- 1. Let the random variable X have p.d.f. $f(x) = cx^2 + x$ for $0 \le x \le 2$; and f(x) = 0 otherwise.
 - (a) Find the value of c that makes this a valid p.d.f.
 - (b) Find the cumulative distribution function F(x).
 - (c) Find F(-1), F(0), F(1).
 - (d) Find $\mathbb{P}(0 \le X \le 0.5)$.
 - (e) Find $\mathbb{E}(X)$ and Var(X).
- 2. The m.g.f. of X is given by $M_X(t) = 1/(1-5t)^2$.
 - (a) Find $\mathbb{E}(X)$.
 - (b) Find Var(X).
- 3. Random variable X and Y have joint p.m.f. given by this table

$$\begin{array}{c|ccccc}
Y \backslash X & 3 & 4 & 5 \\
\hline
1 & \frac{1}{6} & \frac{1}{6} & 0 \\
2 & \frac{1}{6} & 0 & \frac{1}{6} \\
3 & 0 & \frac{1}{6} & \frac{1}{6}
\end{array}$$

- (a) Find the marginals of X and Y.
- (b) Are X and Y independent?
- (c) Find the correlation coefficient ρ between X and Y.
- 4. Random variables X and Y have joint p.d.f. given by $f(x,y) = e^{-x-y}$, $x,y \ge 0$. Are X and Y independent?
- 5. The conditional p.d.f. of X given Y is $f_{X|Y}(x|y) = ax$ for 1 < x < y; and 0 otherwise. The marginal p.d.f. of Y is $f_Y(y) = \frac{b}{y^3}$ for y > 1; and 0 otherwise.
 - (a) Find a and b. (Note that a may depend on y.)
 - (b) Find the joint p.d.f. of X and Y.
 - (c) Find $\mathbb{P}(X < 2 \mid Y = 3)$.
- 6. A machine operation produces steel shafts where diameters have a normal distribution with mean equal to 1.005 inches and a standard deviation of 0.01 inches. Specifications call for diameters to fall within the interval 1.00 ± 0.02 inches. What percentage of the output of this machine operation will fail to meet specifications?