. For general S, apply this to Sn = S ∩ [n, n + 1]
with ε replaced by ε/2|n| giving λ(Un \ Fn) < ε/2|n|. Set U =

⋃
Un, F =

⋃
Fn.

Lemma 2. If X ⊆ R and for all ε > 0 there exist measurable F and G with F ⊆ X ⊆ G
and λ(G \ F ) < ε, then X is measurable.

Proof. Subadditivity and monotonicity gives λ∗(A \X) ≤ λ∗(A \ G) + λ∗(G \ F ). Hence
λ∗(A) = λ∗(A ∩G) + λ(A \G) ≥ λ∗(A ∩X) + λ∗(A \X)− ε. Now let ε → 0.

Note: λ∗(X) = 0 ⇒ X is measurable, since ∅ ⊆ X ⊆ ⋃
Ii with λ(

⋃
Ii \ ∅) ≤

∑
l(Ii) < ε.

Lemma 3. If X is measurable, there exists a Gδ-set G and an Fσ-set F with F ⊆ X ⊆ G
and λ(F \G) = 0.

Proof. Pick Fn ⊆ X ⊆ Gn, Fn closed, Gn open, λ(Gn \Fn) < 1
n
. Let F =

⋃
Fn, G =

⋂
Gn.

Lemma 4. If X1 ⊆ X2 ⊆ . . . , with Xi measurable, then λ(
⋃∞

i=1 Xi) = limn→∞ λ(Xn).
If X1 ⊇ X2 ⊇ . . . , with Xi measurable and λ(X1) < ∞, then λ(

⋂∞
i=1 Xi) = limn→∞ λ(Xn).

Proof. Write Y1 = X1 and Yn = Xn \Xn−1 for n > 1, so Yn are disjoint and λ(
⋃∞

i=1 Xi) =
λ(

⋃∞
i=1 Yi) =

∑∞
i=1 λ(Yi) = limn

∑n
i=1 λ(Yi) = limn λ(Xn). For the second part, apply the

first part to Yn = X1 \Xn.

Note: If Xn = [n,∞), then
⋂∞

i=1 Xi = ∅, but limn λ(Xn) = +∞.

Exercise: Show that the Cantor set C has measure 0.

Theorem 1. There exists a non-measurable set.

Proof. Define an equivalence relation on [0, 1] by letting x ∼ y iff x− y ∈ Q. Construct a
set X consisting of precisely one element in [0, 1] from each equivalence class of ∼ (using
Axiom of Choice). Every x ∈ [0, 1] is of the form x0 + q, x0 ∈ X, q ∈ Q ∩ [−1, 1]. Let
Y =

⋃
q∈Q∩[−1,1] X + q, where X + q = {x0 + q : x0 ∈ X}. Then [0, 1] ⊆ Y ⊆ [−1, 2].

In particular 1 ≤ λ∗(Y ) ≤ 3. Assume X were measurable and λ(X) = c. Then X + q is
measurable, λ(X + q) = c, and the X + q are disjoint for distinct q’s. Hence 1 ≤ λ(Y ) =∑

q c ≤ 3. If c = 0 then
∑

q c = 0 and if c > 0 then
∑

q c = +∞, a contradiction.

Definition Define the Cantor function f : [0, 1] → [0, 1] by writing x in base 3, x =∑∞
n=1 an3−n, an ∈ {0, 1, 2}, and setting f(x) =

∑n0

n=1 bn2−n where n0 is the first n for
which an = 1, or ∞ if all an ∈ {0, 2}, and bn = 0 if an = 0 and bn = 1 otherwise.



Exercise: Show that f is continuous, f maps the cantor set C onto [0, 1], and maps the
set [0, 1] \ C to dyadic rationals (rationals of the form a

2n , a ∈ Z, n ≥ 0).

Theorem 2. There exists a Lebesgue measurable set that is not Borel.

Proof. Take the non-measurable set X from Theorem 1 and remove the (unique) rational
number from X. Then A = f−1[X] ⊆ C, so λ∗(A) ≤ λ(C) = 0. Hence A is measurable.
The inverse function g(

∑
bn2−n) =

∑
2bn3−n is continuous except at dyadic rationals.

Hence if A were Borel, g−1[A] = X would be Borel, and so measurable.

Definition Suppose S is measurable. A function f : S → R∗ is Lebesgue measurable iff
f−1[(a,∞]] = {x ∈ S : f(x) > a} is measurable for all a ∈ R.

Extend the Borel sets to R∗ by setting B∗ = {B ∪ I : B ∈ B, I ⊆ {−∞, +∞}}. Since the
measurable sets form a σ-algebra, this implies that f−1[B] is measurable for all B ∈ B∗.
However, the inverse image of a Lebesgue measurable set may not be measurable (e.g.,
the function g above). To show a function is measurable, it is enough to show f−1[B] is
measurable for any collection of Bs that generate B∗, for example {[a,∞] : a ∈ Q}, or
{[−∞, a) : a dyadic rational}.

Definition The characteristic function χX of a set X is defined by χX(x) = 1 if x ∈ X
and χX(x) = 0 if x /∈ X.

Lemma 4. Suppose S is measurable and f, g, fn : S → R∗.

1. Every continuous real valued function is measurable.

2. If f and g are measurable then so are f ± g, fg, f/g, if defined.

3. If fn are measurable, then so are inf fn, sup fn, lim fn, and lim fn

4. If X is measurable then χX is measurable.

Proof. If f : S → R is continuous then f−1[(a,∞]] = S ∩U where U is open, and so S ∩U
is measurable. If f is measurable and h(x) = −f(x) then h−1[(a,∞]] = f−1[[−∞, a)] is
measurable. If h(x) = 1/f(x) (defined to be +∞, say, if f(x) = 0), then h−1[(a,∞]] =
f−1[[0, 1/a)] is measurable if a ≥ 0, and h−1[(a,∞]] = f−1[[1/a, 0)c] is measurable if a < 0.
If h(x) = f(x)2/2 then h−1[(a,∞]] = f−1[[−∞,−√2a)∪ (

√
2a,∞]] (or f−1[R∗] if a < 0) is

measurable. Now if f and g are measurable and h(x) = f(x) + g(x) is never of the form
∞−∞, then h(x) > a iff ∃q ∈ Q : f(x) > q and g(x) > a− q. Hence

h−1[(a,∞]] =
⋃

q∈Q(f−1[(q,∞)] ∩ g−1[(a− q,∞]])

is measurable. Now f − g = f + (−g), fg = (f + g)2/2− f 2/2− g2/2 and f/g = (f)(1/g)
are measurable. If f = supn fn, then f(x) > a iff ∃n : fn(x) > a. Hence f−1[(a,∞]] =⋃

n f−1
n [(a,∞]] is measurable. Now inf fn = − sup(−fn), lim fn = supn0

infn≥n0 fn, and

lim fn = infn0 supn≥n0
fn are measurable. Finally χ−1

X [(a,∞]] = S, S ∩X or ∅, all of which
are measurable.
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Definition A simple function is a real-valued measurable function f : R→ R that takes
only finitely many values, i.e., f [R] is finite.

Definition If f, g : R → R∗ are two functions, write f ≥ g if f(x) ≥ g(x) for all x ∈ R.
Note that ≥ is a partial order on functions. In particular, we say f is non-negative, f ≥ 0,
if f(x) ≥ 0 for all x ∈ R.

Lemma 1. Any simple function can be written in the form f =
∑n

i=1 aiχSi
where the Si

are measurable and form a partition of R (so in particular are disjoint).

Proof. Let f [R] = {a1, . . . , an} and set Si = f−1[{ai}].

Definition If φ =
∑n

i=1 aiχSi
is a non-negative simple function with Si disjoint, define∫

φ =
∫
R φ(x) dx =

∑n
i=1 aiλ(Si).

Note: We could drop the non-negative condition, but we would have to leave
∫

φ undefined
if the sum was of the form ∞−∞.

Lemma 2. Assume φ and ψ are non-negative simple functions.

(a)
∫

φ is well defined and lies in [0,∞]

(b) If φ ≥ ψ then
∫

φ ≥ ∫
ψ.

(c) If c ≥ 0 then
∫

cφ = c
∫

φ.

(d)
∫

(φ + ψ) =
∫

φ +
∫

ψ

Proof. (b) Let φ =
∑n

i=1 aiχSi
and ψ =

∑m
j=1 bjχTj

. By including extra terms a0 = b0 = 0,
S0 = (

⋃
Si)

c, T0 = (
⋃

Ti)
c, we may assume

⋃
Si =

⋃
Ti = R. Let Eij = Si ∩ Tj. Then the

Eij are disjoint and so
∑

i λ(Eij) = λ(
⋃

i Eij) = λ(Tj) and
∑

j λ(Eij) = λ(
⋃

j Eij) = λ(Si).
Thus

∑
i aiλ(Si) =

∑
ij aiλ(Eij) and

∑
j bjλ(Tj) =

∑
ij bjλ(Eij). But if φ ≥ ψ then either

ai ≥ bj or Eij = ∅. Hence
∫

φ ≥ ∫
ψ.

(a) Applying (b) to ψ = φ we see that
∫

φ is well defined. Since φ ≥ 0,
∫

φ ≥ ∫
0 = 0.

(c) Clear.
(d) Defining Eij as above, φ =

∑
ij aiχEij

, ψ =
∑

ij bjχEij
and φ + ψ =

∑
ij(ai + bj)χEij

,
and

∑
ij(ai + bj)λ(Eij) =

∑
ij aiλ(Eij) +

∑
ij bjλ(Eij). The result follows.

Note that
∫ ∑

aiχSi
=

∑
aiλ(Si) holds for any ai ≥ 0, and measurable Si. In particular,

we did not need the Si to be disjoint in the definition of
∫

φ.

Definition Suppose f : R → R∗ is measurable and f ≥ 0. Define
∫

f =
∫
R f(x) dx =

supφ≤f

∫
φ where the supremum is over simple non-negative functions φ with φ ≤ f .

Example Suppose f(x) = 0 if x is irrational and f(p/q) = q if p/q is a rational number
in lowest terms. Show that

∫
f = 0.



Lemma 3. Assume f and g are non-negative measurable functions.

(a) If f ≥ g then
∫

f ≥ ∫
g.

(b) If c ≥ 0 then
∫

cf = c
∫

f .

(c)
∫

(f + g) =
∫

f +
∫

g.

Proof. (a) and (b) are clear. For (c), if φ ≤ f and ψ ≤ g then φ + ψ is a simple function
and φ+ψ ≤ f +g. Thus

∫
(f +g) ≥ ∫

(φ+ψ) =
∫

φ+
∫

ψ. Taking supremums over φ and ψ
gives

∫
(f +g) ≥ ∫

f +
∫

g. Now suppose υ =
∑

aiχSi
≤ f +g. Let N be large and set Ej =

{x : j
N
≤ f(x)

f(x)+g(x)
< j+1

N
}. (If g(x) = 0 or f(x) = ∞, put x in EN−1). Then E0, . . . , EN−1

is a measurable partition of R. Define φ =
∑

ij
j
N

aiχSi∩Ej
, and ψ =

∑
ij

N−1−j
N

aiχSi∩Ej
.

Then φ ≤ f , ψ ≤ g, and φ + ψ = N−1
N

υ. Thus
∫

υ ≤ N
N−1

(
∫

φ +
∫

ψ) ≤ N
N−1

(
∫

f +
∫

g).

Letting N →∞ gives
∫

υ ≤ ∫
f +

∫
g. Hence

∫
(f + g) ≤ ∫

f +
∫

g.

Definition Suppose f is a measurable function. Set f+(x) = max{f(x), 0} and f−(x) =
max{−f(x), 0} so that f = f+−f−, |f | = f++f−, and f+, f− ≥ 0. Define

∫
f =

∫
f+−

∫
f−

provided this is not of the form ∞−∞.

Definition A function f is Lebesgue integrable, if f is measurable and
∫

f+,
∫

f− < ∞
(equivalently

∫ |f | < ∞).

Lemma 4. Assume f and g are measurable functions.

(a) If f ≥ g then
∫

f ≥ ∫
g (if both defined).

(b) If c ∈ R then
∫

cf = c
∫

f (if RHS defined).

(c)
∫

(f + g) =
∫

f +
∫

g (if RHS defined).

Proof. For (a) note that f ≥ g implies f+ ≥ g+ and f− ≤ g−. For (b), write f = f+ − f−
and treat the cases c = 0, c > 0, and c < 0 separately. For (c), let h = f + g and note that
h+ + f− + g− = h− + f+ + g+. Use Lemma 3(c).

Definition If S and f : S → R∗ are measurable, define
∫

S
f =

∫
R χS(x)f(x) dx.

Exercises

1. Show that 1√
x

is Lebesgue integrable on S = (0, 1] (i.e., χ(0,1](x) 1√
x

is integrable).

2. Show that sin(x)
x

is not Lebesgue integrable (on S = R).

3. Show that if f = g a.e., then
∫

f =
∫

g.
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Lemma 1. If f is measurable then
∫ |f | = 0 iff f = 0 a.e.

Proof. Let Ek = {x : |f(x)| ≥ 1/k}. Then
∫ |f | ≥ ∫

(1/k)χEk
= λ(Ek)/k. Hence if∫ |f | = 0 then λ(Ek) = 0, so λ(

⋃
k Ek) = 0. But

⋃
k Ek = {x : f(x) 6= 0}. Conversely, if

f = 0 a.e., and φ =
∑

aiχSi
≤ |f | with ai ≥ 0 and Si disjoint, then for all i, either ai = 0

or λ(Si) = 0. This implies
∫

φ = 0 so
∫ |f | = supφ≤|f |

∫
φ = 0.

Theorem (Monotone Convergence Theorem, MCT) If 0 ≤ f1 ≤ f2 ≤ . . .
is an increasing sequence of non-negative measurable R∗-valued functions and f(x) =
limn→∞ fn(x), then

∫
f = limn→∞

∫
fn.

Note: The limits and/or the
∫

fn may be +∞.

Proof. Suppose φ =
∑m

i=1 aiχSi
is a simple function with 0 ≤ φ ≤ f . Fix ε > 0 and let

En = {x : fn(x) > (1 − ε)φ(x)}. Since f1 ≤ f2 ≤ . . . , clearly E1 ⊆ E2 ⊆ . . . . Also,
for any x, fn(x) → f(x) ≥ φ(x). But φ(x) is finite, so for some n, fn(x) > (1 − ε)φ(x).
Thus

⋃
n En = R. Let φn = (1 − ε)φχEn = (1 − ε)

∑m
i=1 aiχSi∩En . Now φn ≤ fn and

limn λ(Si ∩ En) = λ(Si). Hence limn

∫
fn ≥ limn

∫
φn = limn(1 − ε)

∑m
i=1 aiλ(Si ∩ En) =

(1− ε)
∑m

i=1 ai limn λ(Si ∩En) = (1− ε)
∑m

i=1 aiλ(Si) = (1− ε)
∫

φ. Since this holds for all
ε and φ, limn

∫
fn ≥

∫
f . However, fn ≤ f , so limn

∫
fn ≤

∫
f and so

∫
f = limn

∫
fn.

Theorem (Fatou’s Lemma) If fn ≥ 0 are non-negative measurable R∗-valued functions,
then

∫
limn→∞ fn ≤ limn→∞

∫
fn.

Note: We can have <, e.g., fn = χ[0,1] if n even and fn = χ[1,2] if n odd.

Proof. Let gn0(x) = infn≥n0 fn(x). Then gn0 is an increasing sequence of non-negative
measurable R∗-valued functions. Also

∫
gn0 ≤

∫
fn for all n ≥ n0, so

∫
gn0 ≤ infn≥n0

∫
fn.

MCT implies
∫

lim fn =
∫

limn0 gn0 = limn0

∫
gn0 ≤ limn0 infn≥n0

∫
fn = lim

∫
fn.

Theorem (Lebesgue Dominated Convergence Theorem, DCT) If fn are mea-
surable functions which converge a.e. to f(x), and |fn(x)| ≤ g(x) where

∫
g < ∞, then∫

f = lim
∫

fn.

Note: Dominating fn by g is important, e.g., theorem fails for fn = χ[n,n+1].

Proof. Applying Fatou to g+fn ≥ 0 gives lim
∫

(g+fn) ≥ ∫
lim(g+fn) =

∫
(g+f). Hence∫

f ≤ lim
∫

fn. Applying Fatou to g−fn ≥ 0 gives lim
∫

(g−fn) ≥ ∫
lim(g−fn) =

∫
(g−f).

Hence lim
∫

fn ≤
∫

f . Thus
∫

f ≤ lim
∫

fn ≤ lim
∫

fn ≤
∫

f , so lim
∫

fn =
∫

f .

Definition Assume fn and f are measurable functions. Recall that fn → f a.e. if
λ({x : fn(x) 6→ f(x)}) = 0. We say fn → f in mean if

∫ |fn − f | → 0 as n →∞. We say
fn → f in measure if ∀ε > 0: ∃n0 : ∀n ≥ n0 : λ({x : |fn(x)− f(x)| > ε}) < ε.



Examples

1. Convergence in mean always implies convergence in measure.
(If λ({x : |fn − f | > ε}) ≥ ε then

∫ |fn − f | ≥ ε2.)

2. If fn = nxn on [0, 1] then fn → 0 in measure and a.e., but not in mean.

3. If fn = χ[n,n+1] then fn → 0 a.e., but not in mean nor in measure.

4. If fn = χ[a/2k,(a+1)/2k] where 2k ≤ n = 2k + a < 2k+1, then fn → 0 in mean and in
measure but not a.e.

5. If fn = 2kχ[a/2k,(a+1)/2k] where 2k ≤ n = 2k + a < 2k+1, then fn → 0 in measure but
not in mean nor a.e.

Lemma 2. If fn → f in measure, then there exists a subsequence such that fnk
→ f a.e.

Proof. Choose an increasing sequence nk so that λ({x : |fnk
(x) − f(x)| > 2−k}) < 2−k.

Let Ejk = {x : |fnk
(x) − f(x)| ≥ 2−j}. Then when k ≥ j, λ(Ejk) ≤ 2−k, so for k0 ≥ j,

λ(
⋃

k≥k0
Ejk) ≤ 21−k0 , and thus λ(

⋂
k0

⋃
k≥k0

Ejk) = 0. But then E =
⋃

j

⋂
k0

⋃
k≥k0

Ejk

has measure zero. But this is just the set of points x where fnk
(x) 6→ f(x).

Corollary DCT also holds if we assume fn → f in measure.

Lemma 3. Assume |fn| ≤ g,
∫

min{g, 1} < ∞. If fn → f a.e., then fn → f in measure.

Note: Hypothesis is satisfied (by g = ∞.χS) if fn is zero outside S and λ(S) < ∞.

Proof. Fix 0 < ε < 1. Let En = {x : |fn(x) − f(x)| > ε}. Now
⋃

n≥n0
En is decreasing in

n0 and since fn → f a.e., λ(
⋂

n0

⋃
n≥n0

En) = 0. But if x ∈ En then g(x) > ε/2. Hence∫
min{g, 1} ≥ (ε/2)λ(

⋃
En), so λ(

⋃
n≥1 En) < ∞. Thus λ(

⋃
n≥n0

En) → 0. Hence there is
an n0 with λ(

⋃
n≥n0

En) < ε. So ∀n ≥ n0 : λ({x : |fn(x)− f(x)| > ε}) = λ(En) < ε.

Summary: ‘a.e.’⇒‘in measure’ if the fn are bounded horizontally, ‘in measure’⇒‘in mean’
if the fn are bounded in the plane, and ‘in mean’⇒‘in measure’⇒‘a.e. on a subsequence’.

Exercises

1. Show that if fn ≥ 0 are measurable, then
∑∞

n=1

∫
fn =

∫ ∑∞
n=1 fn.

2. Show that if f ≥ 0 is measurable then
∫∞
−∞ f(x) dx = limn→∞

∫ n

−n
f(x) dx.

3. Show that if f ≥ 0 is integrable then F (z) =
∫ z

−∞ f(x) dx is continuous.

4. Suppose fn ≥ 0, fn → f a.e., and
∫

fn →
∫

f . If S is a measurable set, show that∫
S

fn →
∫

S
f .

5. Suppose that fn and f are integrable. Show that if fn → f in mean then
∫

fn →
∫

f .
Is it true that if

∫
fn →

∫
f and fn → f a.e., then fn → f in mean?
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Definition A step function on [a, b] is a simple function of the form φ =
∑n

i=1 aiχSi
where

the Si are intervals. Equivalently, there exist a finite partition a = a0 < a1 < · · · < an = b
with φ constant on each of the intervals (ai, ai+1).

Definition Suppose f : [a, b] → [−K,K] is a bounded function on the finite interval [a, b].
The lower Riemann integral of f is R

∫
f = supφ≤f

∫
φ where the supremum is over all step

functions φ with φ ≤ f . The upper Riemann integral of f is R
∫

f = infφ≥f

∫
φ where the

infimum is over all step functions φ with φ ≥ f . If R
∫

f = R
∫

f then we call f (properly)

Riemann integrable and define the (proper) Riemann integral R
∫

f = R
∫

f = R
∫

f .

Example χQ is not Riemann integrable on [0, 1] since if φ ≥ χQ and φ is a step function

then φ ≥ 1 except at a finite number of points. Thus R
∫

1
0χQ = 1. Similarly R

∫
1
0χQ = 0.

Strictly speaking, the above definition is a minor variant of the Darboux integral, which is
normally defined as the common limit of L(ai) =

∑
mi(ai+1−ai) and U(ai) =

∑
Mi(ai+1−ai)

where Mi = supx∈[ai,ai+1]
f(x) and mi = infx∈[ai,ai+1] f(x). The limit is taken over finer and

finer partitions of [a, b] (i.e., over any sequence of partitions where max |ai+1 − ai| → 0).
We call f integrable if both limits exist and are equal. In fact, both limits always exist
and are independent of the partitions provided max |ai+1 − ai| → 0. In particular, one
can assume the partitions are regular, ai = a + (b − a) i

n
. To see this, note that if a =

a′0 < · · · < a′n′ = b is another partition with max |a′i+1 − a′i| < ε min |ai+1 − ai|, then
L(ai)− 2ε(b− a)K ≤ L(a′i) ≤ U(a′i) ≤ U(ai) + 2ε(b− a)K. Hence by choosing a L(ai) close to
sup(ai)

L(ai) < ∞ we see that every sufficiently fine partition gives a value of L(a′i) close to

sup(ai)
L(ai) = supφ≤f

∫
φ. Similarly for U(a′i).

The Riemann integral is defined as the limit of
∑

f(xi)(ai+1 − ai) where xi ∈ [ai, ai+1].
The limit is taken over finer and finer partitions (max |ai+1−ai| → 0)), and f is integrable
if the limit exists and is independent of both the sequence of partitions and the choices of
the xi for each partition. By choosing xi so that f(xi) is close to mi = infx∈[ai,ai+1] f(x)
or Mi = supx∈[ai,ai+1]

f(x), it is clear that this is equivalent to the Darboux integral. In
particular, we may fix the sequence of partitions. It is also possible to fix xi, e.g., as
xi = ai (left Riemann sum) or xi = ai+1 (right Riemann sum), but we cannot then fix the

sequence of partitions, e.g., 2 =
∫ 2

0
χQ 6=

∫ √2

0
χQ +

∫ 2√
2
χQ = 0 if we use xi = ai and a

regular partition.

The Riemann, Darboux, and the variant of the Darboux integral defined above are all
equivalent, however the version I am using is easier to work with.

Note that the MCT and DCT do not hold for Riemann integrals: Enumerate the rationals
in [0, 1] as q1, q2, . . . , then R

∫
χ{q1,...,qn} = 0 but R

∫
χQ∩[0,1] is undefined.



Theorem Assume f : [a, b] → [−K, K] is a bounded function. Then f is properly Riemann
integrable iff f is measurable function which is continuous a.e.. In this case R

∫
b
af =

∫
f .

Proof. ⇒ : If f is not continuous at x ∈ (a, b) then x ∈ Ek for some k, where Ek = {x :
∀ open intervals I with x ∈ I ⊆ [a, b] : supI f − infI f > 1/k }. Let ε > 0 and pick step
functions φ ≤ f ≤ ψ with

∫
ψ − ∫

φ < ε/k. If x ∈ Ek is not one of the finite set of points
at which either φ or ψ jumps, then ψ(x)− φ(x) > 1/k. Thus λ(Ek)/k ≤

∫
(ψ − φ) < ε/k.

Hence λ(Ek) < ε for all ε > 0, and so λ(Ek) = 0. Thus λ(
⋃

Ek) = lim λ(Ek) = 0 so f
is continuous a.e.. Since continuous functions are measurable, f is measurable on a set of
the form [a, b] \ E, where λ(E) = 0. Thus f is measurable on [a, b].
⇐ : Let E be the set of discontinuities of f . Then λ(E) = 0 and so E ⊆ U where U is
open and λ(U) < ε. Set F = [a, b] \U . Then F is closed and bounded and f is continuous
on F . Thus ∃δ > 0: ∀x ∈ F, y ∈ [a, b] : |x − y| < δ ⇒ |f(x) − f(y)| < ε. (Note: this
is slightly stronger than uniform continuity since we do not require y ∈ F . However the
proof of this result is the same as the proof that continuous functions on closed bounded
sets are uniformly continuous.) Choose a partition a = a0 < a1 < · · · < an = b with
|ai+1 − ai| < δ. If [ai, ai+1) ∩ F = ∅, set φ = −K and ψ = +K on [ai, ai+1). Otherwise,
pick z ∈ [ai, ai+1)∩F and set φ = f(z)−ε and ψ = f(z)+ ε on [ai, ai+1). Then φ ≤ f ≤ ψ
and

∫
(ψ − φ) ≤ 2Kε + 2ε(b − a). This can be made arbitrarily small by suitable choice

of ε. Thus f is Riemann integrable. Finally
∫

φ ≤ ∫
f, R

∫
f ≤ ∫

ψ, so
∫

f = R
∫

f .

One can extend the Riemann integral to more general functions by introducing the improper
Riemann integral. For example, if f is bounded on each interval [a + ε, b] but not on [a, b],
we define R

∫
b
af = limε→0+ R

∫
b
a+εf if this limit exists.

Example The function f(x) = 1
x

cos 1
x

is improperly Riemann integrable on [0, 1]. since∫ 1

ε
f = [−x sin 1

x
]1ε +

∫ 1

ε
sin 1

x
dx which tends to a limit as ε → 0. However, f is not Lebesgue

integrable since
∫ 1

0
|f | = ∞.

It is true however that if the (improper) Riemann integral and Lebesgue integral both
exist, then they are equal.

One can modify the definition of the proper Riemann integral in such a way that it includes
both improperly Riemann integrable functions and also Lebesgue integrable functions. If
f : [a, b] → R is any function (not bounded in general), we define the Gauge Integral
(a.k.a. Generalized Riemann Integral, a.k.a. Henstock-Kurzweil integral, a.k.a. Denjoy-
Perron integral) of f to be L if for all ε > 0, there is a positive function δ : [a, b] → (0,∞)
such that whenever we have a partition a = a0 < a1 < · · · < an = b, and points xi ∈
[ai, ai+1] with |ai+1 − ai| < δ(xi), then |∑ f(xi)(ai+1 − ai)− L| < ε. Note that this differs
from the Riemann integral only in the assumption that δ may depend on the xi. The Gauge
integral does satisfy some nice properties, (a version of DCT holds), but not as many as
the Lebesgue integral. Also, both the Gauge and Riemann integrals to not generalize well
to integration over more general spaces, whereas the Lebesgue integral is defined on any
space with a measure.
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Definition A function f : [a, b] → R is of bounded variation if there exists a K such that
for all a = a0 < a1 < · · · < an = b,

∑n
i=1 |f(ai)− f(ai−1)| < K.

Lemma 1. A function f : [a, b] → R is of bounded variation iff f = g − h for some
increasing functions g, h : [a, b] → R.

Proof. Define h(x) = sup
∑n

i=1 |f(ai)− f(ai−1)| where the supremum is over all n and all
partitions a = a0 < a1 < · · · < an = x of [a, x]. If y > x then h(y) ≥ h(x) + |f(y)− f(x)|,
since any partition a = a0 < a1 < · · · < an = x, gives rise to a partition a = a0 <
a1 < · · · < an = x < an+1 = y. If f is of bounded variation, then h(x) ≤ h(b) < ∞
for all x ∈ [a, b], and both h and g = f + h are increasing. Conversely, if f = g − h
and g and h are increasing and y > x then |f(y) − f(x)| ≤ g(y) − g(x) − h(y) + h(x), so∑n

i=1 |f(ai)− f(ai−1)| ≤ K = g(b)− g(a)− h(b) + h(a) < ∞.

Definition A function F : [a, b] → R is absolutely continuous if for all ε > 0 there exists a
δ > 0 such that whenever (ai, bi), i = 1, . . . , n, are disjoint intervals with

∑n
i=1(bi−ai) < δ

then
∑n

i=1 |F (bi)− F (ai)| < ε.

Lemma 2. If f : [a, b] → R is absolutely continuous then f is continuous and of bounded
variation.

Proof. Pick δ corresponding to ε = 1 in the definition of absolute continuity. Fix K >
(b− a)/δ. For any a = a0 < · · · < an = b we may add division points ani

= a+ i(b− a)/K.
Now

∑ni+1

j=ni+1(aj−aj−1) < δ, so
∑ni+1

j=ni+1 |f(aj)−f(aj−1)| < 1 and
∑n

i=1 |f(ai)−f(ai−1)| <
K. Hence f is bounded variation. (Uniform) continuity follows by taking n = 1 in the
definition of absolute continuity.

Example The Cantor function is continuous and of bounded variation, but not absolutely
continuous. (Take the (ai, bi) to be the 2n intervals of length 3−n defining the nth stage of
the construction of the Cantor set. Then

∑ |F (bi)− F (ai)| = 1 but
∑

(bi − ai) = (2/3)n).

Exercise: Assume f and g are absolutely continuous and h is absolutely continuous and
monotonic. Show that f(h(x)), f + g, f − g, fg, f/g (if g 6= 0), |f |, f±, and f(x)α (α ∈ R,
f > 0) are all absolutely continuous.

Lemma 3. If f is integrable, then ∀ε > 0: ∃δ > 0: λ(S) < δ ⇒ ∫
S
|f | < ε.

Proof. Pick simple φ =
∑n

i=1 aiχSi
≤ |f | with

∫
φ ≥ ∫ |f | − ε/2. Let δ = ε/(2 max ai).

Corollary If f : [a, b] → R∗ is integrable, then F (x) =
∫ x

a
f(t) dt is absolutely continuous.

Proof.
∑n

i=1 |F (bi) − F (ai)| =
∑ | ∫ bi

ai
f | ≤ ∑∫ bi

ai
|f | =

∫
S
|f | where S =

⋃
(ai, bi). Now

apply Lemma 3.
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Lemma (Vitali) Suppose S is set of finite measure and I is a collection of intervals with
the property that for all x ∈ S, and all ε > 0, there exists a non-trivial interval I ∈ I with
x ∈ I and λ(I) < ε. Then for all ε > 0, there exists disjoint Ii ∈ I with λ(S \⋃n

i=1 Ii) < ε.

Proof. We can assume w.l.o.g., that the intervals are closed. Pick an open set U ⊇ S
of finite measure. Inductively define In ∈ I with In ⊆ U and In disjoint as follows. If
S ⊆ ⋃n

i=1 In, we are done. If S 6⊆ ⋃n
i=1 In, then if x ∈ S \ ⋃n

i=1 Ii there exists an I ∈ I
with I ⊆ U \⋃n

i=1 Ii. Pick In+1 so that λ(In+1) > 1
2
supI λ(I) where the supremum is over

I ∈ I with I ⊆ U \ ⋃n
i=1 Ii. Now

∑∞
i=1 λ(Ii) ≤ λ(U) < ∞, so we can pick N such that∑∞

i=N+1 λ(Ii) < ε/5. Suppose x ∈ S \⋃N
i=1 Ii. Pick I ∈ I with x ∈ I ⊆ U \⋃N

i=1 Ii. Since∑
λ(Ii) < ∞, there must be an n with λ(In) < λ(I)/2. But then either I would have been

chosen as a Im for some m, or it intersects some Im with N < m ≤ n and λ(Im) ≥ λ(I)/2.
In either case I ⊆ Jm where Jm is the interval of length 5λ(Im) centered on Im. Hence
λ(S \⋃N

i=1) ≤ λ(
⋃

m>N Jm) ≤ 5
∑

λ(Im) = ε.

Lemma 1. If F : [a, b] → R is increasing then F ′ exists a.e., and
∫ b

a
F ′ ≤ F (b)− F (a).

Proof. Let Eu,v = {x : limh→0
F (x+h)−F (x)

h
< u < v < limh→0

F (x+h)−F (x)
h

}. If F ′(x) does not
exist then for some rationals u and v, x ∈ Eu,v. Thus it is enough to show that λ(Eu,v) = 0.
Assume λ(Eu,v) = s > 0 Pick an open U ⊇ Eu,v with λ(U) < s + ε. For each x ∈ Eu,v

there are arbitrarily small intervals [a, b] = [x, x + h] or [x− h, x] with x ∈ [a, b] ⊆ U and
F (b)−F (a) ≤ u(b− a). Let V =

⋃N
i=1(ai, bi) where the Ii = [ai, bi] are a disjoint family of

such intervals with λ(Eu,v \ V ) < ε, (so s− ε ≤ λ(V ) ≤ s + ε). Now for each x ∈ Eu,v ∩ V ,
there are arbitrarily small intervals [c, d] = [x, x + h] or [x− h, x] with x ∈ [c, d] ⊆ V and
F (d)− F (c) ≥ v(d− c). Let W =

⋃M
j=1(cj, dj) where the Jj = [cj, dj] are a disjoint family

of such intervals with λ((Eu,v ∩ V ) \W ) < ε (so λ(W ) ≥ s − 2ε). Now since the Jj are

disjoint and each is contained in some Ii,
∑M

j=1 F (dj)− F (cj) ≤
∑N

i=1 F (bi) − F (ai). but
then vλ(W ) ≤ uλ(V ), so v(s− 2ε) ≤ u(s + ε). Since this holds for all ε > 0, vs ≤ us. But
v > u, so s = 0. Thus F ′ exists a.e..

Let fn(x) = n(F (x + 1/n) − F (x)) (extend F by setting F (x) = F (b) for x > b). Then

fn → F ′ a.e., and fn ≥ 0 since F is increasing. Now by Fatou,
∫ b

a
F ′ =

∫ b

a
lim fn ≤

lim
∫ b

a
fn = lim n(

∫ b+1/n

a+1/n
F − ∫ b

a
F ) = lim(n

∫ b+1/n

b
F − n

∫ a+1/n

a
F ) ≤ F (b)− F (a).

Corollary If F : [a, b] → R is absolutely continuous then F ′ exists a.e..

Proof. F absolutely continuous ⇒ F is of bounded variation ⇒ F is the difference of two
increasing functions ⇒ F ′ exists a.e..

Example If F is the Cantor function, then F ′ = 0 a.e., but F (1)− F (0) = 1.



Lemma 2. If F : [a, b] → R is absolutely continuous and F ′ = 0 a.e., then F is constant.

Proof. Pick c ∈ (a, b]. We need to show that F (c) = F (a). Pick ε > 0, and let δ > 0
be as in the definition of absolute continuity. Let S = {x ∈ (a, c) : F ′ = 0}. Then for
all x ∈ S there exists arbitrarily small intervals [p, q] = [x, x + h] or [x − h, x] such that
|F (q) − F (p)| < ε(q − p). Hence, by Vitali, there is a partition a = q0 < p1 < q1 < p2 <
q2 < · · · < pn < qn < c = pn such that |F (qi) − F (pi)| < ε(qi − pi) and

∑
(qi − pi) >

λ(S) − δ = (c − a) − δ. But then
∑

(pi+1 − qi) < δ. But then
∑ |F (pi+1) − F (qi)| < ε.

Thus |F (c)− F (a)| < ε + ε(c− a). Since this holds for all ε > 0, F (c) = F (a).

Lemma 3. If f : [a, b] → R∗ is integrable and
∫ x

a
f = 0 for all x ∈ [a, b], then f = 0 a.e.

Proof. Assume that Sk = {x : f(x) > 1/k} has positive measure. Then there is a closed
set F ⊆ S with λ(F ) > 0, and so

∫
F

f ≥ λ(F )/k > 0. Write U = (a, b) \ F . Then U
is open and

∫
U

f = − ∫
F

f 6= 0. Now U is a countable disjoint union of intervals (an, bn)

and by DCT
∫

U
f =

∑ ∫ bn

an
f 6= 0, so

∫ bn

an
f 6= 0 for some n. But then either

∫ an

a
f 6= 0

or
∫ bn

a
f 6= 0, a contradiction. Similarly S ′k = {x : f(x) < −1/k} has measure zero, so⋃

k(Sk ∪ S ′k) = {x : f(x) 6= 0} has measure zero.

Theorem (1st Fundamental Theorem of Calculus) If f : [a, b] → R∗ is integrable
and F (x) =

∫ x

a
f(t) dt then F is absolutely continuous, differentiable a.e., and F ′ = f a.e..

Proof. W.l.o.g., we may assume f ≥ 0. We know F is absolutely continuous, so F is
continuous and F ′ exists a.e.. First assume that f is bounded, f ≤ K. Let fn(x) =

n(F (x + 1/n) − F (x)). Then |fn| = |n ∫ x+1/n

x
f | ≤ K and fn → F ′ a.e., so by DCT,∫ x

a
F ′ = lim

∫ x

a
fn = lim(n

∫ x+1/n

x
F − n

∫ a+1/n

a
F ) = F (x) − F (a) = F (x), since F is

continuous. Now drop the condition that f is bounded. The function fn(x) = min{f(x), n}
is bounded, and if Fn(x) =

∫ x

a
fn then F (x)−Fn(x) =

∫ x

a
(f −fn) is increasing in x. Hence

(F − Fn)′ ≥ 0 a.e., so
∫ x

a
F ′ ≥ ∫ x

a
F ′

n = Fn(x) for all n. Thus
∫ x

a
F ′ ≥ F (x). But F

is increasing so
∫ x

a
F ′ ≤ F (x) − F (a) = F (x) by Lemma 1. Hence

∫ x

a
F ′ = F (x), so∫ x

a
(F ′ − f) = 0 for all x ∈ [a, b] and thus F ′ = f a.e. by Lemma 3.

Theorem (2nd Fundamental Theorem of Calculus) If F : [a, b] → R is absolutely

continuous, then F ′ exists a.e., is integrable, and
∫ b

a
F ′(t) dt = F (b)− F (a).

Proof. F is of bounded variation, so F = G−H where G and H are increasing. Thus, by
Lemma 1, F ′ = G′−H ′ exists a.e., and

∫ |F ′| ≤ ∫
(G′+H ′) ≤ G(b)−G(a)+H(b)−H(a) <

∞, so F ′ is integrable. Let F0(x) =
∫ x

a
F ′. Then F0 − F is absolutely continuous and

F ′
0−F ′ = 0 a.e., thus F0−F is constant by Lemma 2. Hence

∫ b

a
F ′ = F0(b) = F0(b)−F0(a) =

F (b)− F (a).
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Definition A function φ : (a, b) → R is convex if for all x, y ∈ (a, b) and µ ∈ [0, 1],
φ(µx + (1− µ)y) ≤ µφ(x) + (1− µ)φ(y).

Lemma 1. If φ : (a, b) → R is convex, a < ai < bi < b for i = 1, 2 and a1 ≤ a2, b1 ≤ b2,

then φ(b1)−φ(a1)
b1−a1

≤ φ(b2)−φ(a2)
b2−a2

.

Proof. Set µ = b1−a1

b2−a1
. Then φ(b1) = φ(µb2 + (1 − µ)a1) ≤ µφ(b2) + (1 − µ)φ(a1). Rear-

ranging gives φ(b1)−φ(a1)
b1−a1

≤ φ(b2)−φ(a1)
b2−a1

. Similarly φ(b2)−φ(a1)
b2−a1

≤ φ(b2)−φ(a2)
b2−a2

. Combining these
inequalities gives the result.

Lemma 2. φ : (a, b) → R is convex iff for each c ∈ (a, b) there is a linear function
ψc(x) = mc(x − c) + φ(c) with ψc(c) = φ(c) and ψc ≤ φ on (a, b). In this case, mc is an
increasing function of c, and φ′(c) = mc except at a countable number of points.

Proof. ⇐ : Let c = µx + (1 − µ)y and consider ψc(x) = m(x − c) + φ(c). Then µφ(x) +
(1− µ)φ(y) ≥ µψc(x) + (1− µ)ψc(y) = ψc(c) = φ(c).

⇒ : Let m−(c) = supx<c
φ(x)−φ(c)

x−c
and m+(c) = infx>c

φ(x)−φ(c)
x−c

. Then by Lemma 1 m−(c) ≤
m+(c). Any mc ∈ [m−(c), m+(c)] will do to define ψc. Also, by Lemma 1 φ(x)−φ(c)

x−c
is

increasing in x, so m±(c) = limx→c±
φ(x)−φ(c)

x−c
. If d > c then by Lemma 1, m+(c) ≤ m−(d),

so the intervals (m−(c),m+(c)) are disjoint for distinct values of c. Since any non-trivial
open interval contains a rational, m− = m+ = φ′ for all but a countable number of values
of c.

Lemma 3. If φ : (a, b) → R is convex, then it is absolutely continuous on every closed
interval [c, d] ⊆ (a, b).

Proof. Pick x < y, x, y ∈ [c, d]. Then mc(y − x) ≤ mx(y − x) ≤ ψx(y) − ψx(x) ≤
φ(y) − φ(x) ≤ ψy(y) − ψy(y) ≤ my(y − x) ≤ md(y − x). Hence |φ(y) − φ(x)| ≤ M |y − x|
where M = max{|mc|, |md|}. Hence if

∑ |bi−ai| < δ then
∑ |φ(bi)−φ(ai)| < Mδ. Taking

δ = ε/M gives absolute continuity.

Lemma 4. If φ : (a, b) → R is differentiable and φ′ is increasing, then φ is convex.

Proof. Let ψ(x) = φ(x) − φ′(c)(x − c). Then ψ′ ≥ 0 for x ≥ c and ψ′ ≤ 0 for x ≤ c. But
then ψ(x) ≥ 0 for all x ∈ (a, b) (Mean Value Theorem). Result follows from Lemma 2.

Theorem (Jensen’s Inequality) If f : [a, b] → I is integrable and φ : I → R is convex
then

1

b− a

∫ b

a

φ(f(t)) dt ≥ φ

(
1

b− a

∫ b

a

f(t) dt

)
.

Proof. Write φ(x) ≥ φ(c) + m(x− c) where c = 1
b−a

∫ b

a
f(t) dt, and integrate.
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Definition If f is measurable, the essential supremum ess sup f = inf{c : f(x) ≤ c a.e.}.

Definition Assume f is measurable. For 1 ≤ p < ∞, define ‖f‖p =
(∫ |f |p)1/p

. If p = ∞,
define ‖f‖∞ = ess sup |f |.

Note: For 1 ≤ p ≤ ∞,

(0) if f = g a.e., then ‖f‖p = ‖g‖p.

(1) ‖f‖p ≥ 0 and if ‖f‖p = 0 then f = 0 a.e..

(2) If µ ∈ R then ‖µf‖p = |µ|‖f‖p.

Theorem (Minkowski) If 1 ≤ p ≤ ∞, then ‖f + g‖p ≤ ‖f‖p + ‖g‖p. For 1 < p < ∞,
equality (if finite) occurs iff f and g are proportional a.e..

Proof. The case p = ∞ is clear, so assume p < ∞ and set α = ‖f‖p, β = ‖g‖p. W.l.o.g.,
0 < α, β < ∞. Let µ = α/(α + β), so that 1 − µ = β/(α + β). The function x → |x|p is
convex on (0,∞) for p ≥ 1, so∣∣f + g

∣∣p =
∣∣µ f

µ
+ (1− µ) g

1−µ

∣∣p ≤ µ
∣∣ f
µ

∣∣p + (1− µ)
∣∣ g
1−µ

∣∣p.
Integrating gives

‖f + g‖p
p ≤ µ‖ f

µ
‖p

p + (1− µ)‖ g
1−µ

‖p
p = µ(α + β)p + (1− µ)(α + β)p = (α + β)p.

Now take pth roots to get ‖f + g‖p ≤ α + β = ‖f‖p + ‖g‖p. If p > 1 then x → |x|p is
strictly convex, so equality implies f

µ
= g

1−µ
a.e..

Definition A normed space is a real vector space V with a norm ‖ · ‖ with the following
properties:

(1) ‖v‖ ∈ [0,∞) and ‖v‖ = 0 iff v = 0.

(2) ‖µv‖ = |µ|‖v‖ where µ ∈ R.

(3) ‖u + v‖ ≤ ‖u‖+ ‖v‖.

The functions ‖ · ‖p are not quite norms since they may by ∞ and are zero if f = 0 a.e.,
rather than if f = 0. We can construct a vector space on which they are norms as follows.

Definition Let S be a measurable subset of R. Define Lp(S) = V/∼, where V = {f : S →
R∗ : f measurable with ‖f‖p < ∞} and f ∼ g iff f = g a.e.. V is a vector space under
pointwise addition and scalar multiplication. If we set Z = {f ∈ V : f = 0 a.e.}, then Z
is a vector subspace of V and V/∼ = V/Z is the quotient vector space. Since ‖f‖p only
depends on f up to ∼, ‖ · ‖p defines a norm on Lp(S).

Note: L1(R) is the set of integrable functions and L∞(R) is the set of bounded functions
(up to = a.e.).



Definition Let lp be the vector space of infinite sequences (xn)∞n=1 with ‖(xn)‖p =
(
∑

xp
n)1/p (or sup |xn| if p = ∞) finite. Addition and scalar multiplication are compo-

nentwise.

Exercise: Show that Minkowski’s Theorem holds for lp, making it a normed spaces with
the norm ‖ · ‖p.

Examples

1. Suppose λ(S) < ∞ and p < q, then f ∈ Lq(S) implies f ∈ Lp(S).

2. Suppose p < q, then (xn) ∈ lp implies (xn) ∈ lq.

3. f(x) = x−α ∈ Lp([0, 1]) iff α < 1/p. In particular, if p < q then x−1/q ∈ Lp([0, 1])
but x−1/q /∈ Lq([0, 1]).

4. f(x) = x−α ∈ Lp([1,∞)) iff α > 1/p. In particular, if p < q then x−1/p ∈ Lq([1,∞))
but x−1/p /∈ Lp([1,∞)).

5. Similarly, (xn) = (n−α) ∈ lp iff α > 1/p. In particular, if p < q then (n−1/p) ∈ lq but
(n−1/p) /∈ lp.

Lemma (Young’s Inequality) If p, q > 1, a, b ≥ 0 and 1
p

+ 1
q

= 1 then ab ≤ ap

p
+ bq

q
.

Equality holds iff ap = bq.

Proof. The function f(t) = ap(1−t)bqt = ap(bq/ap)t is convex in t (exponential function).
Expand f(µ0 + (1 − µ)1) ≥ µf(0) + (1 − µ)f(1) when µ = 1/p. For equality, f must be
linear (constant).

Theorem (Hölder’s Inequality) If 1 ≤ p, q ≤ ∞ with 1
p

+ 1
q

= 1, and if f ∈ Lp(R)

and g ∈ Lq(R) then ∫
|fg| ≤ ‖f‖p‖g‖q.

Equality holds iff fp is proportional to gq a.e..

Proof. For 1 < p, q < ∞ integrate Young’s inequality with a = f/‖f‖p and b = g/‖g‖q.
The case p = 1, q = ∞, is clear.

Exercises

1. Derive an analogue of Hölder’s inequality for sequences.

2. Show that
∫ 1

0

√
x4 + 4x2 + 3 dx ≤ 2

3

√
10 using Hölder’s inequality.

3. Show that if f(x) > 0 then
(∫ 1

0
f(x) dx

)(∫ 1

0
f(x)−1 dx

)
≥ 1
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Definition A sequence of vectors vn in a normed space converges to v iff ‖vn− v‖ → 0 as
n →∞. A sequence (vn) is a Cauchy sequence if ∀ε > 0: ∃n0 : ∀n,m ≥ n0 : ‖vn−vm‖ < ε.
Note that any convergent sequence is a Cauchy sequence.

Definition A normed space is complete if every Cauchy sequence converges. A complete
normed space is also called a Banach space.

Definition If fn, f ∈ Lp then fn → f in mean of order p if fn → f in Lp, i.e., ‖fn−f‖p →
0. Note, ‘convergence in mean of order 1’ is just ‘convergence in mean’, and ‘convergence
in mean of order ∞’ is a.e. uniform convergence.

Examples Assume 1 ≤ p < r < q ≤ ∞.

(a) If fn(x) = n1/rχ[0,1/n] then ‖fn‖p → 0, but ‖fn‖q →∞.

(b) If gn(x) = n−1/rχ[0,n] then ‖gn‖q → 0, but ‖gn‖p →∞.

(c) If (xn) ∈ lp then ‖(xn)‖q ≤ ‖(xn)‖p. [Scale so that ‖(xn)‖p = 1.]

(d) If f ∈ Lq(S), λ(S) < ∞, then ‖f‖p ≤ ‖f‖qλ(S)1/p−1/q. [Use Hölder.]

Lemma 1. A normed space is complete iff every absolutely convergent sum is convergent,
i.e.,

∑∞
n=1 ‖vn‖ < ∞ ⇒ ∑N

n=1 vn converges to some v as N →∞.

Proof. ⇒ : If uN =
∑N

n=1 vn, then ‖un − um‖ ≤
∑n

i=m+1 ‖vi‖ → 0 as min{m,n} → ∞.
Thus (un) is a Cauchy sequence, so converges.
⇐ : If (vn) is Cauchy, then there is a subsequence (vni

) with ‖vn−vni
‖ < 2−i for all n > ni.

Let u0 = vn1 and ui = vni+1
− vni

for i > 0. Then
∑ ‖ui‖ < ∞, so

∑N−1
i=0 = vnN

converges
to v, say, as N →∞. But for all n > ni, ‖vn − v‖ ≤ 2−i + ‖vni

− v‖, so vn → v.

Theorem (Riesz-Fischer) Lp(S) is complete for 1 ≤ p ≤ ∞.

Proof. Suppose
∑∞

n=1 ‖fn‖p = L < ∞. Let gN(x) =
∑N

n=1 |fn(x)| and g(x) =
∑∞

n=1 |fn(x)|.
Since ‖|f |‖p = ‖f‖p, ‖gN‖p ≤ L for all N . If p < ∞, then

∫ |gN |p ≤ Lp and |gN |p is
increasing, so by MCT

∫ |g|p ≤ Lp < ∞. But then g(x) < ∞ a.e.. Similarly, if p = ∞,
gN ≤ L a.e., so g = lim gN ≤ L a.e.. But when g(x) < ∞,

∑ |fn(x)| converges. But then
f(x) =

∑∞
i=1 fn(x) converges a.e., and |f | ≤ |g|. If p < ∞ then |f − ∑N

n=1 fn|p ≤ |g|p,
so by DCT

∫ |f −∑N
n=1 fn|p → 0 and

∑∞
n=1 fn converges to f in Lp. Similarly if p = ∞,

|f −∑N
n=1 fn| ≤

∑∞
N+1 ‖fn‖∞ a.e., so

∑∞
n=1 fn converges to f in L∞.

Approximating functions in Lp

Just as any real is a limit of rationals, it is sometimes convenient to express an element of
Lp as a limit of functions of a special form.



Theorem If 1 ≤ p < ∞, f ∈ Lp(R), and ε > 0 then

(a) there is a simple function φ ∈ Lp with ‖φ− f‖p < ε,

(b) there is a step function ψ ∈ Lp with ‖ψ − f‖p < ε,

(c) there is a continuous function g ∈ Lp with ‖g − f‖p < ε.

Proof. (a) Let φn(x) = a
2n , −n2n ≤ a ≤ n2n be the closest value to f(x) with |φ(x)| ≤

|f(x)|. Then |φn − f |p ≤ |f |p and φn → f a.e.. Thus by DCT ‖φn − f‖p → 0.
(b) By (a) and linearity it is enough to approximate χS with a step function. Since χS ∈ Lp,
λ(S) < ∞. Thus there is a finite disjoint union of intervals U with λ(S 4 U) < εp. But
then ‖χS − χU‖p

p =
∫

χp
S4U < εp and χU is a step function.

(c) By (b) and linearity it is enough to approximate χ[a,b] with a continuous function. Let
g(x) be a piecewise linear function with g(a − εp/4) = 0, g(a + εp/4) = g(b − εp/4) = 1,
g(b + εp/4) = 0. Then ‖g − χ[a,b]‖p

p ≤ εp.

Part (a) also holds for p = ∞, but (b) and (c) fail. However, we do have:

Theorem (Lusin’s Theorem) Let f : R→ R be measurable. Then for any ε > 0 there
is a continuous function g : R→ R such that λ({x : f(x) 6= g(x)}) < ε.

Note: This is not the same as saying f is continuous on a large set (e.g., consider χQ).

Proof. Enumerate the rational numbers as Q = {qi : i = 1, 2, . . . }. For each qi, find an open
Ui and a closed Fi with Fi ⊆ f−1[(qi,∞)] ⊆ Ui and λ(Ui \Fi) < ε/2i. Let U =

⋃
i(Ui \Fi).

Then λ(U) < ε. Now U is open, so a union of disjoint open intervals (aj, bj). Define
g(x) = f(x) if x /∈ U , and let g be linear on [aj, bj]. Clearly g is continuous at all x ∈ U .
Now assume x /∈ U and η > 0. Pick rationals qi, qj, with g(x) − η < qi < f(x) = g(x) <
qj < g(x) + η. Then x ∈ Ui \ Fj, which is open. Thus y ∈ Ui \ Fj for |y − x| < δ, say. If
y /∈ U then y ∈ Fi and y /∈ Uj, so qi < f(y) = g(y) ≤ qj. If y ∈ U then y ∈ (ai, bi) for some
i. If this interval is entirely within (x − δ, x + δ) then qi < g(y) ≤ qj since this holds at
both endpoints ai and bi and g is linear on [ai, bi]. There can be at most two such intervals
(ai, bi) that do not lie in (x − δ, x + δ), and since g is linear on these, one can ensure, by
reducing δ if necessary, that |g(y)− g(x)| < ε for these values of y as well.

Similarly, although fn → f a.e. does not imply fn → f in Lp, we do have:

Theorem (Egorov’s Theorem) If fn : S → R is a sequence of measurable functions
that converge a.e., to f : S → R, and λ(S) < ∞, then ∃E : λ(E) < ε and fn → f
uniformly on S \ E (and hence fn → f in Lp(S \ E) for all 1 ≤ p ≤ ∞).

Proof. Since fn → f a.e., the set E0 = {x : fn(x) 6→ f(x)} has measure zero. Let
Ekn = {x ∈ S : |fn(x) − f(x)| ≥ 1/k}. If ∀n0 : ∃n ≥ n0 : |fn(x) − f(x)| ≥ 1/k then
fn(x) 6→ f(x). Thus for all k,

⋂
n0

⋃
n≥n0

Ekn ⊆ E0. Since λ(
⋃

n Ekn) ≤ λ(S) < ∞,

limn0 λ(
⋃

n≥n0
Ekn) = 0. For each k, pick nk such that λ(

⋃
n≥nk

Ekn) < δ/2k. Set E =⋃
k

⋃
n≥nk

Ekn. Then λ(E) ≤ ∑
δ/2i = δ. Moreover, if n ≥ nk then |fn(x) − f(x)| < 1/k

for all x ∈ S \ E. Hence fn → f uniformly on S \ E.
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Definition A linear functional on a normed space (V, ‖·‖) is a linear function F : V → R,
i.e., ∀α, β ∈ R, u, v ∈ V : F (αu + βv) = αF (u) + βF (v). A linear functional F is bounded
iff there is some constant M such that |F (v)| ≤ M‖v‖ for all v ∈ V . We define the norm
of F to be the smallest such M :

‖F‖ = sup
v∈V \0

|F (v)|
‖v‖ .

A linear functional is bounded iff it is ‘continuous’, i.e.,

∀v : ∀ε > 0: ∃δ > 0: ∀u : ‖u− v‖ < δ ⇒ ‖F (u)− F (v)‖ < ε.

To see this, set w = 1
δ
(u− v), then F is continuous iff

∀ε > 0: ∃δ > 0: ∀w : ‖w‖ < 1 ⇒ ‖F (w)‖ < ε/δ.

But this is equivalent to F being bounded (⇒ : take ε = 1. ⇐ : take δ = ε/M).

Theorem (Riesz Representation Theorem) Let F be a bounded linear functional on
Lp(S), 1 ≤ p < ∞. Then there is a function g ∈ Lq(S), 1

p
+ 1

q
= 1, such that

F (f) =

∫
fg for all f ∈ Lp(S).

Moreover, for all g ∈ Lq(S), the above formula defines a linear functional with ‖F‖ = ‖g‖q.

Proof. Extending F to Lp(R) by setting F (f) = F (χSf), we can assume F is a bounded
linear functional on Lp(R) with the same norm (|F (f)| = |F (χSf)| ≤ M‖χSf‖p ≤ M‖f‖p).
Thus we may assume S = R.

Define Φ(x) = F (χ[0,x]) (= −F (χ[x,0]) if x < 0). Then Φ is absolutely continuous on any
finite interval: If Ii = (ai, bi) are disjoint and

∑
λ(Ii) < (ε/M)p then

∑ |Φ(bi)− Φ(ai)| =
F (f) where f =

∑±χIi
. But ‖f‖ = (

∑
λ(Ii))

1/p < ε/M , so |F (f)| < ε.

Since Φ is absolutely continuous, Φ(x) =
∫ x

0
g (= − ∫ 0

x
g if x < 0), where g = Φ′. For any

finite interval I = [a, b], F (χI) = Φ(b)−Φ(a) =
∫

χIg. Thus by linearity F (χU) =
∫

χUg for
all finite unions U of finite intervals. If E ⊆ [−K,K] is measurable and λ(E4Un) < 2−n,
then χUn → χE in Lp and a.e., so F (χE) = lim F (χUn) = lim

∫
χUng =

∫
χEg by continuity

of F and DCT (|g| is integrable on [−K, K]). Now by linearity, F (f) =
∫

fg for every
simple function f supported on [−K,K].

Suppose ‖g‖q > M = ‖F‖. Then one can find a K and a simple function g0 supported
on [−K,K] with 0 ≤ |g0| ≤ |g|, sgn g0 = sgn g, and ‖g0‖q > M . Now f = (sgn g0)|g0|q/p

is simple and supported on [−K, K]. By equality in Hölder, F (f) =
∫

fg ≥ ∫ |fg0| =
‖g0‖q‖f‖p > M‖f‖p, a contradiction. (For q = ∞, take f = (sgn g)χ{|g|>M}∩[−K,K].)

Finally, suppose f ∈ Lp. We can find a simple function supported on some [−K, K]
with ‖f − φ‖p < ε. Now |F (f) − F (φ)| = |F (f − φ)| ≤ Mε and | ∫ fg − ∫

φg| =
| ∫ (f − φ)g| ≤ ‖f − φ‖p‖g‖q ≤ Mε. Thus letting ε → 0, F (f) =

∫
fg for all f ∈ Lp.

Finally, |F (f)| ≤ ‖f‖p‖g‖q, so M = ‖F‖ ≤ ‖g‖q. Thus ‖F‖ = ‖g‖q.


