In this course a ring will always be commutative with a 1, i.e., a set \(R \) and two operations \(+\), \(\times\) such that:

- \((R, +)\) is an abelian group —
 - A1 \((x + y) + z = x + (y + z)\) \(\text{Associativity}\)
 - A2 \(x + y = y + x\) \(\text{Commutativity}\)
 - A3 \(x + 0 = 0 + x = x\) \(\text{Additive Identity}\)
 - A4 \(x + (-x) = (-x) + x = 0\) \(\text{Additive Inverse}\)

- \((R, \times)\) is a commutative semigroup —
 - M1 \((xy)z = x(yz)\) \(\text{Associativity}\)
 - M2 \(xy = yx\) \(\text{Commutativity}\)
 - M3 \(x1 = 1x = x\) \(\text{Multiplicative Identity}\)

- Multiplication by \(x \in R\) is an endomorphism of \((R, +)\) —
 - D1 \(x(y + z) = xy + xz, (y + z)x = yx + zx\) \(\text{Distributivity}\)

A field is a non-trivial ring with multiplicative inverses:

- M4 \(xx^{-1} = x^{-1}x = 1\) \(\text{(for } x \neq 0\text{)}\) \(\text{Multiplicative Inverse}\)

An Integral Domain (ID) is a non-trivial ring with either of the two equivalent conditions:

- ID \(xy = 0 \Rightarrow x = 0\) or \(y = 0\) \(\text{No zero divisors}\)
- ID' \(xy = xz\) and \(x \neq 0 \Rightarrow y = z\) \(\text{Cancellation law}\)

Note that any field is an ID and any subring of a ID (or field) is an ID.

Examples

1. \(\{0\}\) is the trivial ring, the only ring with \(1 = 0\). By convention we do not regard it as being an ID or a field.
2. \(\mathbb{Z}\) is an ID. \(\mathbb{Q}\), \(\mathbb{R}\), and \(\mathbb{C}\) are fields.
3. \(\mathbb{Z}/n\mathbb{Z}\) is a ring for any \(n > 0\). It is not an ID unless \(n\) is prime, however if \(n = p\) is prime then it is a field which we denote by \(\mathbb{F}_p\).
4. If \(R\) is a ring then so is the polynomial ring \(R[X] = \{\sum_{i=0}^n a_i X^i : a_i \in R, \ n \in \mathbb{N}\}\). If \(R\) is an ID then so is \(R[X]\), but \(R[X]\) is never a field.
5. If \(R\) is an ID then the field of fractions \(\text{Frac } R\) is the set of quotients \{(\text{a/b : a, b \in R, b \neq 0})\} modulo the equivalence relation \(a/b = c/d\) iff \(ad = bc\). \(\text{Frac } R\) is a field and is the smallest field containing \(R\) as a subring (i.e., any field with \(R\) as a subring contains a subfield \(F \supseteq R\) isomorphic to \(\text{Frac } R\)). For example, \(\text{Frac } \mathbb{Z} = \mathbb{Q}\).
6. If \(F\) is a field, \(F(X) = \text{Frac } F[X]\) is the field of rational functions over \(F\) and consists of all quotients of polynomials \(f(X)/g(X)\) with \(g(X) \neq 0\).

A ring homomorphism is a map \(\phi: R \rightarrow S\) such that \(\phi(x + y) = \phi(x) + \phi(y), \phi(xy) = \phi(x)\phi(y)\), and \(\phi(1) = 1\).
An ideal of R is an additive subgroup I of R such that $ra \in I$ for all $a \in I$, $r \in R$. An ideal I is proper if $I \neq R$.

If I is an ideal of R then the quotient ring R/I is the group of additive cosets $a + I$ with multiplication given by $(a + I)(b + I) = ab + I$.

A subring of R is an additive subgroup S of R such that $1 \in S$ and $ab \in S$ for all $a, b \in S$. A subfield is a subring that is a field.

The 1st Isomorphism Theorem states that if $\phi: R \to S$ is a ring homomorphism then $\text{Ker} \phi = \{a : \phi(a) = 0\}$ is an ideal of R, $\text{Im} \phi = \{\phi(a) : a \in R\}$ is a subring of S, and $R/\text{Ker} \phi \cong \text{Im} \phi$.

Examples

1. If S is a subset of R then $(S) = \{\sum_{i=1}^{n} r_ia_i : r_i \in R, a_i \in S\}$ is the smallest ideal of R containing S. An ideal of the form $(a) = \{ra : r \in R\}$ is called a principal ideal.

2. If R is a field then the only ideals of R are (0) and R. In particular a ring homomorphism from a field to a non-trivial ring is always injective.

3. If $\phi: R \to S$ is a homomorphism and $\alpha \in S$ then the evaluation map $ev_{\phi,\alpha}: R[X] \to S$ given by $ev_{\phi,\alpha}(\sum a_iX^i) = \sum \phi(a_i)\alpha^i$ is a ring homomorphism. If ϕ is the identity, we write $ev_{\phi,\alpha}(f)$ as $f(\alpha)$.

A proper ideal I is prime if $ab \in I$ implies either $a \in I$ or $b \in I$. Equivalently, R/I is an ID.

A proper ideal I is maximal if $I \subseteq J$ implies $J = I$ or $J = R$. Equivalently, R/I is a field.

The element a divides the element b, $a \mid b$, if $\exists c : b = ca$. Equivalently, $b \in (a)$, or $(b) \subseteq (a)$.

An element a is a unit if it is invertible, $\exists b : ab = 1$. Equivalently, $a \mid 1$, or $(a) = R$.

A non-zero non-unit element a of an ID is prime if $a \mid bc$ implies $a \mid b$ or $a \mid c$. Equivalently, (a) is a non-zero prime ideal.

A non-zero non-unit element a of an ID is irreducible if $a = bc$ implies either b or c is a unit. Equivalently, (a) is maximal among the set of proper principal ideals.

Note: I maximal \implies I prime, a prime \implies a irreducible.

A Principal Ideal Domain (PID) is an ID in which every ideal is principal. Examples include \mathbb{Z} and $F[X]$ for any field F. For a PID we have the following equivalences:

a is irreducible \iff a is prime \iff (a) is a non-zero prime ideal \iff (a) is maximal.

If R is a ring, then the image of the homomorphism $f: \mathbb{Z} \to R; m \mapsto m.1$ is called the prime subring of R. The prime subring is the smallest subring of R and is isomorphic to either \mathbb{Z} or $\mathbb{Z}/n\mathbb{Z}$ for some n. In the first case we say R has characteristic zero, char $R = 0$. In the second case we say R has characteristic n, char $R = n$. If R is an ID then char R is either 0 or prime.

If F is a field, the prime subfield is the smallest subfield of F. It is isomorphic to the field of fractions of the prime subring, and so is isomorphic to either \mathbb{Q} (if char $F = 0$), or $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ (if char $F = p$).
A vector space V over the field F or an F-vector space V is an additive abelian group $(V, +)$ together with a scalar multiplication map $F \times V \to V; (\lambda, v) \mapsto \lambda v$ satisfying the following properties:

V1 $\forall \lambda, \mu \in F, v \in V : (\lambda + \mu)v = \lambda v + \mu v$
V2 $\forall \lambda \in F, u, v \in V : \lambda(u + v) = \lambda u + \lambda v$
V3 $\forall \lambda, \mu \in F, v \in V : (\lambda \mu)v = \lambda(\mu v)$
V4 $\forall v \in V : 1v = v$

The first two axioms state that scalar multiplication is an additive homomorphism in each variable if the other variable is fixed. The last two axioms state that scalar multiplication gives a group action of the group $(F \setminus \{0\}, \times)$ on the set V. Note that V1 with $\lambda = 0$ implies that $0v = 0$ for all v.

If we replace the field F by an arbitrary ring R then the axioms V1–V4 define an R-module.

A set $S \subseteq V$ is called linearly independent if there are no finite non-trivial linear combinations that give 0. In other words if $\sum_{i=1}^{n} \lambda_i s_i = 0$ and the s_i are distinct elements of S then $\lambda_i = 0$ for each i.

A set $S \subseteq V$ is called spanning if every element $v \in V$ can be written as a finite linear combinations of elements of S, $v = \sum_{i=1}^{n} \lambda_i s_i$.

A set $S \subseteq V$ is called a basis if it is a linearly independent spanning set. Note that every element $v \in V$ can be written as a linear combination of elements of a basis in a unique way. (Spanning implies existence, linear independence implies uniqueness.)

Theorem 1 If $I \subseteq S \subseteq V$, I is linearly independent, and S spans V, then there exists a basis B of V with $I \subseteq B \subseteq S$.

By taking $I = \emptyset$ or $S = V$ we conclude that any independent set can be enlarged to form a basis and any spanning set can be reduced to form a basis. Taking $I = \emptyset$ and $S = V$ we see that any vector space has a basis. The proof uses Zorn’s Lemma in general.

Theorem 2 If B and B' are two bases of V then $|B| = |B'|$ (finite or infinite).

If $|B|$ is infinite then the proof requires Zorn’s Lemma. The cardinality $|B|$ is called the dimension of V and is denoted $\dim V$ or $\dim_F V$.
A field extension K/F is an (injective) ring homomorphism between two fields $i: F \to K$, so identifies F with the subfield $i(F)$ of K. When the map i is clear, we often abuse notation by regarding F as a subset of K. E.g., \mathbb{C}/\mathbb{R} is a field extension and we commonly write $\mathbb{R} \subset \mathbb{C}$.

If K/F is an extension then we can regard $K = (K,+)$ as a vector space over F since the map $F \times K \to K$ which sends (x,y) to $xy = i(x)y$ satisfies the axioms V1–V4. The dimension of this vector space is called the degree of K over F, $[K:F] = \dim_F K$. An extension K/F is called finite if $[K:F] < \infty$.

Examples \mathbb{C}/\mathbb{R}, \mathbb{R}/\mathbb{Q}, $\mathbb{Q}(X)/\mathbb{Q}$ are field extensions. $[\mathbb{C} : \mathbb{R}] = 2$, $[\mathbb{R} : \mathbb{Q}] = \infty$ ($\{1, \pi, \pi^2, \ldots\}$ is linearly independent over \mathbb{Q}), $[\mathbb{Q}(X) : \mathbb{Q}] = \infty$ ($\{1, X, X^2, \ldots\}$ is linearly independent over \mathbb{Q}).

Theorem (The Tower Law) If L/K and K/F are field extensions then L/F is a field extension and $[L:F] = [L:K][K:F]$ (finite or infinite).

Proof. We can compose the inclusions $F \to K$ and $K \to L$ to get an inclusion $F \to L$. Hence L/F is an extension. Let $\{a_i : i \in I\}$ be a basis for K/F and $\{b_j : j \in J\}$ be a basis for L/K.

The result will follow if we can show that $\{a_ib_j : i \in I, j \in J\}$ is a basis for L/F.

Independence: If $\sum_{ij} \lambda_{ij}a_ib_j = 0$ with $\lambda_{ij} \in F$ then $\mu_j = \sum_i \lambda_{ij}a_i \in K$ and $\sum_j \mu_jb_j = 0$. By independence of the b_j we have $\mu_j = 0$, and then by independence of the a_i we have $\lambda_{ij} = 0$.

Spanning: If $\alpha \in L$ we can write $\alpha = \sum_j \mu_jb_j$ for some $\mu_j \in K$. But then we can write $\mu_j = \sum_i \lambda_{ij}a_i$ with $\lambda_{ij} \in F$, so $\alpha = \sum_{ij} \lambda_{ij}a_ib_j$. \qed

Corollary L/F is finite iff both L/K and K/F are finite.

Recall that if R is a subring of R' and $S \subseteq R'$ then we denote by $R[S]$ the smallest subring of R' containing R and S. More explicitly, $R[S] = \{f(s_1, \ldots, s_n) : f \in R[X_1, \ldots, X_n], s_i \in S, n \in \mathbb{N}\}$.

If K/F is an extension and $S \subseteq K$, denote by $F(S)$ the smallest subfield of K containing both F and S. Note that $F(S) = \text{Frac}(F[S]) = \{f(s_1, \ldots, s_n)/g(s_1, \ldots, s_n) : f,g \in F[X_1, \ldots, X_n], g(s_1, \ldots, s_n) \neq 0\}$. We write $F(a)$ for $F(\{a\})$ etc..

The extension K/F is called simple if $K = F(a)$ for some $a \in K$. In this case a is called a primitive element of K/F.

Examples \mathbb{C}/\mathbb{R} is simple since $\mathbb{C} = \mathbb{R}(i)$. \mathbb{R}/\mathbb{Q} is not simple since $\mathbb{Q}(a)$ is a countable set for all $a \in \mathbb{R}$ but \mathbb{R} is uncountable.

Warning: Whenever you write $R[a,b,\ldots]$ or $F(a,b,\ldots)$ it is important that you work inside some fixed, specified ring R' or field K.

Exercises

1. Show that $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{C}$ has degree 2 over \mathbb{Q} and $\{1, \sqrt{2}\}$ is a basis for $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$.

2. Show that $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$ and $\{1, \sqrt{2}\}$ is a basis for $\mathbb{Q}(\sqrt{2}, \sqrt{3})/\mathbb{Q}(\sqrt{2})$.

3. Deduce that $[\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}] = 4$ and give a basis for $\mathbb{Q}(\sqrt{2}, \sqrt{3})/\mathbb{Q}$.

4. Show that if F is a finite field then $|F| = p^n$ for some prime p and integer $n > 0$.
Definition Let \(K/F \) be a field extension. We say \(\alpha \in K \) is algebraic over \(F \) if there exists a non-zero polynomial \(f \in F[X] \) with \(f(\alpha) = 0 \). Otherwise we call \(\alpha \) transcendental over \(F \). We say \(K \) is algebraic over \(F \) if every \(\alpha \in K \) is algebraic over \(F \). Otherwise we call \(K \) transcendental over \(F \).

Examples The real number \(\sqrt{2} \) is algebraic over \(\mathbb{Q} \) (take \(f = X^2 - 2 \)) and \(\pi \) is transcendental over \(\mathbb{Q} \). However \(\pi \) is algebraic over \(\mathbb{R} \) (take \(f = X - \pi \in \mathbb{R}[X] \)). Since \(\mathbb{R} \) contains at least one element that is transcendental over \(\mathbb{Q} \), \(\mathbb{R}/\mathbb{Q} \) must be transcendental. The extension \(\mathbb{C}/\mathbb{R} \) is algebraic since for any \(z \in \mathbb{C} \) we can take \(f = X^2 - (z + \bar{z})X + z\bar{z} \in \mathbb{R}[X] \).

Theorem 1 Let \(K/F \) be a field extension and let \(\alpha \in K \). The following are equivalent:

A1 the element \(\alpha \) is algebraic over \(F \),
A2 \(\ker \text{ev}_\alpha = (m_{\alpha,F}) \) for some unique monic irreducible polynomial \(m_{\alpha,F} \in F[X] \),
A3 for \(f \in F[X] \), \(f(\alpha) = 0 \) iff \(m_{\alpha,F} \mid f \),
A4 \(F[\alpha] = F(\alpha) \) and both are isomorphic to \(F[X]/(m_{\alpha,F}) \),
A5 \([F(\alpha):F] = \deg m_{\alpha,F} = n < \infty \) and the set \(\{1, \alpha, \ldots, \alpha^{n-1}\} \) is a basis for \(F(\alpha)/F \).

Conversely, if these conditions do not hold then:

T1 the element \(\alpha \) is transcendental over \(F \),
T2 \(\ker \text{ev}_\alpha = (0) \),
T3 for \(f \in F[X] \), \(f(\alpha) = 0 \) iff \(f = 0 \),
T4 \(F[\alpha] \neq F(\alpha), F[\alpha] \cong F[X], \) and \(F(\alpha) \cong F(X) = \text{Frac} F[X] \).
T5 \([F(\alpha):F] = \infty \).

The polynomial \(m_{\alpha,F} \) is called the minimal polynomial of \(\alpha \) over \(F \).

Examples \(\mathbb{C} = \mathbb{R}(i) = \mathbb{R}[i], m_{i,\mathbb{R}} = X^2 + 1, [\mathbb{C} : \mathbb{R}] = \deg m_{i,\mathbb{R}} = 2, \) and \(\{1, i\} \) is a basis for \(\mathbb{C}/\mathbb{R} \). Note that \(m_{i,\mathbb{C}} = X - i \neq m_{i,\mathbb{R}}, \) so it is important to specify the ground field \(F \).

Theorem 2 If \(K/F \) is finite then it is algebraic. [Converse not true in general.]

Proof. If \(\alpha \in K \) and \([K : F] = n \) then \(\{1, \alpha, \alpha^2, \ldots, \alpha^n\} \) is linearly independent in the \(F \)-vector space \(K \). Hence there exists \(\lambda \in F \) such that \(\sum_{i=0}^n \lambda_i \alpha^i = 0 \) and not all \(\lambda_i \) are zero. Hence \(f(\alpha) = 0 \) where \(f = \sum_{i=0}^n \lambda_i X^i \in F[X], f \neq 0 \). Thus \(\alpha \) is algebraic over \(F \).

Theorem 3 If \(A \) is the set of all elements of \(K \) algebraic over \(F \) then \(A \) is a subfield of \(K \) containing \(F \).

Proof. The elements of \(F \) are algebraic over \(F \), so \(F \subseteq A \subseteq K \). If \(\alpha, \beta \in A \) then \(\alpha \) is algebraic over \(F \) and \(\beta \) is algebraic over \(F(\alpha) \) (since \(\beta \) is algebraic over \(F \)). Hence \([F(\alpha, \beta):F] = [F(\alpha, \beta):F(\alpha)][F(\alpha):F] = (\deg m_{\beta,F(\alpha)})(\deg m_{\alpha,F}) < \infty \). Therefore \(F(\alpha, \beta) \) is algebraic over \(F \) and so \(\alpha \pm \beta, \alpha/\beta, \alpha \beta \in F(\alpha, \beta) \) are algebraic over \(F \). Hence \(\alpha \pm \beta, \alpha/\beta, \alpha \beta \in A \) and \(A \) is a subfield of \(K \).
Theorem 4 If \(L/K/F \) then \(L/F \) is algebraic iff both \(L/K \) and \(K/F \) are.

Proof. \(\Rightarrow \) is clear. Now assume both \(L/K \) and \(K/F \) are algebraic and \(\alpha \in L \). Then \(f(\alpha) = 0 \) where \(f = \sum_{i=0}^{n} b_i X^i \in K[X], f \neq 0 \). Define \(F_i = F(b_0, \ldots, b_{i-1}) \). Then \(\alpha \) is algebraic over \(F_{n+1} \) (since \(f \in F_{n+1}[X] \) and \(f(\alpha) = 0 \)), \(b_i \) is algebraic over \(F_i \) (since \(b_i \in K \) is algebraic over \(F \)), and \(F_{i+1} = F_i(b_i) \). Hence \([F_{n+1}(\alpha) : F] = [F_{n+1}(\alpha) : F_{n+1}] [F_{n+1} : F_n] \cdots [F_1 : F_0] < \infty \). Therefore \(\alpha \in F_{n+1}(\alpha) \) is algebraic over \(F = F_0 \).

Constructive proof of Theorems 3 and 4.

Suppose \(\alpha, \beta \in K \) are both algebraic over \(F \). Theorem 3 states that combinations such as \(\alpha + \beta \) and \(\alpha \beta \) are also algebraic over \(F \), but the proof does not indicate how to find an \(f \) such that \(f(\alpha + \beta) = 0 \) or \(f(\alpha \beta) = 0 \). It is possible however to make Theorem 3 constructive.

Theorem (Symmetric Function Theorem) If \(f \in R[X_1, \ldots, X_n] \) is symmetric under interchange of any pair \(X_i, X_j \), then \(f \in R[\sigma_1, \ldots, \sigma_n] \) where \(\sigma_i \) is the \(i \)th elementary symmetric function of the \(X_i \).

Suppose there exists \(M/K \) such that \(m_\alpha = m_{\alpha,F} \) and \(m_\beta = m_{\beta,F} \) split in \(M \), i.e., factor completely into linear factors \(m_\alpha = (X - \alpha_1) \cdots (X - \alpha_m), m_\beta = (X - \beta_1) \cdots (X - \beta_m) \), \(\alpha = \alpha_1, \beta = \beta_1, \alpha_1, \beta_1 \in M \). (We shall prove the existence of such an \(M \) later, the \(\alpha_i \) are called the conjugates of \(\alpha \)). Now consider the polynomial

\[
f(X) = \prod_{i=1}^{n} \prod_{j=1}^{m} (X - \alpha_i \beta_j) \in F[\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m, X] \subseteq M[X].
\]

We can consider \(f \) as a polynomial in indeterminates \(\alpha_i \) and coefficients in \(R = F[\beta_1, \ldots, \beta_m, X] \). By the Symmetric Function Theorem, \(f \in R[\sigma_1, \ldots, \sigma_m] \), where \(\sigma_i \) are the elementary symmetric functions in the \(\alpha_i \). But then \(\sigma_i \) are just \(\pm \) the coefficients of \(m_\alpha \), so lie in \(F \). Thus \(f \in F[\beta_1, \ldots, \beta_m, X] \). A similar argument using symmetry in the \(\beta_j \) shows that \(f \in F[X] \). But \(f \) is monic (so non-zero) and \(f(\alpha \beta) = f(\alpha_1 \beta_1) = 0 \). Hence \(\alpha \beta \) is algebraic over \(F \). Note that \(f \) might not be irreducible so we can only conclude that \(m_{\alpha \beta,F} \) is a factor of \(f \).

A similar argument can be used for \(\alpha \pm \beta \). For \(1/\alpha \) the proof is easier since we can take the polynomial \(f(X) = X^n m_\alpha(1/X) \). Hence Theorem 3 can be made constructive.

For Theorem 4 a similar trick can be used. Let \(\alpha \) be algebraic over \(K \) with minimal polynomial, \(m_{\alpha,K} = \sum_{i=0}^{m} \beta_i X^i \), where each \(\beta_i \) is algebraic over \(F \). Suppose we can find a \(M/L \) such that each minimal polynomial \(m_{\beta_i,F} \) splits, \(m_{\beta_i,F} = \prod_{j=1}^{n} (X - \beta_{i,j}) \), \(\beta_i = \beta_{i,1}, \beta_{i,j} \in M \). Now consider

\[
f(X) = \prod_{j_1=1}^{n_1} \cdots \prod_{j_m=1}^{n_m} \sum_{i=0}^{m} \beta_{i,j_1} \cdots \beta_{i,j_m} X^i \in F[\beta_{1,1}, \ldots, \beta_{1,n_1}, \beta_{2,1}, \ldots, \beta_{m,n_m}, X].
\]

This polynomial is symmetric in each collection \(\{ \beta_{i,1}, \ldots, \beta_{i,n_i} \} \), so by applying the Symmetric Function Theorem \(m \) times we get \(f \in F[X] \). But \(m_{\alpha,K} \mid f \), so \(f(\alpha) = 0 \).
Definition If \(P \) and \(Q \) are two distinct points of \(\mathbb{R}^2 \), write \(L(P,Q) \) for the (infinite) line through \(P \) and \(Q \) and \(C(P,Q) \) for the circle with center \(P \) going through the point \(Q \).

Definition The point \(P \in \mathbb{R}^2 \) is constructible by ruler and compass from the set of points \(\{P_1, \ldots, P_n\} \) if there is a sequence of points \(P_{n+1}, P_{n+2}, \ldots, P_m = P \), where each \(P_i, i > n \) is constructed from previous points using one of the following constructions:

1. \(P_i \) is the point of intersection of two distinct lines of the form \(L(P_j, P_k), j,k < i \),
2. \(P_i \) is any point of intersection of two distinct circles of the form \(C(P_j, P_k), j,k < i \),
3. \(P_i \) is any point of intersection of a line \(L(P_j, P_k) \) and a circle \(C(P_r, P_s), j,k,r,s < i \).

We say a line (resp. circle) is constructible if it is of the form \(L(P,Q) \) (resp. \(C(P,Q) \)) for some pair of constructible points \(P \) and \(Q \). If \(n = 1 \) then the only constructible point is \(P_1 \), hence we may assume \(n \geq 2 \). Define a Cartesian coordinate system so that \(P_1 = (0,0) \) and \(P_2 = (1,0) \).

Lemma 1 The set of constructible points is of the form \(\mathcal{C} = \{(x,y) : x, y \in F\} \) where \(F \) is some subfield of \(\mathbb{R} \). Moreover, if \(a \in F \) and \(a > 0 \) then \(\sqrt{a} \in F \).

Proof Let \(F = \{x : (x,0) \text{ is constructible}\} \).

Step 1. If \(P, Q \in \mathcal{C} \) then the line perpendicular to \(L(P,Q) \) through \(P \) is constructible. \[L(P,Q) \cap C(P,Q) = \{Q, R\}, S \in C(R,Q) \cap C(Q,R), L(P,S) \text{ is perpendicular to } L(P,Q).\] Call this line \(L^\perp(P,Q) \).

Step 2. If \((x,0), (y,0) \in \mathcal{C} \) then \((x,y) \in \mathcal{C} \). \[(0, y) \in C((0,0),(y,0)) \cap L^\perp((0,0),(1,0)), L^\perp((0,y),(0,0)) \cap L^\perp((x,0),(0,0)) = \{(x,y)\}.\]

Step 3. If \(P, Q, R \in \mathcal{C} \) then the projection of \(R \) onto \(L(P,Q) \) is constructible. \[C(P,R) \cap C(Q,R) = \{R, S\}, L(R,S) \cap L(P,Q) = \{T\}.\]

Step 4. If \((x, y) \in \mathcal{C} \) then \((x,0), (y,0) \in \mathcal{C} \). \[\text{Project } (x, y) \text{ onto } L((0,0),(1,0)) \text{ and } L^\perp((0,0),(1,0)) \text{ (the axes) to get } (x,0) \text{ and } (0,y). \]

Steps 2 and 4 imply that \(\mathcal{C} = \{(x,y) : x, y \in F\} \).

Step 5. If \(x, y \in F \) then \(x \pm y \in F \). \[C((x,0),(x,y)) \cap L((0,0),(1,0)) = \{(x+y,0),(x-y,0)\}.\]

Step 6. If \(x, y \in F \) and \(x \neq 0 \) then \(y/x, xy \in F \). \[L((0,0),(x,y)) \cap L^\perp((1,0),(0,0)) = \{(1,y/x)\}. \text{ Also } y/(1/x) = xy.\]

We have now shown that \(F \) is a field.

Step 7. If \(x \in F, x > 0 \), then \(\sqrt{x} \in F \). \[C((x-1)/2,0),(x,0) \cap L^\perp((0,0),(1,0)) = \{(0,\pm\sqrt{x})\}. \]
Lemma 2 If K/F is an extension with $[K:F] = 2$ and $\text{char } F \neq 2$ then $K = F(\sqrt{\alpha})$ for some $\alpha \in F$.

Proof. Pick any $\beta \in K$, $\beta \notin F$. Then $[F(\beta):F] > 1$, so $F(\beta) = K$, and $\deg m_{\beta,F} = 2$. Hence β is the solution to a quadratic equation $m_{\beta,F} = aX^2 + bX + c = 0$ with coefficients in F. Hence β can be written in terms of a square root of an element $\alpha = b^2 - 4ac \in F$. Conversely $\sqrt{\alpha}$ can be written in terms of β, so $F(\sqrt{\alpha}) = F(\beta) = K$. \hfill \square

Theorem 1 A point (x,y) is constructible from $\{P_1, \ldots, P_n\}$, $P_0 = (0,0)$, $P_1 = (1,0)$, $P_i = (x_i,y_i)$, $i \geq 2$, iff there exists a sequence of fields $F_0 \subseteq F_1 \subseteq \cdots \subseteq F_m \subseteq \mathbb{R}$ with $F_0 = \mathbb{Q}(x_2,y_2,\ldots,x_n,y_n)$, $[F_{i+1}:F_i] = 2$, and $x,y \in F_m$.

Proof. Let F_m be as described above and let F be defined as in Lemma 1. Then $x_i,y_i \in F$, $i = 2, \ldots, n$, so $F \supseteq F_0$. Also, $[F_{i+1}:F_i] = 2$, so by Lemma 2, $F_{i+1} = F_i(\sqrt{\alpha})$ for some $\alpha \in F_i$ and $\alpha > 0$ (since $F_{i+1} \subseteq \mathbb{R}$). Hence by induction $F \supseteq F_i$. Thus $x,y \in F_m \subseteq F$ and (x,y) is constructible. Conversely suppose (x,y) is constructible, it is enough to show that if the coordinates of P_1, \ldots, P_{i-1} lie in K and $P_i = (x,y)$ is the intersection of lines and/or circles formed from P_j, $j < i$, then $[K(x,y):K] \leq 2$. If $P,Q \in K^2$, then $L(P,Q)$ is given by an equation of the form $ax + by + c = 0$ where $a,b,c \in K$. Similarly $C(P,Q)$ is a circle of the form $x^2 + y^2 + ax + by + c = 0$, $a,b,c \in K$. It is easy to check that the x and y coordinates of an intersection of such lines and circles can be obtained by solving a linear or quadratic equation. Hence $[K(x,y):K] \leq 2$. \hfill \square

As a consequence of Theorem 1 and the Tower Law, if (x,y) is constructible then $[F_0(x,y):F_0]$ is a power of 2, or equivalently, if $\alpha \in F$ then $[F_0(\alpha):F_0]$ is a power of 2.

Examples

1. The cube cannot be doubled.
 The aim is to construct a length $\sqrt[3]{2}$ times longer than a given length P_0P_1. This would imply $\sqrt[3]{2} \in F$ which is impossible since $[\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}] = 3$ is not a power of 2.

2. The circle cannot be squared.
 The aim is to construct a length $\sqrt[4]{\pi}$ times longer than a given length P_0P_1. This would imply $\pi \in F$ which is impossible since $[\mathbb{Q}(\pi) : \mathbb{Q}] = \infty$ is not a power of 2.

3. In general, the trisection of an angle is not constructible.
 An angle is given by three points P_0, P_1, P_2 where $P_0 = (0,0)$, $P_1 = (1,0)$, and $P_2 = (x,y)$ where $y/x = \tan \theta$. An easy exercise shows that $a = 2\cos \theta \in F$, and conversely the point P_3 can be chosen as $(\cos \theta, \sin \theta)$, so that $[F_0:Q(a)] \leq 2$. If there are constructible points Q_1, Q_2, Q_3 that make an angle $\theta/3$ then an easy exercise shows that $\alpha = 2\cos(\theta/3) \in F$. [If the Q_i are constructible, then so are $Q_2 - Q_1$ and $Q_3 - Q_1$. By intersecting with $C((0,0), (1,0))$ we see that the sines and cosines of the angles θ_2, θ_3 that $L(Q_1, Q_2)$ and $L(Q_1, Q_3)$ make with the x-axis lie in F. Using trigonometric identities gives $\alpha = 2\cos(\theta_3 - \theta_2) \in F$.] Hence $[Q(a)(\alpha) : Q(a)]$ is a power of 2. By the triple angle formula for cosines, α is a root of $X^3 - 3X - a = 0$. There are many choices for a that make this polynomial irreducible over $Q(a)$, for example $a = 1 (\theta = 60^\circ)$. But then $[Q(a)(\alpha) : Q(a)] = 3$, a contradiction.
We start with a rather technical, but very useful, lemma.

Lemma (Artin’s Extension Theorem) Let \(\phi : F_1 \to F_2 \) be an isomorphism of fields. Let \(K_1/F_1 \) and \(K_2/F_2 \) be two extensions and let \(\alpha \in K_1 \). Then there is an extension of \(\phi \) to \(\tilde{\phi} : F_1(\alpha) \to K_2 \) with \(\tilde{\phi}|_{F_1} = \phi \) and \(\tilde{\phi}(\alpha) = \beta \in K_2 \) iff \(\beta \) is a zero of \(\phi(m_{\alpha,F_1}) \in F_2[X] \). Moreover, for each such \(\beta \) \(\tilde{\phi} \) is unique.

[If \(f \in F_1[X] \) then \(\phi(f) \in F_2[X] \) is obtained by applying \(\phi \) to the coefficients of \(f \). In terms of our earlier notation, \(\phi(f) = \text{ev}_{\phi,X}(f) \).]

Proof. Write \(m_{\alpha,F_1} = \sum b_i X^i \). If \(\tilde{\phi} \) exists and \(\beta = \tilde{\phi}(\alpha) \) then \(\phi(m_{\alpha,F_1})(\beta) = \sum \phi(b_i)\beta^i = \sum \phi(b_i)\tilde{\phi}(\alpha)^i = \phi(\sum b_i \alpha^i) = \tilde{\phi}(0) = 0 \). Also, \(\tilde{\phi} \) is unique since every element of \(F_1(\alpha) \) can be written in the form \(f(\alpha), f \in F_1[X] \), and \(\tilde{\phi}(f(\alpha)) = \phi(f)(\beta) \) is uniquely determined. Conversely, assume \(\beta \) is a zero of \(\phi(m_{\alpha,F_1}) \), then \(m_{\beta,F_2} = \phi(m_{\alpha,F_1}) \) since the latter is monic and irreducible. Now both \(\text{ev}_{1,\alpha} : F_1[X] \to F_1(\alpha) \) and \(\text{ev}_{\phi,\beta} : F_1[X] \to F_2(\beta) \) are surjective with kernel \((m_{\alpha,F_1}) \) and we can define \(\tilde{\phi} \) as the composition of the two isomorphisms

\[F_1(\alpha) \cong F_1[X]/(m_{\alpha,F_1}) \cong F_2(\beta). \]

Under this isomorphism \(\alpha \mapsto X + (m_{\alpha,F_1}) \mapsto \beta \) and \(c \mapsto c + (m_{\alpha,F_1}) \mapsto \phi(c) \) for \(c \in F_1 \).

We shall often use this lemma with \(F_1 = F_2 \) and \(\phi = 1 \). Note that the image of \(\tilde{\phi} \) is \(F_2(\beta) \), so \(\tilde{\phi} \) gives an isomorphism \(F_1(\alpha) \to F_2(\beta) \).

Examples

1. The fields \(\mathbb{Q}(\sqrt{2}) \) and \(\mathbb{Q}(i\sqrt{2}) \) are isomorphic, but distinct, subfields of \(\mathbb{C} \).
2. There is an automorphism of \(\mathbb{Q}(\sqrt{2}) \) sending \(\sqrt{2} \) to \(-\sqrt{2} \) and fixing \(\mathbb{Q} \).

Definition A polynomial \(f(X) \in F[X] \) splits in \(K/F \) if it factors as a product of linear factors in \(K[X] \).

Examples

1. The polynomial \(X^2 - 2 \) splits in \(\mathbb{Q}(\sqrt{2}) \).
2. The polynomial \(X^3 - 2 \) has a zero, but does not split in \(\mathbb{Q}(\sqrt{2}) \) since \(\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{R} \), but only one of the three roots of \(X^3 - 2 = 0 \) is real.

Definition A splitting field extension (sfe) of \(f \in F[X] \) is an extension \(K/F \) such that

(a) \(f \) splits in \(K \), and
(b) if \(F \subseteq L \subseteq K \) and \(f \) splits in \(L \) then \(L = K \).

More generally, a splitting field extension of \(\mathcal{F} \subseteq F[X] \) is an extension \(K/F \) such that

(a) \(f \) splits in \(K \) for all (non-zero) \(f \in \mathcal{F} \), and
(b) if \(F \subseteq L \subseteq K \) and \(f \) splits in \(L \) for all \(f \in \mathcal{F} \) then \(L = K \).
Theorem 1 If \(f \in F[X] \) then there exists an extension \(K/F \) in which \(f \) splits. Moreover, if \(\deg f = n \) then such a \(K \) exists with \([K:F] \leq n! \).

Proof. We proceed by induction on \(n \). Let \(g \) be an irreducible factor of \(f \) in \(F[X] \). Let \(F' = F[X]/(g) \). Then \((g) \) is a maximal ideal, \(F' \) is a field, and \(F'/F \) is a field extension. Let \(\alpha = X + (g) \in F' \). Then \(g(\alpha) = 0 \) in \(F' \). Thus \(f(\alpha) = 0 \) and we can write \(f(X) = (X - \alpha)h(X) \) in \(F'[X] \). Applying induction, there exists an extension \(K/F' \) in which \(h(X) \) splits and \([K:F'] \leq (n-1)! \). But then \(f(X) \) splits in \(K \) and \([K:F] = [K:F'][F':F] \leq n! \). \(\square \)

We can extend this theorem to any finite set \(\mathcal{F} \) of polynomials by considering the polynomial \(f(X) = \prod_{g \in \mathcal{F} \setminus \{0\}} g(X) \in F[X] \). For infinite \(\mathcal{F} \) one needs Zorn’s lemma to find \(K \).

Theorem 2 If every \(f \in \mathcal{F} \) splits in \(K \) then there exists a unique subfield \(L \subseteq K \) such that \(L/F \) is a sfe for \(\mathcal{F} \).

Proof. Let \(A = \{ \alpha \in K : \alpha \) is a zero of some \(f \in \mathcal{F} \} \). If \(L \subseteq K \) is a sfe of \(\mathcal{F} \) then \(A \subseteq L \) and \(F \subseteq L \). Hence \(L \supseteq F(A) \). Conversely, every \(f \in \mathcal{F} \) splits in \(F(A) \). Hence \(L = F(A) \) is the unique subfield of \(K \) that is a sfe for \(\mathcal{F} \). \(\square \)

Theorem 3 Any two sfe’s for \(f \in F[X] \) are isomorphic.

Proof. We shall prove a slightly stronger result: If \(\phi : F \rightarrow F' \) is an isomorphism, \(K \) is a sfe of \(f \in F[X] \), and \(\phi(f) \) splits in \(K'/F' \), then there is an extension \(\tilde{\phi} : K \rightarrow K' \) of \(\phi \).

Let \(g \) be a monic irreducible factor of \(f \) and let \(\alpha \) be a zero of \(g \) in \(K \) and \(\beta \) a zero of \(\phi(g) \) in \(K' \). By Artin’s extension Theorem, \(\phi \) extends to an isomorphism \(\phi' : F(\alpha) \rightarrow F'(\beta) \). Write \(f(X) = (X - \alpha)h(X) \) in \(F(\alpha)[X] \). Now \(K/F(\alpha) \) is a sfe for \(h \) and \(\phi'(h) \) splits in \(K' \) (since \(\phi'(h) | \phi(f) \)). Hence by induction on \(\deg f \), \(\phi' \) extends to a map \(\tilde{\phi} : K \rightarrow K' \).

Now assume \(K' \) is also a sfe and \(F = F' \). Then \(f \) splits in \(\text{Im} \tilde{\phi} \subseteq K' \). Hence \(\text{Im} \tilde{\phi} = K' \) and \(\tilde{\phi} \) is an isomorphism. \(\square \)

Putting Theorems 1–3 together, we see that a sfe for \(f \in F[X] \) exists, is unique up to isomorphism, has degree at most \(n! \) over \(F \), and can be written as \(K = F(\alpha_1, \ldots, \alpha_n) \) where \(\alpha_1, \ldots, \alpha_n \) are the zeros of \(f \) in \(K \).

Examples

1. The sfe of \(X^3 - 2 \) over \(\mathbb{Q} \) is \(\mathbb{Q}(\sqrt[3]{2}, \zeta_3 \sqrt[3]{2}, \zeta_3^2 \sqrt[3]{2}) = \mathbb{Q}(\zeta_3, \sqrt[3]{2}) \), where \(\zeta_3 = e^{2\pi i/3} \). This extension is of degree 6 = 3! over \(\mathbb{Q} \). [Prove this!]

2. The sfe of \(X^3 - 2 \) over \(\mathbb{R} \) is \(\mathbb{C} \), which is of degree 2 < 3! over \(\mathbb{R} \).

Exercise: Find the sfe \(K \) of \(X^4 - 2 \) over \(\mathbb{Q} \). What is \([K: \mathbb{Q}] \)?
A partial ordering on a set \mathcal{X} is a relation \leq satisfying the properties

O1 $\forall x : x \leq x$,
O2 $\forall x, y : if \ x \leq y \ and \ y \leq x \ then \ x = y$,
O3 $\forall x, y, z : if \ x \leq y \ and \ y \leq z \ then \ x \leq z$.

A total ordering is a partial ordering which also satisfies

O4 $\forall x, y : either \ x \leq y \ or \ y \leq x$.

Examples Any collection of sets with \subseteq as the ordering forms a partially ordered set that is not in general totally ordered. The usual \leq on \mathbb{R} is a total ordering.

If (\mathcal{X}, \leq) is a partially ordered set, a chain in \mathcal{X} is a non-empty subset $T \subseteq \mathcal{X}$ that is totally ordered by \leq.

If $T \subseteq \mathcal{X}$, and $x \in \mathcal{X}$, we say x is an upper bound for T if $y \leq x$ for all $y \in T$. [Note that we do not require x to be an element of T, for example, $2 \in \mathbb{R} = \mathcal{X}$ is an upper bound for $T = [0,1]$.

A maximal element of \mathcal{X} is an element x such that for any $y \in \mathcal{X}$, $x \leq y$ implies $x = y$. [Note: This does not imply that $y \leq x$ for all y since \leq is only a partial order. In particular there may be many maximal elements.]

Theorem (Zorn’s Lemma) If (\mathcal{X}, \leq) is a non-empty partially ordered set for which every chain has an upper bound then \mathcal{X} has a maximal element.

This result follows from (and is equivalent to) the Axiom of choice, which states that if X_i are non-empty sets then $\prod_{i \in I} X_i$ is non-empty. [I will not give the proof here as it is rather long.]

Note: If we had defined things so that \emptyset were a chain, we would not need the condition that $\mathcal{X} \neq \emptyset$ in Zorn’s Lemma since the existence of an upper bound for \emptyset is just the condition that an element of \mathcal{X} exists. However, in practice it is easier to check $\mathcal{X} \neq \emptyset$ and then check separately that each non-empty totally ordered subset has an upper bound.

Examples

Theorem If I is a proper ideal of a ring R (with 1) then there exists a maximal ideal M such that $I \subseteq M$.

Proof. If an ideal J contains 1 then $J = R$, so an ideal is proper iff it does not contain 1. Let $\mathcal{X} = \{J : J$ is a proper ideal of R with $I \subseteq J\}$. The partial order on \mathcal{X} will be \subseteq. Since $I \in \mathcal{X}$, $\mathcal{X} \neq \emptyset$. Now let T be a chain in \mathcal{X}, i.e., a set of ideals $\{J_\alpha\}$ such that for every $J_\alpha, J_\beta \in T$ either $J_\alpha \subseteq J_\beta$ or $J_\beta \subseteq J_\alpha$. We shall show that $K = \bigcup_{J_\alpha \in T} J_\alpha$ is an upper bound for T.

Firstly $T \neq \emptyset$, so some ideal J_α lies in T and $I \subseteq J_\alpha \subseteq K$. In particular $K \neq \emptyset$. If $x, y \in K$ then $x \in J_\alpha$, $y \in J_\beta$, say. Since T is totally ordered, we can assume without loss of generality that $J_\alpha \subseteq J_\beta$. Thus $x, y \in J_\beta$, and $x - y \in J_\beta \subseteq K$. If $x \in K$, $r \in R$, then $x \in J_\alpha$, say, so $xr, rx \in J_\alpha \subseteq K$. Hence K is an ideal with $I \subseteq K$. However $1 \notin J_\alpha$ for each $J_\alpha \in T$, so $1 \notin K$.

Hence K is proper. Therefore $K \in \mathcal{X}$ and is clearly an upper bound for T.

Spring 2003
The conditions of Zorn’s Lemma apply, so \mathcal{X} has a maximal element M, say. Now M is a proper ideal containing I and is maximal, since if $M \subset J \subset R$ then $J \in \mathcal{X}$ and M would not be maximal in \mathcal{X}. □

We now give an example from linear algebra. Let V be a vector space (possibly infinite dimensional).

A set $S \subseteq V$ is called linearly independent if there are no non-trivial finite linear combinations that give 0. In other words if $\sum_{i=1}^{n} \lambda_i s_i = 0$ and the s_i are distinct elements of S then $\lambda_i = 0$ for each i.

A set $S \subseteq V$ is called spanning if every element $v \in V$ can be written as a finite linear combinations of elements of S, $v = \sum_{i=1}^{n} \lambda_i s_i$.

A set $S \subseteq V$ is called a basis if it is a linearly independent spanning set. Note that every element $v \in V$ can be written as a linear combination of elements of a basis in a unique way. [Spanning implies existence, linear independence implies uniqueness.]

Theorem Every vector space has a basis.

Proof. Let \mathcal{X} be the set of all linearly independent sets in V partially ordered by \subseteq. Since \emptyset is linearly independent, $\mathcal{X} \neq \emptyset$. Let T be a chain in \mathcal{X} and let $S = \cup_{S_\alpha \in T} S_\alpha$. We shall show that S is linearly independent.

Suppose $\sum_{i=1}^{n} \lambda_i s_i = 0$ and $s_i \in S_i \in T$ (the s_i are distinct but the S_i need not be distinct). Then by total ordering of the S_i, there must be one S_{i_0} that contains all the others (use induction on n). But then $\sum_{i=1}^{n} \lambda_i s_i = 0$ is a linear relation in S_{i_0} which is linearly independent. Thus $\lambda_i = 0$ for all i. Hence S is linearly independent, so $S \in \mathcal{X}$ and is clearly an upper bound for T.

Now apply Zorn’s Lemma to give a maximal linearly independent set M. We shall show that M spans V and so is a basis. Clearly any element of M is a linear combination of elements of M, so pick any $v \notin M$ and consider $M \cup \{v\}$. By maximality of M this cannot be linearly independent. Hence there is a linear combination $\lambda v + \sum_{i=1}^{n} \lambda_i s_i = 0$, $s_i \in M$, with not all the λ’s zero. If $\lambda = 0$ this gives a linear relation in M, contradicting linear independence of M. Hence $\lambda \neq 0$ and $v = \sum_{i=1}^{n} (-\lambda_i/\lambda) s_i$ is a linear combination of elements of M. □

Note: If $I \subseteq S$ and I is a linearly independent set and S is a spanning set then the above proof can be modified to give a basis M with $I \subseteq M \subseteq S$. Just let \mathcal{X} be the linearly independent subsets of S containing I and in the last paragraph pick $v \in S \setminus M$. [If $S \subseteq M$ then M clearly spans V.]
The aim is to use Zorn’s Lemma to prove, given \(F \), the existence and uniqueness of the splitting field extension of any \(\mathcal{F} \subseteq F[X] \). We need to generalize Theorems 1 and 3 above (Theorem 2 already applies to any \(\mathcal{F} \)).

Theorem 1’ For any field \(F \), there exists an extension \(K/F \) in which every \(f \in F[X] \) splits.

The idea of the proof is to use Zorn’s Lemma to construct a “maximal” algebraic extension. Unfortunately the collection of algebraic extensions do not form a set, so we have to be a bit more careful. In particular, we need to fix the underlying set of elements of the extensions, so that the collection of extensions forms a well defined set.

Proof. Let \(\mathcal{L} \) be the set of ordered pairs \((f, n)\) where \(f \in F[X] \) is a monic irreducible polynomial and \(n \in \mathbb{N} \). This will be our underlying set. An \(\mathcal{L} \)-extension (not standard notation) will be a field \((K, +, \times)\) where

1. \(K \subseteq \mathcal{L} \),
2. the map \(i: F \to K \) given by \(i(a) = (X - a, 1) \) is a ring homomorphism (so \(K/F \) is an extension and \(F \) can be identified with the set \(\{(X - a, 1) : a \in F \} \subseteq K \)),
3. if \(\alpha = (f, n) \in K \) then \(f(\alpha) = 0 \) (where the coefficients \(c_i \) of \(f \) are identified with \(i(c_i) \in K \)).

It is clear that any algebraic extension is isomorphic to one of this form. Indeed, if \(M/F \) is an algebraic extension we can just rename the roots \(\alpha_1, \ldots, \alpha_r \) of any irreducible polynomial \(f = m_{\alpha_1,F} \) as \((f, 1), \ldots, (f, r)\). Since each \(f \) has only finitely many roots we never run out of elements of \(\mathcal{L} \). [Technically this requires the axiom of choice since there are an infinite number of choices as to how to do the renaming: for each \(f \) we must order the roots.]

Let \(\mathcal{X} \) be the set of all \(\mathcal{L} \)-extensions. It is clear that \(\mathcal{X} \) is a set. Indeed, it is a subset of \(\mathcal{P}(\mathcal{L}) \times \mathcal{P}(\mathcal{L} \times \mathcal{L} \times \mathcal{L}) \times \mathcal{P}(\mathcal{L} \times \mathcal{L} \times \mathcal{L}) \) where \(\mathcal{P}(A) \) denotes the set of all subsets of \(A \). [We regard + and \(\times \) as subsets of \(\mathcal{L} \times \mathcal{L} \times \mathcal{L} \), since they can be determined by the set of all triples \((a, b, a + b)\) or \((a, b, ab)\).]

Define a partial order on \(\mathcal{L} \)-extensions by setting \((K, +, \times) \leq (K', +', \times')\) iff \(K \) is a subfield of \(K' \), i.e., \(K \subseteq K' \) and + and \(\times \) are the restrictions of +’ and \times’ to \(K \). It is clear that \(\leq \) is a partial order.

The field \(\{(X - a, 1) : a \in F\} \) with \((X - a, 1) + (X - b, 1) = (X - (a + b), 1) \) and \((X - a, 1)(X - b, 1) = (X - ab, 1) \) is an \(\mathcal{L} \)-extension, so \(\mathcal{X} \neq \emptyset \). Let \(\mathcal{T} \) be a chain in \(\mathcal{X} \). We claim that \(\bigcup_{K \in \mathcal{T}} K \in \mathcal{X} \). If \(\alpha, \beta \in \bigcup_{K \in \mathcal{T}} K \) then \(\alpha \in K_1 \), \(\beta \in K_2 \) for some \(K_1, K_2 \in \mathcal{T} \). Since \(\mathcal{T} \) is totally ordered, we can assume \(K_1 \leq K_2 \), so \(\alpha, \beta \in K_2 \). Define \(\alpha + \beta \) and \(\alpha \beta \) by their values in \(K_2 \). Then by the definition of \(\leq \), these values agree with their values in any \(K \in \mathcal{T} \) with \(K_2 \leq K \). The field axioms follow immediately, since to check an axiom, we just take any \(K \in \mathcal{T} \) big enough to contain all the relevant elements and use the corresponding axioms in \(K \). The fact that \(a \mapsto (X - a, 1) \) is a ring homomorphism and \(f(\alpha) = 0 \) when \(\alpha = (f, n) \) follow from the corresponding properties in each \(K \in \mathcal{T} \). It is now clear that \(\bigcup_{K \in \mathcal{T}} K \) is an upper bound for \(\mathcal{T} \). Zorn’s Lemma now provides us with the existence of a maximal \(\mathcal{L} \)-extension, \((M, +, \times)\) say.
We now prove that every $f \in \mathbb{F}[X]$ splits in M. If not, then there exists a sfe for f over M, say M'/M with $M' \neq M$. But M'/M and M/F are algebraic, so M'/F is algebraic. By renaming the elements of M' we can assume $M \subseteq M'$. By renaming the elements $\alpha \in M' \setminus M$ as $(m_{\alpha,F},i)$ as above, we can assume that M' is an L-extension containing M. Note that we never run out of choices for i since every $m_{\alpha,F}$ has only finitely many roots. Clearly $M \subseteq M'$ and $M \neq M'$ contradicting the choice of M. Hence every polynomial in $\mathbb{F}[X]$ splits in M.

\textbf{Theorem 3'} If K/F and M/F are extensions with K/F an sfe for $\mathbb{F} \subseteq \mathbb{F}[X]$ and assume \mathbb{F} splits in M. There exists an homomorphism $\phi: K \to M$ that fixes F. In particular, if M/F is also an sfe for \mathbb{F} then ϕ is an isomorphism.

\textit{Proof.} Let \mathcal{X} be the set of homomorphisms $\phi: L_\phi \to M$ where L_ϕ is some subfield of K containing F and ϕ fixes F. The inclusion $F \to M$ lies in \mathcal{X}, so $\mathcal{X} \neq \emptyset$. Define a partial ordering on \mathcal{X} by $\phi \leq \psi$ if $L_\phi \subseteq L_\psi$ and $\phi = \psi$ on L_ϕ. This is clearly a partial order. Let T be a chain in \mathcal{X}. Define \tilde{L} to be $\bigcup_{\phi \in T} L_\phi$. Since the L_ϕ are totally ordered by inclusion, \tilde{L} is a subfield of K containing F. [If $\alpha, \beta \in \tilde{L}$ then $\alpha \in L_\phi, \beta \in L_\psi$ for some $\phi, \psi \in T$. Since T is totally ordered, we may assume $\phi \leq \psi$, so $\alpha, \beta \in L_\psi$. Then $\alpha \pm \beta, \alpha \beta, \alpha/\beta \in L_\psi \subseteq \tilde{L}$.] Define $\tilde{\phi}(a)$ to be $\phi(a)$ for any $\phi \in T$ for which $a \in L_\phi$. Since T is totally ordered, if $a \in L_\phi, L_\psi$ we can assume $\phi \leq \psi$ and so $\phi(a) = \psi(a)$. Hence $\tilde{\phi}$ is well defined. It is obvious that $\tilde{\phi}$ is a ring homomorphism from \tilde{L} to M, so $\tilde{\phi} \in \mathcal{X}$ and it is clearly an upper bound for T. Now using Zorn’s Lemma we have a maximal $\phi \in T$.

If $L_\phi \neq K$ then some $f \in \mathbb{F}$ does not split in L_ϕ. Hence there exists a root α of f with $\alpha \in K$ and $\alpha \notin L_\phi$. Let m_α be the minimal polynomial of α over L_ϕ. Note that $m_\alpha | f$. Let $L' = \text{Im}(\phi)$ be the image of L_ϕ in M. Then L' is a subfield of M, isomorphic (via ϕ) to L_ϕ. The image $\phi(m_\alpha)$ is therefore irreducible in $L'[X]$. Since $m_\alpha | f, \phi(m_\alpha) | \phi(f) = f$, so $\phi(m_\alpha)$ must split in M (since f does). Therefore there exists a $\beta \in M$ which is a root of $\phi(m_\alpha)$. The minimal polynomial of β over L' is clearly $\phi(m_\alpha)$, so by Artin’s extension Theorem, there exists a $\hat{\phi}: L_\phi(\alpha) \to M$ which agrees with ϕ on L_ϕ. Hence $\hat{\phi} \in \mathcal{X}$ and $\phi < \hat{\phi}$ contradicting the choice of ϕ. Therefore $L_\phi = K$.

Finally, since K is isomorphic to the image $\text{Im} \phi$, \mathbb{F} splits in $\text{Im} \phi/F$ and $\text{Im} \phi \subseteq M$. If M/F is a sfe, $\text{Im} \phi = M$ and ϕ gives an isomorphism from K to M fixing F.

\textbf{Lemma 1} If K/F is an extension, then K is a sfe for $\mathbb{F} = \mathbb{F}[X]$ iff (a) K/F is algebraic and (b) every non-constant $f \in \mathbb{F}[X]$ has a root in K.

\textit{Proof.} Assuming (a) and (b) and using induction on $\deg f$ we see that every $f \in \mathbb{F}[X]$ splits in K. But every element of K is a root of some $f \in \mathbb{F}[X]$ so K must be a sfe for $\mathbb{F}[X]$. Conversely, if K is the sfe for $\mathbb{F}[X]$ then K/F is algebraic and if $f \in \mathbb{F}[X]$ is irreducible, $M = \mathbb{F}[X]/(f)$ is an algebraic extension of K. But then M/F is algebraic, so every $\alpha \in M$ is a root of some $g \in \mathbb{F}[X]$. But then $\alpha \in K$, so $M = K$ and f is linear. In particular every non-constant polynomial in $\mathbb{F}[X]$ factors into linear factors, so has a root in K.

The extension K of Lemma 1 is called the \textit{algebraic closure} of \mathbb{F} and is denoted $\overline{\mathbb{F}}$. The above theorems show that the algebraic closure exists and is unique up to isomorphism.
Definition An extension K/F is normal iff K/F is algebraic and if any irreducible $f \in F[X]$ has a root in K then it splits in K.

Theorem 1 Assume K/F is an extension. The following are equivalent:

(a) K/F is normal,

(b) K/F is a sfe for some $\mathcal{F} \subseteq F[X]$,

(c) the extension K/F is algebraic and if M is any field and $\phi, \psi : K \rightarrow M$ are any two homomorphisms with $\phi|_F = \psi|_F$ then $\text{Im } \phi = \text{Im } \psi$.

Proof. (a)\Rightarrow(b): Assume K/F is normal and let $\mathcal{F} = \{m_{\alpha,F} : \alpha \in K\}$. Then every $f \in \mathcal{F}$ splits in K, so \mathcal{F} splits in K. Conversely, if $L \subseteq K$ and \mathcal{F} splits in L then L contains all the roots of each $m_{\alpha,F}$. Hence L contains each $\alpha \in K$. Therefore $L = K$ and K is a sfe for \mathcal{F}.

(b)\Rightarrow(c): Both $\text{Im } \phi$ and $\text{Im } \psi$ are subfields of M and are sfe's for $\phi(\mathcal{F}) = \psi(\mathcal{F})$. Hence $\text{Im } \phi = \text{Im } \psi$.

(c)\Rightarrow(a): Assume K/F is not normal. Then there exists an irreducible $f \in F[X]$ such that f has a root $\alpha \in K$ but does not split over K. Let M be a sfe over K for the set $\mathcal{F} = \{m_{\gamma,F} : \gamma \in K\}$. Now without loss of generality $f = m_{\alpha,F}$, so f splits in M. Let β be another root of f that does not lie in K. By Artin, there exists an isomorphism $\phi : F(\alpha) \rightarrow F(\beta)$ fixing F. Now $M/F(\alpha)$ and $M/F(\beta)$ are sfe's for \mathcal{F} and $\phi(\mathcal{F}) = \mathcal{F}$ respectively. Hence ϕ extends to an isomorphism $\tilde{\phi} : M \rightarrow M$ with $\tilde{\phi}(\alpha) = \beta$. Now $\tilde{\phi}|_K$ and the inclusion $i : K \rightarrow M$ are two maps $K \rightarrow M$ with distinct images since $\beta \in \text{Im } \tilde{\phi}|_K$ but $\beta \notin \text{Im } i$. This contradicts (c), so K/F is normal. □

Definition Let K/F be algebraic. Then M is a normal closure of K/F iff M is an extension of K such that (a) M/F is normal, and (b) if $K \subseteq L \subseteq M$ and L/F is normal then $L = M$.

Lemma 2 Let K/F be algebraic and $K = F(A)$ for some subset $A \subseteq K$. Then M/K is a normal closure of K/F iff M is a sfe for $\mathcal{F} = \{m_{\alpha,A} : \alpha \in A\}$ over K (or over F).

Proof. Let M/K be a normal closure of K/F. Then every $m_{\alpha,F} \in \mathcal{F}$ has a root $\alpha \in K \subseteq M$. Hence every $m_{\alpha,F}$ splits in M. Let $L \subseteq M$ be a sfe for \mathcal{F} over F. Then L contains all the roots of every $m_{\alpha,F} \in \mathcal{F}$. In particular $A \subseteq L$, so $F(A) = K \subseteq L$. This implies L is a sfe for \mathcal{F} over K as well. Also L/F is a sfe, so is normal. Thus by the definition of normal closure $L = M$. Now let M/K be a sfe for \mathcal{F}. Let $L \subseteq M$ be a sfe for \mathcal{F} over F. Then $A \subseteq L$, $F(A) = K \subseteq L$ and L is a sfe for \mathcal{F} over K. Hence $L = M$ and M/F is normal. Now let $K \subseteq L' \subseteq M$ with L'/F normal. Since every $m_{\alpha,F} \in \mathcal{F}$ has a root $\alpha \in K \subseteq L'$, it must split in L'. Therefore \mathcal{F} splits in L' and $L' = M$ by definition of sfe. □

Corollary 3 Normal closures exist and are unique up to isomorphism. Also, if $[K:F] < \infty$ and M/K is a normal closure of K/F then $[M:F] < \infty$.

Proof. Existence and uniqueness up to isomorphism follow since M/K is a sfe for some \mathcal{F}. If $[K:F] < \infty$ then $K = F(A)$ for some finite set A (e.g., let A be a basis for the vector space K over F). Hence M/F is a sfe for a finite set of polynomials and so $[M:F] < \infty$. □

Examples The normal closure of $Q(\sqrt{2})/Q$ is equal to the sfe of $m_{\sqrt{2},Q} = X^4 - 2$ over $Q(\sqrt{2})$ (or Q), which is $Q(\sqrt{2}, i\sqrt{2}, i^2 \sqrt{2}, i^3 \sqrt{2}) = Q(\sqrt{2}, i)$.

Spring 2003
Lemma 1 Let K_1/F_1 and K_2/F_2 be extensions with $[K_1:F_1] < \infty$. Let $\phi: F_1 \to F_2$ be an isomorphism. Then

$$|\{\tilde{\phi}: K_1 \to K_2 : \tilde{\phi}|_{F_1} = \phi\}| \leq [K_1:F_1].$$

Moreover if $K_1 = F_1(A)$ then equality holds iff $\phi(m_{\alpha,F_1})$ splits in $K_2[X]$ into distinct linear factors for all $\alpha \in A$.

Proof. Proof is by induction on $[K_1:F_1]$. When $[K_1:F_1] = 1$ the result is clear. Now assume $[K_1:F_1] > 1$ and pick some $\alpha \in A$, $\alpha \not\in F_1$. Now let $\beta_1, \ldots, \beta_r \in K_2$ be the (distinct) roots of $\phi(m_{\alpha,F_1})$ in K_2. By Artin's extension theorem, for each $i = 1, \ldots, r$ there exists an isomorphism $\phi_i: F_1(\alpha) \to F_2(\beta_i)$ given by $\phi_i(\alpha) = \beta_i$. By induction each ϕ_i can be extended to at most $[K_1:F_1(\alpha)]$ maps $\tilde{\phi}: K_1 \to K_2$. Conversely any map $\tilde{\phi}: K_1 \to K_2$ gives by restriction to $F_1(\alpha)$ one of the maps ϕ_i. Therefore the number of $\tilde{\phi}$s is at most $[K_1:F_1(\alpha)]r$. But $r \leq \deg m_{\alpha,F_1} = [F_1(\alpha):F_1]$, so there are at most $[K_1:F_1(\alpha)][F_1(\alpha):F_1] = [K_1:F_1]$ such maps.

Moreover, if m_{α,F_1} does not split into distinct linear factors in $K_2[X]$ then $r < \deg m_{\alpha,F_1}$ and we have a strict inequality. Conversely if every m_{α,F_1} does split into distinct linear factors then $r = \deg m_{\alpha,F_1}$. Also every $\phi_i(m_{\alpha',F_1}(\alpha))$ with $\alpha' \in A$ splits into distinct linear factors in $K_2[X]$ since they are factors of $\phi(m_{\alpha',F_1})$. Hence by induction the number of extensions of each ϕ_i is exactly $[K_1:F_1(\alpha)]$ and we have equality.

There are therefore two ways in which we may have fewer that $[K_1:F_1]$ maps in Lemma 1. The first is if K_2 is not “big enough”. In this case some of the m_{α,F_1} may not split. The other is that the m_{α,F_1} may split, but some of the roots may be multiple roots. This motivates the following definitions.

Definition An irreducible polynomial $f \in F[X]$ is called separable if it has no multiple roots in any of its extensions. An element $\alpha \in K$ is called separable over F if it is algebraic over F and $m_{\alpha,F}$ is separable in $F[X]$. An extension K/F is separable if every $\alpha \in K$ is separable over F.

Definition The separable degree $[K:F]_s$ of an algebraic extension K/F is the number of maps $\phi: K \to M$ which fix F, where M/F is any “sufficiently large” extension.

Here “sufficiently large” means that all the $m_{\alpha,F}$’s in Lemma 1 split in $K_2 = M$. In this case the separable degree will be independent of M. It is enough if M is a normal closure of K/F. You can also use $M = F$, the algebraic closure of F.

Corollary 2 If K/F is finite then $[K:F]_s \leq [K:F]$ with equality iff K/F is separable.

Proof. Immediate from Lemma 1 taking $A = K$.

Example Let $K = \mathbb{F}_p(t)$ and $F = \mathbb{F}_p(t^p) \subseteq K$ where t is a transcendental element over \mathbb{F}_p. Then K is obtained from F by adjoining a root of $f(X) = X^p - t^p$. In $K[X]$, $f(X)$ splits as $f(X) = (X - t)^r$. The only non-trivial monic factors of f in $K[X]$ are therefore of the form $(X - t)^r$, $0 < r < p$, and it is clear that these do not lie in $F[X]$ (consider the constant term). Hence f is irreducible in $F[X]$ and so f, t, and K are inseparable over F.

In fact the above example is typical as the following lemma shows.

Lemma 3 If $f \in F[X]$ is irreducible then the following are equivalent:

(a) f is inseparable,

(b) $f' = 0$ where f' is the formal derivative of f.

(c) char $F = p > 0$ and $f(X) = g(X^p)$ for some $g \in F[X]$.

Proof. Write $f = (X - \alpha)h(X)$ in some sfe. Then $f' = (X - \alpha)h' + 1.h$. In particular $f'(\alpha) = h(\alpha)$. If α is a multiple root of f then $f'(\alpha) = h(\alpha) = 0$. But without loss of generality we can assume $f = m_\alpha$. Now since deg $f' < $ deg f we have $f' = 0$. Conversely, if α is not a multiple root then $f'(\alpha) = h(\alpha) \neq 0$, so $f' \neq 0$. This proves (a) \iff (b). The equivalence (b) \iff (c) is immediate since if $f = \sum a_nX^n$ then $f' = \sum na_nX^{n-1}$. Hence $f' = 0$ iff $na_n = 0$ for all n. If char $F = 0$ then f is a constant (contradicting the assumption that f is irreducible). If char $F = p$ then $a_n = 0$ for all $p / |n$. Hence $f(X) = g(X^p)$. Conversely if $f(X) = g(X^p)$ and char $F = p$ then $f' = 0$.

Definition A field F is called perfect if every algebraic extension K/F is separable.

Lemma 4 F is perfect iff either (a) char $F = 0$, or (b) char $F = p > 0$ and every element of F has a pth root in F.

Proof. If F is perfect and char $F = p > 0$, consider the polynomial $X^p - a$ for $a \in F$. In a sfe K/F this polynomial factors as $(X - b)^p$ where $b^p = a$. If K/F is separable then $X^p - a$ cannot be irreducible in $F[X]$. Hence f factors and one of the factors must be $(X - b)^i$ for some $0 < i < p$ (using unique factorization in $K[X]$). Hence $X^i - ibX^{i-1} + \cdots \in F[X]$. Hence $ib \in F$ and since $0 < i < p$, $b \in F$. Thus a has a pth root in F.

If char $F = 0$ then and algebraic K/F is separable. Assume char $F = p > 0$ and every element in F has a pth root. If α is not separable over F then the minimal polynomial of α is $f(X) = g(X^p)$ for some $g = \sum g_iX^i \in F[X]$. Let $h(X) = \sum g_i^{1/p}X^i$, where $g_i^{1/p}$ is any pth root of g_i in F. Then $h(X)^p = (\sum g_i^{1/p}X^i)^p = \sum g_iX^{pi} = g(X^p) = f(X)$. Hence f is not irreducible and cannot be the minimal polynomial of α. Hence every algebraic K/F is separable.

Note: If K/F is an algebraic extension and char $F = 0$ then K/F is automatically separable. Hence separability is only an issue in characteristic $p > 0$.

Exercises

1. Show that if char $F = p$ then the map $\phi: F \to F$ given by $\phi(a) = a^p$ is a homomorphism. Deduce that F is perfect iff either char $F = 0$ or ϕ is an isomorphism. [\(\phi\) is called the Frobenius map.]

2. Show that if F is finite then ϕ is an isomorphism. Deduce that all finite fields are perfect.
Definition Let K/F be an arbitrary field extension, then the **Galois group** of K/F is the group $\text{Gal}(K/F) = \{ \phi : K \to K : \phi|_F = 1, \phi \text{ is isomorphism} \}$, with the group operation given by composition.

Definition Let K be a field and G a group of ring (field) automorphisms of K. The **fixed field** of G is $K^G = \{ \alpha \in K : \forall g \in G : g(\alpha) = \alpha \}$.

Note that K^G is indeed a subfield of K. [Proof: $g(1) = 1$, so $1 \in K^G$. If $\alpha, \beta \in K^G$ then $g(\alpha - \beta) = g(\alpha) - g(\beta) = \alpha - \beta$, so $\alpha - \beta \in K^G$, similarly for $\alpha\beta, 1/\alpha$.]

Note 1: For any K/F we have $F \subseteq K^{\text{Gal}(K/F)}$ and $G \subseteq \text{Gal}(K/K^G)$.

Note 2: If K/F is Galois then $F \subseteq K^{\text{Gal}(K/F)} \subseteq K^G = F$. Thus without loss of generality we can assume $G = \text{Gal}(K/F)$ in the definition of Galois extension.

Examples

1. $\text{Gal}(\mathbb{C}/\mathbb{R}) = \{1, c\}$, where c is complex conjugation. Now $\mathbb{C}^{\{1,c\}} = \{\alpha \in \mathbb{C} : \bar{\alpha} = \alpha \} = \mathbb{R}$. Hence \mathbb{C}/\mathbb{R} is Galois.

2. If $\phi \in \text{Gal}(\mathbb{Q}(\sqrt{2})/\mathbb{Q})$ then $\phi(\sqrt{2})^3 = \phi(2) = 2$. Hence $\phi(\sqrt{2})$ is a root of $X^3 - 2 = 0$ in $\mathbb{Q}(\sqrt{2})$. But there is only one root $\sqrt{2}$, so $\phi(\sqrt{2}) = \sqrt{2}$. Since $\sqrt{2}$ generates $\mathbb{Q}(\sqrt{2})$, $\phi = 1$ and $\text{Gal}(\mathbb{Q}(\sqrt{2})/\mathbb{Q}) = \{1\}$. Now $\mathbb{Q}(\sqrt{2})^{\{1\}} = \mathbb{Q}(\sqrt{2}) \neq \mathbb{Q}$, so $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ is not Galois.

3. If $\phi \in \text{Gal}(\mathbb{F}_p(t)/\mathbb{F}_p(t^p))$ then $\phi(t)^p = \phi(t^p) = t^p$. Thus $\phi(t)$ is a root of $X^p - t^p = (X - t)^p = 0$, so $\phi(t) = t$. Since t generates $\mathbb{F}_p(t)$, $\phi = 1$ and $\text{Gal}(\mathbb{F}_p(t)/\mathbb{F}_p(t^p)) = \{1\}$. Now $\mathbb{F}_p(t)^{\{1\}} = \mathbb{F}_p(t) \neq \mathbb{F}_p(t^p)$, so $\mathbb{F}_p(t)/\mathbb{F}_p(t^p)$ is not Galois.

Theorem 1 K/F is Galois if and only if it is both normal and separable.

Proof. The definitions of Galois, normal, and separable all require K/F to be algebraic, so we can assume this. Assume first that K/F is normal and separable. We know that $F \subseteq K^{\text{Gal}(K/F)}$, so it enough to show that for every $\alpha \in K$, $\alpha \notin F$, there exists a $\phi \in \text{Gal}(K/F)$ with $\phi(\alpha) \neq \alpha$. Since K/F is normal, $m_{\alpha,F}$ splits in $K[X]$. Since K/F is separable, $m_{\alpha,F}$ has distinct roots in K. Since $\alpha \notin F$, $\deg m_{\alpha,F} > 1$. Hence there is a $\beta \in K$ with $m_{\alpha,F}(\beta) = 0, \beta \neq \alpha$. By Artin’s extension theorem, there exists $\phi : F(\alpha) \to F(\beta)$ fixing F with $\phi(\alpha) = \beta$. Since K/F is normal, K is the sfe of some $F \subseteq F[X]$ over F. Hence K is a sfe of F over either $F(\alpha)$ or $F(\beta)$. By the proof of the uniqueness of the sfe, there exists an isomorphism $\phi : K \to K$ that agrees with ϕ on $F(\alpha)$. This $\tilde{\phi}$ is an element of $\text{Gal}(K/F)$ which does not fix α.

Now assume K/F is Galois with $F = K^G$. For any $\alpha \in K$ let $\alpha = \alpha_1, \alpha_2, \ldots, \alpha_r$ be the distinct values of $g(\alpha)$ as g runs over $\text{Gal}(K/F)$. Note that there are only finitely many such values (even in $\text{Gal}(K/F)$ is infinite) since each α_i is a root of $m_{\alpha,F}$. Indeed, $r \leq \deg m_{\alpha,F}$. Consider the polynomial $f(X) = \prod_{i=1}^r (X - \alpha_i)$. Each $g \in G$ is injective on K and if $\alpha_i = h(\alpha)$ then $g(\alpha_i) = (gh)(\alpha) = \alpha_j$ for some j. Hence g permutes the α_i’s and so $g(f(X)) = f(X)$. Thus
f \in K^G[X] = F[X]. But f(\alpha) = 0, so m_{\alpha,F} \mid f. Therefore m_{\alpha,F} splits into distinct linear factors in K[X]. Since this holds for any \alpha \in K, K/F is both normal and separable. \qed

Note: The first part of the proof of Theorem 1 shows that if K/F is Galois and \alpha \in K then Gal(K/F) permutes the roots of m_{\alpha,F} transitively, i.e., for any other root \beta there exists g \in Gal(K/F) with g(\alpha) = \beta.

Theorem 2 If G is a finite group of automorphisms of K then [K:K^G] = |G| and G = Gal(K/K^G).

Proof. Assume first that [K:K^G] > |G| = n. Let \alpha_1, \ldots, \alpha_m, m > n, be a subset of K, linearly independent over K^G and let G = \{g_1, \ldots, g_n\}. Consider the system of linear equations

\[
g_j(\alpha_1)x_1 + \cdots + g_j(\alpha_m)x_m = 0, \quad j = 1, \ldots, n. \tag{1}
\]

There are n equations in m > n unknowns x_i. Hence there is a non-trivial solution with x_i \in K. Pick a non-trivial solution with the least number of non-zero x_i. Without loss of generality assume x_1, \ldots, x_r \neq 0 and x_{r+1}, \ldots, x_m = 0. Let g \in G and apply g to each of the equations above. Then

\[
g g_j(\alpha_1)g(x_1) + \cdots + g g_j(\alpha_r)g(x_r) = 0, \quad j = 1, \ldots, n. \tag{2}
\]

As j varies, gg_j runs over all the elements of G. Hence

\[
g_j(\alpha_1)g(x_1) + \cdots + g_j(\alpha_r)g(x_r) = 0, \quad j = 1, \ldots, n. \tag{3}
\]

Multiplying (2) by g(x_r) and (3) by x_r and subtracting gives

\[
\sum_{i=1}^r g_j(\alpha_i)(x_i g(x_r) - x_r g(x_i)) = 0.
\]

However the i = r term vanishes, so we get a solution to (1) with fewer non-zero x_i's. The only way in which this is possible is if all the coefficients x_i g(x_r) - x_r g(x_i) are zero. But then x_i/x_r = g(x_i/x_r) for all g \in G. Hence y_i = x_i/x_r \in K^G. Dividing through by x_r and setting g_j = 1 in (1) gives

\[
\alpha_1 y_1 + \cdots + \alpha_r y_r = 0
\]

with y_i \in K^G all non-zero. This contradicts the linear independence of the \alpha_i's. Hence [K:K^G] \leq |G|.

For any extension K/F, every element of Gal(K/F) is a map K \to K which fixes F, hence gives a map K \to M fixing F for any M/K. Thus |Gal(K/F)| \leq |K:F|. But [K:F] \leq [K:F], so

|Gal(K/K^G)| \leq [K:K^G] \leq |K:F| \leq |G|.

But G \subseteq Gal(K/K^G), so G = Gal(K/K^G) and |G| = [K:K^G]. \qed

Exercises

1. Show that Q(\sqrt[3]{2}, \sqrt[3]{3})/Q is Galois and Gal(Q(\sqrt[3]{2}, \sqrt[3]{3})/Q) \cong S_3. [Hint: consider the action of an automorphism on the roots of X^3 - 2 = 0].

2. For each subgroup G \leq Gal(Q(\sqrt[3]{2}, \sqrt[3]{3})/Q) identify the fixed field Q(\sqrt[3]{2}, \sqrt[3]{3})^H.

3. Show that if K/F is finite and separable then the normal closure M/F of K/F is finite and Galois.
Theorem (Fundamental Theorem of Galois Theory)
Assume \(K/F \) is a finite Galois extension, then there exists a bijection
\[
\{ \text{subgroups } H \leq \text{Gal}(K/F) \} \leftrightarrow \{ \text{subfields } L \subseteq K : K/L/F \} \\
H \rightarrow K^H \\
\text{Gal}(K/L) \leftrightarrow L
\]
Proof. Since \(|\text{Gal}(K/F)| \leq [K : F] \), \(\text{Gal}(K/F) \) is finite. We shall show the two maps given are inverse to each other. Starting with \(H \leq \text{Gal}(K/F) \) we get \(H \rightarrow K^H \rightarrow \text{Gal}(K/K^H) \). Now \(H \) is finite so \(H = \text{Gal}(K/K^H) \). Starting with \(L \subseteq K \), we get \(L \rightarrow \text{Gal}(K/L) \rightarrow K^{\text{Gal}(K/L)} \). However, \(K/L \) is both normal and separable (since \(K/F \) is), so \(K/L \) is Galois and \(L = K^{\text{Gal}(K/L)} \). Thus these maps are inverse to one another and we have a bijection. \(\square \)

Definition The join or compositum \(L_1L_2 \) of two subfields \(L_1 \) and \(L_2 \) of a field \(K \) is the smallest field containing them both. I.e., \(L_1L_2 = L_1(L_2) = L_2(L_1) \).

Warning: It is possible that \(L_2 \cong L_3 \) but \(L_1L_2 \not\cong L_1L_3 \). Hence you should always specify \(L_1 \) and \(L_2 \) as subfields of a specific field \(K \). It is not enough just to define \(L_1 \) and \(L_2 \) up to isomorphism.

Corollary Let \(K/F \) be a finite Galois extension with \(\text{Gal}(K/F) = G \). Let \(H_i \leq G \) and let \(L_i \subseteq K \) be the subfields corresponding to \(H_i \). Then
\begin{itemize}
 \item[(a)] \(H_1 \leq H_2 \) iff \(L_1 \supseteq L_2 \) and in this case \([H_2 : H_1] = [L_1 : L_2] \),
 \item[(b)] \(H_1 \cap H_2 \) corresponds to \(L_1 \cap L_2 \),
 \item[(c)] \(\langle H_1 \cup H_2 \rangle \) corresponds to \(L_1 \cap L_2 \),
 \item[(d)] if \(g \in G \) then \(gHg^{-1} \) corresponds to \(g(L) \),
 \item[(e)] \(H_1 \leq H_2 \iff L_2/L_1 \) is Galois \(\iff L_2/L_1 \) is normal, and in this case \(\text{Gal}(L_1/L_2) \cong H_2/H_1 \).
\end{itemize}
Proof.
\begin{itemize}
 \item[(a)] If \(H_1 \leq H_2 \), then \(L_1 = K^{H_1} \supseteq K^{H_2} = L_2 \).
 \item[(b)] If \(L_1 \supseteq L_2 \), then \(H_1 = \text{Gal}(K/L_1) \leq \text{Gal}(K/L_2) = H_2 \).
 \item[(c)] \(\langle H_1 \cup H_2 \rangle \) is the largest subgroup of \(G \) that contains both \(H_1 \) and \(H_2 \). This corresponds to the largest subfield of \(K \) that contains both \(L_1 \) and \(L_2 \), but this is just \(L_1L_2 \).
 \item[(d)] Any element of \(g(L) \) is of the form \(g(\alpha) \) with \(\alpha \in L \). But if \(ghg^{-1} \in gHg^{-1} \) then \(h \) fixes \(\alpha \) and so \(ghg^{-1}(g(\alpha)) = g(h(\alpha)) = g(\alpha) \). Thus \(g(\alpha) \) is fixed by \(gHg^{-1} \), \(g(L) \subseteq K^{gHg^{-1}} \). But \(g \) is an automorphism of \(K \), so \([K : g(L)] = [g(K) : g(L)] = [K : L] \). Also \([K : L] = |H| = |gHg^{-1}| = [K : K^{gHg^{-1}}] \). Hence \(g(L) = K^{gHg^{-1}} \).
 \item[(e)] If \(H_1 \leq H_2 \) then \(gH_1g^{-1} = H_1 \), so \(g(L_1) = L_1 \) for all \(g \in H_2 = \text{Gal}(K/L_2) \). Hence \(g|_{L_1} \in \text{Gal}(L_1/L_2) \). Thus we have a map \(\phi: \text{Gal}(K/L_2) \rightarrow \text{Gal}(L_1/L_2) \) which maps \(g \mapsto g|_{L_1} \).
 This is clearly a group homomorphism with kernel equal to \(\text{Gal}(K/L_1) \). But \(L_2 \subseteq L_1^{\text{Gal}(L_1/L_2)} \subseteq \)}
$L_1^{\text{Im} \phi} \subseteq K^\text{Gal}(K/L_2) = L_2$, so L_1/L_2 is Galois. If L_1/L_2 Galois then L_1/L_2 normal, so we now prove L_1/L_2 normal implies $H_1 \trianglelefteq H_2$. If L_1/L_2 is normal and $g \in H_2$, then $g(L_1)$ must have the same image in K as $1(L_1) = L_1$. Hence $g(L_1) = L_1$ and $gH_1g^{-1} = H_1$. Thus $H_1 \leq H_2$. Finally $H_2/H_1 = H_2/\text{Ker} \phi \cong \text{Im} \phi$ is a subgroup of $\text{Gal}(L_1/L_2)$, but $[H_2:H_1] = [L_1:L_2] = |\text{Gal}(L_1/L_2)|$, so the image of ϕ is $\text{Gal}(L_1/L_2)$ and $\text{Gal}(L_1/L_2) \cong H_2/H_1$.

Lemma 1 If K/F is the sfe for $f \in F[X]$ then $\text{Gal}(K/F)$ is isomorphic to a subgroup of the symmetric group S_R where R is the set of roots of f in K.

Proof. Map $\text{Gal}(K/F) \to S_R$ by restricting $\phi \in \text{Gal}(K/F)$ to $R \subseteq K$. The image is a permutation since ϕ is injective and maps the finite set R to R. The map is a group homomorphism since the group operation on each side is the same — composition of functions. If the image in S_R is the identity then ϕ fixes R and F, so fixes $F(R) = K$ and so $\phi = 1$. Hence the map $\text{Gal}(K/F) \to S_R$ is injective and $\text{Gal}(K/F)$ is isomorphic to the image of this map in S_R.

Example Consider $\mathbb{Q}(\sqrt{2},i)/\mathbb{Q}$ which is the sfe of $x^4 - 2$. Let $G = \text{Gal}(\mathbb{Q}(\sqrt{2},i)/\mathbb{Q})$. By Artin’s extension Theorem there exists a $\sigma \in G$ with $\sigma(\sqrt{2}) = i\sqrt{2}$. There is also $c \in G$ with $c =$ complex conjugation. We do not know what $\sigma(i)$ is, but if $\sigma(i) = -i$ then $\sigma c(i) = i$ and $\sigma c(\sqrt{2}) = \sqrt{2}$. Hence by replacing σ with σc if necessary we may assume $\sigma(i) = i$. Let the four roots of $X^4 - 2$ be

$$\alpha_1 = \sqrt{2}, \quad \alpha_2 = i\sqrt{2}, \quad \alpha_3 = -\sqrt{2}, \quad \alpha_4 = -i\sqrt{2}.$$

Then σ acts as the permutation (1234) and c acts as the permutation (24) on the roots. The subgroup of S_4 generated by these is D_4 which is of order 8. But $|G| = [\mathbb{Q}(\sqrt{2},i):\mathbb{Q}] = 8$, so $G = \langle \sigma, c \rangle \cong D_4$. The subgroups of G and their corresponding subfields are:

![Diagram](image)

In order to apply Galois theory we need a finite Galois extension. The following Lemma is therefore extremely useful.

Lemma 2 If K/F is finite and separable and if M is the normal closure of K/F then M/F is finite and Galois.

Proof. If K/F is finite and separable then $K = F(\alpha_1, \ldots, \alpha_r)$ where each α_i is separable over F. Then M is the sfe for $F = \{m_{\alpha_1,F}, \ldots, m_{\alpha_r,F}\}$ which is a finite set of separable polynomials. Hence M is normal (since it is a sfe), separable (since it is generated by the roots of the $m_{\alpha_i,F}$ which are all separable), and finite (since it is the sfe of a finite set of polynomials).

Definition If F is a field of characteristic p, then the map $\phi: F \to F$ given by $\phi(a) = a^p$ is called the Frobenius map.

Lemma 1 The Frobenius map is a ring homomorphism from F to F.

Proof. If $a, b \in F$ then $\phi(a + b) = (a + b)^p = a^p + \binom{p}{1}a^{p-1}b + \cdots + \binom{p}{p-1}ab^{p-1} + b^p$. However, for $0 < i < p$ the binomial coefficient $\binom{p}{i} = p!/i!(p-i)!$ is divisible by p since $p \mid p!$ but $p \not\mid i!(p-i)!$. Hence $\phi(a + b) = a^p + b^p = \phi(a) + \phi(b)$. Also $\phi(1) = 1$ and $\phi(ab) = (ab)^p = a^pb^p = \phi(a)\phi(b)$. Thus ϕ is a ring homomorphism.

Note: The Frobenius map is always injective, but it need not be surjective. For example, take $F = \mathbb{F}_p(t)$ where t is transcendental over \mathbb{F}_p.

Theorem 2 For all primes p and all $n \geq 1$ there exists a field \mathbb{F}_{p^n} with p^n elements which is the sfe of $X^{p^n} - X$ over \mathbb{F}_p. Conversely every finite field is isomorphic to some \mathbb{F}_{p^n}.

Proof. Let K be the sfe of $f(X) = X^{p^n} - X$ over $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. Then K is finite and the Frobenius map ϕ is therefore an automorphism of K. Let G be the cyclic group of automorphisms of K generated by ϕ^n. Then $K^G = \{ \alpha : \phi^n(\alpha) = \alpha \} = \{ \alpha : \alpha^{p^n} = \alpha \}$ is just the set of roots of f in K. But K^G is a subfield of K containing \mathbb{F}_p and all the roots of f. Hence $K = K^G = \{ \alpha : f(\alpha) = 0 \}$. If f has a multiple root $\alpha \in K$ then $f'(\alpha) = 0$. But $f' = -1$, so f has no multiple roots. Since f splits in K, there are exactly p^n roots of f in K, and $|K| = p^n$.

Now assume K is some finite field. The characteristic of K cannot be zero, since otherwise K would contain \mathbb{Q} which is infinite. Assume char $K = p$. Then $\mathbb{F}_p \subseteq K$ and so K/\mathbb{F}_p is a field extension. The extension is clearly finite since one cannot have a basis for K/F with more than $|K|$ elements. If $[K: \mathbb{F}_p] = n$ then $K \cong \mathbb{F}_{p^n}$ as a vector space, so $|K| = p^n$. Any $\alpha \in K$ is either zero, or in K^\times which is a group of order $p^{n-1} - 1$. Hence either $\alpha = 0$ or $\alpha^{p^{n-1}} = 1$. Thus every $\alpha \in K$ is a root of $f(X) = X^{p^n} - X$. Since there are at most p^n roots of f in K and $|K| = p^n$, f splits in K. Thus K contains a sfe of f over \mathbb{F}_p. But since K consists of the roots of f, K must be equal to a sfe of f over \mathbb{F}_p. Since any two sfe’s are isomorphic, $K \cong \mathbb{F}_{p^n}$.

Theorem 3 Any finite extension K/F of a finite field F is Galois. The Galois group is cyclic and is generated by a power of the Frobenius map.

Proof. Since $|F| < \infty$ and $|K:F| < \infty$, we have $|K| = |F|^{|K:F|} < \infty$. Assume $K = \mathbb{F}_{p^n}$ and let G be the cyclic group of automorphisms generated by the Frobenius map ϕ. The fixed field $K^G = \{ \alpha : \phi^n(\alpha) = \alpha \}$ is just the set of roots of the polynomial $X^{p^n} - X = 0$. But there are at most p^n roots, and ϕ fixes \mathbb{F}_p. Therefore $K^G = \mathbb{F}_p$. Hence K/\mathbb{F}_p is Galois and Gal(K/\mathbb{F}_p) = G is cyclic generated by Frobenius.

Now if K/F then $\mathbb{F}_p \subseteq F \subseteq K$, so by the Fundamental theorem of Galois theory, $F = K^H$ for some $H \leq G$. Thus K/F is Galois with Galois group Gal(K/F) = H. Now H is a subgroup of a cyclic group G, so is cyclic. It is generated by some element, which is a power of ϕ.

Note: If $K = \mathbb{F}_{p^n}$ then the Galois group is cyclic of order n. The subgroups are cyclic of order m for some $m | n$ and are generated by $\phi^{n/m}$. The fixed field of $\phi^{n/m}$ is just $\mathbb{F}_{p^{n/m}}$. Hence the subfields of \mathbb{F}_{p^n} are precisely the \mathbb{F}_{p^r} for all $r | n$. Spring 2003
Corollary 4 For each n there exists some irreducible polynomial of degree n in $\mathbb{F}_p[X]$. Furthermore $X^{pn} - X$ is the product of all monic irreducible polynomials of degree $d | n$.

Proof. The group \mathbb{F}_p^\times is cyclic, generated by α say. Then $\mathbb{F}_p^n = \mathbb{F}_p(\alpha)$ and the minimal polynomial m_{α, \mathbb{F}_p} is irreducible of degree $[\mathbb{F}_p(\alpha) : \mathbb{F}_p] = [\mathbb{F}_{pn} : \mathbb{F}_p] = n$.

Write $X^{pn} - X = \prod f_i$ where f_i are irreducible monic polynomials in $\mathbb{F}_p[X]$. If α is a root of f_i in the sfe \mathbb{F}_{pn}, then $\mathbb{F}_p(\alpha)$ is a subfield of \mathbb{F}_{pn}. Hence $\mathbb{F}_p(\alpha) = \mathbb{F}_{pd}$ for some $d | n$ and $f_i = m_{\alpha, \mathbb{F}_p}$ has degree $[\mathbb{F}_{pd} : \mathbb{F}_p] = d$. Conversely if f is an irreducible polynomial of degree $d | n$, and α is a root of f in some extension, then $\mathbb{F}_p(\alpha)$ is isomorphic to \mathbb{F}_{pd}. But every element of \mathbb{F}_{pd} is a roots of $X^{pd} - X | X^{pn} - X$. Hence α is a root of $X^{pn} - X$. Thus $f | X^{pn} - X$. Since $X^{pn} - X$ has no multiple roots, it cannot be divisible by f^2. Hence $X^{pn} - X$ is precisely the product of monic irreducible polynomials of degree $d | n$. \qed

Lemma 5 If $f \in \mathbb{F}_p[X]$ and $f = f_1 f_2 \ldots f_r$ where $f_i \in \mathbb{F}_p[X]$ are distinct irreducibles, then the sfe for f over \mathbb{F}_p is \mathbb{F}_{p^r} where $r = \text{lcm}\{\deg f_i\}$. The Frobenius map ϕ acts on the roots of f as a permutation of cycle type $(\deg f_1)(\deg f_2) \ldots (\deg f_r)$ in $S_{\deg f}$ permuting the roots of each f_i cyclically.

Proof. Let K be the sfe for f. The Galois group $G = \text{Gal}(K/\mathbb{F}_p)$ permutes the roots of each f_i transitively and is also cyclic, generated by the Frobenius map ϕ. The only way this can happen is if ϕ permutes the roots of f_i cyclically. Finally, if $K = \mathbb{F}_{p^r}$ then $r = [K : \mathbb{F}_p] = |G| = \text{order of } \phi$, which is lcm\{\deg f_i\}. \qed

Theorem 6 If $f = \sum_{i=0}^n a_i X^i \in \mathbb{Z}[X]$, p is a prime with $p \not| a_n$, and the reduction \bar{f} of f mod p is a product of distinct irreducible polynomials in $\mathbb{F}_p[X]$, $\bar{f} = f_1 \ldots f_r$, then $\text{Gal}(f/\mathbb{Q})$ contains an automorphism which acts on the roots of f as a permutation with cycle type $(\deg f_1)(\deg f_2) \ldots (\deg f_r)$.

The proof of this result is rather technical, so I will not include it here.

Exercises

1. How many irreducible polynomials of degree 4 are there in $\mathbb{F}_2[X]$. [Hint: Corollary 4.]
2. List all irreducible polynomials of degree 4 in $\mathbb{F}_2[X]$.
3. Find the Galois group of $X^5 + X^4 + 1$ over $\mathbb{F}_2[X]$.
4. Find the Galois group of $X^4 + 10X^3 - 5X^2 - 5X + 30$ over $\mathbb{Q}[X]$.
 [Hint: Use Theorem 6 with $p = 2$ and 3.]
Definition A primitive nth root of 1 is an element $\zeta_n \in K$ with order n in K^\times, i.e., $\zeta_n^n = 1$ but $\zeta_n^r \neq 1$ for $0 < r < n$.

Lemma 1 If K/F is a sfe for $X^n - 1$ and char $F \nmid n$ then the roots of $X^n - 1$ in K are \{1, $\zeta_n, \ldots, \zeta_{n-1}^n$\} where $\zeta_n \in K$ is a primitive nth root of 1. Also $K = F(\zeta_n)$ and K/F is Galois with $Gal(K/F) \leq (\mathbb{Z}/n\mathbb{Z})^\times$ where $(\mathbb{Z}/n\mathbb{Z})^\times = \{r \mod n : \text{gcd}(r, n) = 1\}$ is the group of units of $\mathbb{Z}/n\mathbb{Z}$ under multiplication.

Proof. Let $A = \{\alpha \in K : \alpha^n = 1\}$. Then A is a subgroup of K^\times. If α is a multiple root of $f(X) = X^n - 1$ then $f'(\alpha) = n\alpha^{n-1} = 0$. But $\alpha \neq 0$ and char $F \nmid n$, so this is impossible. Hence $|A| = n$. Since any finite subgroup of K^\times is cyclic, $A = \{1, \zeta_n, \ldots, \zeta_{n-1}^n\}$ for some ζ_n which is then a primitive nth root of 1. Now $K = F(A) = F(\zeta_n)$ is normal and separable over F, so K/F is Galois. If $\sigma \in Gal(K/F)$ then $\sigma(\zeta_n) = \zeta_n^s$ for some r which is uniquely determined mod n. But ζ_n^s must also have order n in K^\times since σ is an automorphism. Hence gcd(r, n) = 1. Thus we have a map $Gal(K/F) \rightarrow (\mathbb{Z}/n\mathbb{Z})^\times$ sending σ to $r \mod n$. This map is a group homomorphism since if $\sigma(\zeta_n) = \zeta_n^s$ and $\tau(\zeta_n) = \zeta_n^t$ then $\sigma \tau(\zeta_n) = \sigma(\tau(\zeta_n)) = \sigma(\zeta_n^s) = \zeta_n^{st}$ and $\sigma \tau$ is mapped to rs. This map is injective since $K = F(\zeta_n)$, so if $\sigma(\zeta_n) = \zeta_n^s$ then $\sigma = 1$. Hence $Gal(K/F)$ is isomorphic to a subgroup of $(\mathbb{Z}/n\mathbb{Z})^\times$.

Note that it is not always the case that $Gal(K/F) = (\mathbb{Z}/n\mathbb{Z})^\times$. For example, F may already contain ζ_n in which case $K = F$ and $Gal(K/F) = \{1\}$.

Definition Let char $K = 0$ and let $\zeta_n \in K$ be a primitive nth root of 1. Define $\Phi_n(X) = \prod_{\zeta \in K} (X - \zeta)$.

Lemma 2 For $n > 0$, $X^n - 1 = \prod_{d|n} \Phi_d(X)$, and $\Phi_n(X)$ is an irreducible element of $\mathbb{Z}[X]$.

Proof. Note that $\Phi_n(X) = \prod_{\zeta} (X - \zeta)$ where the product runs over all primitive nth roots of 1. Also $\Phi_n(X) \in \mathbb{Q}(\zeta_n)[X]$ and for any $\sigma \in Gal(\mathbb{Q}(\zeta_n)/\mathbb{Q})$, $\sigma(\Phi_n) = \Phi_n$ since σ permutes the set of primitive nth roots of 1. Thus $\Phi_n \in \mathbb{Q}(\zeta_n)^{Gal(\mathbb{Q}(\zeta_n)/\mathbb{Q})}[X] = \mathbb{Q}[X]$.

For any r, ζ_n^s has order $d = n/\text{gcd}(r, n)$, so is a primitive dth root of 1 for some $d \mid n$. Conversely any primitive dth root of 1 is of the form ζ_n^s for some r since it is a power of a fixed primitive dth root of 1, namely $\zeta_n^{n/d}$. Hence $X^n - 1 = \prod_r (X - \zeta_n^r) = \prod_{d|n} \prod_{s|d} (X - \zeta_n^s)$ where the second product is over all primitive dth roots of 1. Therefore $X^n - 1 = \prod_{d|n} \Phi_d(X)$. Now by induction we can assume $\Phi_d \in \mathbb{Z}[X]$ for all $d < n$. Hence both $X^n - 1$ and $\prod_{d|n, d<n} \Phi_d$ are monic (and hence primitive) elements of $\mathbb{Z}[X]$. Thus by Gauss’ Lemma $\Phi_n \in \mathbb{Z}[X]$. It remains to show that Φ_n is irreducible in $\mathbb{Z}[X]$.

Write $\Phi_n = fg$ where $f = m_{\zeta_n, \mathbb{Q}}$. Then by Gauss $f, g \in \mathbb{Z}[X]$. If Φ_n is not irreducible then deg $g > 0$ and $g(\zeta_n^r) = 0$ for some $r > 1$, $\text{gcd}(r, n) = 1$. Write r as a product of (not necessarily distinct) primes $r = p_1 \ldots p_s$. By considering $\zeta_n^{p_1 \ldots p_i}$ for each $i = 0, \ldots, s$ there must be some α and prime $p \mid n$ such that $f(\alpha) = 0$ and $g(\alpha^p) = 0$. Hence $f = m_{\alpha, \mathbb{Q}}$ and $f(X) \mid g(X^p)$ in $\mathbb{Z}[X]$. Consider the reductions \tilde{f} and \tilde{g} of f and g mod p. Then $\tilde{f}(X) \mid \tilde{g}(X^p) = (\tilde{g}(X))^p$. Then any root β of \tilde{f} is also a root of \tilde{g}, so is a multiple root of $\Phi_n = \tilde{f}\tilde{g}$. Hence β is a multiple root of $X^n - 1 = \Phi_n \ldots \Phi_1$. But then β is a root of the derivative nX^{n-1} and since $p \nmid n$ this implies $\beta = 0$ which is not a root of $X^n - 1$. Hence Φ_n is irreducible in $\mathbb{Q}[X]$. □
Corollary 3 If \(\zeta_n \) is a primitive \(n \)th root of 1 then \(\text{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^\times \).

Proof. \(|\text{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})| = |\mathbb{Q}(\zeta_n) : \mathbb{Q}| = \deg m_{\zeta_n, \mathbb{Q}} = \deg \Phi_n = |\{ r \mod n : \gcd(r, n) = 1\}| = |(\mathbb{Z}/n\mathbb{Z})^\times| \). Since \(\text{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \leq (\mathbb{Z}/n\mathbb{Z})^\times \), the groups must be equal. \(\square \)

We now consider the equation \(X^n - a = 0 \) with \(a \neq 1 \).

Lemma 4 Assume \(F \) contains a primitive \(n \)th root of 1. If \(K \) is the subfield of \(X^n - a \) then \(\text{Gal}(K/F) \) is isomorphic to a subgroup of the cyclic group \(\mathbb{Z}/n\mathbb{Z} \). Conversely, if \(K/F \) is a Galois extension with \(\text{Gal}(K/F) = \mathbb{Z}/n\mathbb{Z} \), then \(K = F(\alpha) \) for some \(\alpha \) with \(\alpha^n \in F \).

Proof. The roots of \(X^n - a \) are of the form \(\{ \zeta_n^i \alpha : 0 \leq i < n \} \) for some \(\alpha \in K \) with \(\alpha^n = a \). If \(\sigma \in \text{Gal}(K/F) \) then \(\sigma(\alpha) = \zeta_n^i \alpha \) for some \(i \in \mathbb{Z}/n\mathbb{Z} \). Since \(\zeta_n \in F \), \(\sigma(\zeta_n) = \zeta_n \). Thus if \(\tau(\alpha) = \zeta_n^i \alpha \) then \(\sigma \tau(\alpha) = \zeta_n^{i+j} \alpha \), so the map \(\text{Gal}(K/F) \to (\mathbb{Z}/n\mathbb{Z}, +) \) sending \(\sigma \) to \(i \mod n \) is a homomorphism. This map is injective since if \(\sigma(\alpha) = \zeta_n^0 \alpha = \alpha \) then \(\sigma \) fixes \(F \) and \(\alpha \), so fixes \(F(\alpha) = K \). Hence \(\text{Gal}(K/F) \) is isomorphic to a subgroup of \(\mathbb{Z}/n\mathbb{Z} \). Conversely, assume \(K/F \) is a Galois extension with \(\text{Gal}(K/F) = (\sigma) \), and \(\sigma \) of order \(n \). For \(\alpha \in K \) define \(\beta = \alpha + \sigma(\alpha) \zeta_n^{-1} + \cdots + \sigma^{n-1}(\alpha) \zeta_n^{-(n-1)} \).

Then \(\sigma(\beta) = \zeta_n \beta \). Hence \(\sigma(\beta^n) = \beta^n \) and so \(\beta^n \in K^{\text{Gal}(K/F)} = F \). It remains to prove that we can choose \(\alpha \) so that \(F(\beta) = K \). If \(\beta \neq 0 \) then \(\sigma^i(\beta) = \zeta_n^i \beta \) gives \(n \) distinct values as \(i \) varies from 0 to \(n - 1 \). Hence \(m_{\beta,F} \) has \(n \) distinct roots and \([F(\beta):F] = \deg m_{\beta,F} \geq n = |\text{Gal}(K/F)| = [K:F] \) so \(F(\beta) = K \). The result now follows from the following Theorem with \(\sigma_i = \sigma_i^{i-1} \) and \(\lambda_i = \zeta_n^{i(i-1)} \).

Theorem (Dedekind Indepence Theorem) Suppose \(\sigma_1, \ldots, \sigma_n \) are distinct automorphisms of a field \(K \), then for any \(\lambda_1, \ldots, \lambda_n \in K \) not all zero, there is an \(\alpha \in K \) such that \(\sum_{i=1}^n \lambda_i \sigma_i(\alpha) \neq 0 \).

Proof. We shall prove the result by induction on \(n \). For \(n = 1 \) the result is clear. Assume \(n > 1 \) and suppose \(\sum \lambda_i \sigma_i(\alpha) = 0 \) for all \(\alpha \in K \). Since \(\sigma_1 \neq \sigma_2 \) there is an \(\beta \in K \) with \(\sigma_1(\beta) \neq \sigma_2(\beta) \). Then for all \(\alpha \in K \)

\[
\sum \lambda_i \sigma_i(\beta) \sigma_i(\alpha) = \sum \lambda_i \sigma_i(\alpha \beta) = 0
\]

\[
\sum \lambda_i \sigma_1(\beta) \sigma_i(\alpha) = \sigma_1(\beta) \sum \lambda_i \sigma_i(\alpha) = 0
\]

Subtracting we get \(\sum_{i=2}^n \lambda_i (\sigma_i(\beta) - \sigma_1(\beta)) \sigma_i(\alpha) = 0 \) since the terms for \(i = 1 \) cancel. Hence by induction \(\lambda_1 (\sigma_i(\beta) - \sigma_1(\beta)) = 0 \) for all \(i \), in particular \(\lambda_2 (\sigma_2(\beta) - \sigma_1(\beta)) = 0 \). But then \(\lambda_2 = 0 \). Repeating this argument for any pair \((i,j) \) in place of \((1,2) \) gives \(\lambda_j = 0 \) for all \(j \).

\(\square \)

Exercises

1. Calculate \(\Phi_n(X) \) for \(n = p \), a prime, and for \(n = 1, 6, 8, 12 \).
2. Show that \(|\mathbb{Q}(\zeta_n) : \mathbb{Q}(\zeta_n + \zeta_n^{-1})| = 2 \) for all \(n > 2 \).
3. Show that the angle \(2\pi/n \) is constructible iff \(|(\mathbb{Z}/n\mathbb{Z})^\times| = \phi(n) \), the Euler function, is a power of 2. [Hint: \(2 \cos(2\pi/n) = \zeta_n + \zeta_n^{-1} \).] Characterize such \(n \).
4. Show that if \(\text{char} F \nmid n \) then the Galois group \(G \) of \(X^n - a \) over \(F \) has a normal subgroup \(H \) with \(H \) abelian and \(G/H \) cyclic. [In particular, \(G \) is solvable. Note we don’t assume \(\zeta_n \in F \).]
We shall assume throughout that \(\text{char } F = 0 \), \(f \in F[X] \), and \(K/F \) is a sfe for \(f \). Write the roots of \(f \) in \(K \) as \(\alpha_1, \ldots, \alpha_n \).

Quadratics

Let \(f(X) = aX^2 + bX + c \). In general \(\text{Gal}(K/F) \cong S_2 = C_2 \), and \(\zeta_2 = -1 \in F \), so \(K = F(\sqrt{d}) \) for some \(d \in F \). To find \(d \) we use the trick in Lemma 4 of the last section. \(\text{Gal}(K/F) = \langle \sigma \rangle \) where \(\sigma \) acts as the permutation \((12)\) on the roots. Let \(\beta = \alpha_1 + \zeta_2^{-1} \sigma(\alpha_1) = \alpha_1 - \alpha_2 \). Then \(\beta^2 \) is fixed by \(S_2 \). Thus \(\beta^2 \) can be written in terms of elementary symmetric functions of the roots, and hence in terms of the coefficients of \(f \). Indeed \(\beta^2 = (\alpha_1 + \alpha_2)^2 - 4\alpha_1\alpha_2 = (-b/a)^2 - 4(c/a) = (b^2 - 4ac)/a^2 \). Using \(\alpha_1 + \alpha_2 = -b/a \) and \(\alpha_1 - \alpha_2 = \beta = \sqrt{b^2 - 4ac}/a \) we can now solve for \(\alpha_1, \alpha_2 \) to give the well known formula \(\alpha_i = (-b \pm \sqrt{b^2 - 4ac})/2a \). It can be checked that this formula also works when \(\text{Gal}(K/F) < S_2 \) (in which case \(\sqrt{d} \in F \)).

Cubics

Assume \(\zeta_3 \in F \) and \(\text{Gal}(K/F) \cong S_3 \). Then there is an intermediate field \(L \) with \(\text{Gal}(K/L) \cong A_3 = C_3 \) and \(\zeta_3 \in L \). Write

\[
\begin{align*}
z_0 &= \alpha_1 + \alpha_2 + \alpha_3 \\
z_1 &= \alpha_1 + \zeta_3 \alpha_2 + \zeta_3^2 \alpha_3 \\
z_2 &= \alpha_1 + \zeta_3^2 \alpha_2 + \zeta_3 \alpha_3
\end{align*}
\]

Then \(A_3 \) fixes \(z_1^3 \) and \(z_2^3 \) so \(z_1^3, z_2^3 \in L \). But the transposition \((23)\) swaps \(z_1^3 \) and \(z_2^3 \) so in general we do not expect \(z_1^3 \) or \(z_2^3 \) to lie in \(F \). Construct a new polynomial

\[
g(X) = (X - z_1^3)(X - z_2^3) = X^2 - (z_1^3 + z_2^3)X + z_1^3 z_2^3
\]

This polynomial is fixed by \(S_3 \) and so we can write its coefficients in terms of the coefficients of \(f \). Indeed, by “completing the cube” we can assume \(f(X) = X^3 + pX + q \), in which case \(g(X) = X^2 + 27qX - 27p^3 \) and \(z_0 = 0 \). Solving \(g(X) = 0 \) then gives \(z_1^3, z_2^3 \) as roots. Since we know \(z_0 \) we can now reconstruct the roots as

\[
\begin{align*}
\alpha_1 &= (z_0 + z_1 + z_2)/3, \\
\alpha_2 &= (z_0 + \zeta_3 z_1 + \zeta_3^2 z_2)/2, \\
\alpha_3 &= (z_0 + \zeta_3 z_1 + \zeta_3^2 z_2)/2.
\end{align*}
\]

As for the quadratics, these formula work even if \(\text{Gal}(K/F) < S_3 \).

Quartics

Assume \(\zeta_4 \in F \) and \(\text{Gal}(K/F) \cong S_4 \). By “completing the quartic” we can write \(f \) in the form \(f(X) = X^4 + pX^2 + qX + r \) so that \(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 0 \). There is an intermediate field \(L \) with \(\text{Gal}(K/L) = V \), the Klein group. Now \(V \leq S_4 \) and \(\text{Gal}(L/F) \cong S_4/V \cong S_3 \), so with some luck we can get \(L \) by splitting a cubic. Write

\[
\begin{align*}
y_1 &= (\alpha_1 + \alpha_2)(\alpha_3 + \alpha_4) = -(\alpha_1 + \alpha_2)^2 \\
y_2 &= (\alpha_1 + \alpha_3)(\alpha_2 + \alpha_4) = -(\alpha_1 + \alpha_3)^2 \\
y_3 &= (\alpha_1 + \alpha_4)(\alpha_2 + \alpha_3) = -(\alpha_1 + \alpha_4)^2
\end{align*}
\]

Then \(y_i \) is fixed by \(V \) so \(y_i \in L \). The cubic

\[
g(X) = (X - y_1)(X - y_2)(X - y_3)
\]
is now fixed by S_4, so the coefficients of g are polynomials in the coefficients of f. Indeed $g(X) = X^3 - 2pX^2 + (p^2 - 4r)X + q^2$. Finding the roots y_1, y_2, y_3 as above we can recover $\alpha_i = (\pm \sqrt{-y_1} \pm \sqrt{-y_2} \pm \sqrt{-y_3})/2$ for suitable choice of signs (signs chosen so that the product of the square root terms is $-q$). Once again, the formulae obtained work even when $\text{Gal}(K/F) < S_4$.

General Case

Definition An extension K/F is a radical extension if $K = F(\alpha_1, \ldots, \alpha_n)$ and there exists integers $n_i > 0$ such that $\alpha_i^{n_i} \in F(\alpha_1, \ldots, \alpha_{i-1})$ for each i.

Lemma 1 If $F \subseteq L_1, L_2 \subseteq K$ and L_1/F and L_2/F are radical, then so is the join L_1L_2/F.

Proof. Clear.

Lemma 2 If K/F is radical and M/K is the normal closure of K/F then M/F is radical.

Proof. If K/F is radical, then $g(K)/g(F) = g(K)/F$ is radical for each $g \in \text{Gal}(M/F)$. Hence the join L of all the $g(K)$ is radical over F. But if $H = \text{Gal}(M/K)$ then $\text{Gal}(M/L) = \bigcap gHg^{-1}$. However, this is a normal subgroup of $\text{Gal}(M/F)$, so L/F is normal and $L \supseteq K$. Thus $L = M$ is radical over F.

Theorem 3 If K/F is radical and normal then $\text{Gal}(K/F)$ is a solvable group.

Proof. Write $K = F(\alpha_1, \ldots, \alpha_r)$ with $\alpha_i^{n_i} \in F(\alpha_1, \ldots, \alpha_{i-1})$ and let $n = \text{lcm}\{n_i\}$. Then $K(\zeta_n)/F$ is also normal (if K/F is the sf of \mathcal{F} then $K(\zeta_n)/F$ is the sf of $\mathcal{F} \cup \{X^n - 1\}$). Also $K(\zeta_n) = F(\zeta_n, \alpha_1, \ldots, \alpha_r)$ and $F(\zeta_n, \alpha_1, \ldots, \alpha_r)$ is the sf of $X^n - \alpha_i^{n_i}$ over $F(\zeta_n, \alpha_1, \ldots, \alpha_{i-1})$. Hence if $H_i = \text{Gal}(K(\zeta_n)/F(\zeta_n, \alpha_1, \ldots, \alpha_i))$ then $H_i \leq H_{i-1}$ and H_{i-1}/H_i is cyclic. Also $H_0 = \text{Gal}(K(\zeta_n)/F(\zeta_n)) \leq G = \text{Gal}(K(\zeta_n)/F)$ and $G/H_0 \leq (\mathbb{Z}/n\mathbb{Z})^\times$ is abelian. But $H_r = \{1\}$, so G is solvable. Now $\text{Gal}(K/F)$ is a quotient of G, so is also solvable.

Corollary There exist quintics that do not have roots in any radical extension.

Proof. There exist quintics f over \mathbb{Q} with Galois group S_5. If K/\mathbb{Q} were a radical extension containing a root of f then its normal closure M/\mathbb{Q} would be a radical extension containing all roots of f. But then M would contain a sf L for f and $\text{Gal}(L/\mathbb{Q})$ would be a quotient group of $\text{Gal}(M/\mathbb{Q})$ which is solvable. Hence $\text{Gal}(L/\mathbb{Q}) \cong S_5$ would be solvable, a contradiction.

Theorem 4 If K/F is Galois with solvable Galois group then K is contained in a radical extension of F.

Proof. Let $n = [K:F]$. Then $\text{Gal}(K(\zeta_n)/F)$ is solvable [$\text{Gal}(K(\zeta_n)/K)$ is an abelian normal subgroup with solvable quotient $\text{Gal}(K/F)$]. Hence $G = \text{Gal}(K(\zeta_n)/F(\zeta_n))$ is solvable [$\leq \text{Gal}(K(\zeta_n)/F)$]. The map $G \to \text{Gal}(K/F)$ obtained by restricting $g \in G$ to K is an injective homomorphism [if g fixes K and $F(\zeta_n)$ then it clearly fixes $K(\zeta_n)$, so $|G| | n$. Thus there is a sequence $1 = H_0 \leq H_1 \leq \ldots \leq H_r = G$ with H_i/H_{i-1} cyclic and if $L_i = K(\zeta_n)_{H_i}$ then L_{i-1}/L_i is a Galois extension with cyclic Galois group of order $n_i | [H_i/H_{i-1}] | n$, so $\zeta_{n_i} \in L_i$. Thus $L_{i-1} = L_i(\alpha_i)$ for some α_i with $\alpha_i^{n_i} \in L_i$ and $L_r = F(\zeta_n)$. Thus $L_0 = K(\zeta_n)$ is radical over F and contains K.

Any finite Galois extension has a finite number of intermediate fields since these just correspond to subgroups of a finite group. The following lemma gives a criterion for when this happens in general.

Lemma 1 Let K/F be a finite extension. Then K/F has finitely many intermediate fields L, $F \subseteq L \subseteq K$, if and only if K/F is simple, i.e., $K = F(\alpha)$ for some $\alpha \in K$.

Proof. Assume first that $K = F(\alpha)$ is simple. Let L be an intermediate field and consider $m_{\alpha,L}$. Now $m_{\alpha,L} \mid m_{\alpha,F}$ in $L[X]$ since $m_{\alpha,F}(\alpha) = 0$. Thus $m_{\alpha,L}$ is a factor of $m_{\alpha,F}$ in $K[X]$. But if $m_{\alpha,F} = f_1 f_2 \ldots f_r$ in $K[X]$ with f_i irreducible, then by unique factorization in $K[X]$, $m_{\alpha,L}$ must be some product of some of the f_i. Hence there are at most 2^r possible values for $m_{\alpha,L}$. If $m_{\alpha,L} = \sum_{i=0}^m b_i X^i$, let $M = F(b_0, \ldots, b_m)$. Clearly $M \subseteq L$ so $m_{\alpha,L} \mid m_{\alpha,M}$ since $m_{\alpha,M} \in L[X]$ and $m_{\alpha,M}(\alpha) = 0$. However $m_{\alpha,L} \in M[X]$ so $m_{\alpha,M} \mid m_{\alpha,L}$. Thus $m_{\alpha,L} = m_{\alpha,M}$. Now $K = F(\alpha) \subseteq M(\alpha) \subseteq L(\alpha) \subseteq K$, and $[L(\alpha) : L] = [M(\alpha) : M] = \deg m_{\alpha,L}$, so $[K : L] = [K : M]$ and $M = L$. Since $m_{\alpha,L}$ determines $M = L$ and there are only finitely many possible $m_{\alpha,L}$s, there can be only finitely many Ls.

Now assume there are only finitely many intermediate fields. We shall first consider the case when F is infinite. Since K/F is finite, $K = F(\alpha_1, \ldots, \alpha_r)$ for some $\alpha_i \in K$ (e.g., take the α_i to be a basis for K/F). We shall show that for any $\alpha, \beta \in K$, $F(\alpha, \beta) = F(\gamma)$ for some $\gamma \in K$. The result will then follow by taking r above to be minimal and noting that $F(\alpha_1, \ldots, \alpha_r) = F(\alpha_1, \alpha_2)(\alpha_3, \ldots, \alpha_r) = F(\gamma, \alpha_3, \ldots, \alpha_r)$ for some γ.

Let $\gamma = \alpha + c \beta$ for some $c \in F$. Then $F(\gamma)$ is some intermediate field. Since there are only finitely many intermediate fields and F is infinite, there exists $c_1, c_2 \in F$ with $F(\alpha + c_1 \beta) = F(\alpha + c_2 \beta)$. Call this field L. Then $(c_1 - c_2)\beta = (\alpha + c_1 \beta) - (\alpha + c_2 \beta) \in L$. Also $c_1 - c_2 \in F \subseteq L$, so $\beta \in L$. Now $\alpha = (\alpha + c_1 \beta) - c_1 (\beta) \in L$, so $F(\alpha, \beta) \subseteq L$. Clearly $L \subseteq F(\alpha, \beta)$, so $F(\alpha, \beta) = F(\alpha + c_1 \beta)$ as required.

If F is finite then $|K| = |F|^{[K:F]} < \infty$, so K is finite. Then K^\times is cyclic, generated by α say, so $K = \{0, 1, \alpha, \alpha^2, \ldots, \alpha^r\}$ and $K = F(\alpha)$.

Theorem (The Theorem of the Primitive Element) If K/F is finite and separable then $K = F(\alpha)$ for some $\alpha \in K$.

Proof. Let M be the normal closure of K/F, so M/F is finite and Galois. By the fundamental theorem of Galois theory, there are only finitely many fields L with $F \subseteq L \subseteq M$. Hence there are only finitely many fields with $F \subseteq L \subseteq K$. Hence K/F is simple by Lemma 1.

Example Let $K = \mathbb{F}_p(x, y)$ where x, y are indeterminants. Let $F = \mathbb{F}_p(x^p, y^p) \subseteq K$. Then $\{x^iy^j : 0 \leq i, j < p\}$ is a basis of K/F so any $\gamma \in K$ is of the form $\sum a_{ij} x^i y^j$ with $a_{ij} \in F$. Now $\gamma^p = \sum a_{ij}^p x^{pi} y^{pj} \in F$, so $[F(\gamma) : F] \leq p$. But $[K : F] = p^2$, so K/F is not simple and has an infinite number of intermediate fields.
Assume K/F is a finite extension with $[K:F] = n$. Then K can be regarded as an n-dimensional F-vector space. If $\alpha \in K$ then the map $t_\alpha : K \to K$ which sends β to $\alpha\beta$ is an F-linear map from the F-vector space K to itself, and as such can be represented by an $n \times n$ matrix with coefficients in F.

Definition The *norm* of an element $\alpha \in K$ is the determinant $N_{K/F}(\alpha) = \det t_\alpha$ and the *trace* of α is the trace $\text{Tr}_{K/F}(\alpha) = \text{tr} t_\alpha$ of the matrix representing t_α. Note that both these quantities are independent of the basis for K/F.

Theorem 1

(a) $N_{K/F}(\alpha\beta) = N_{K/F}(\alpha)N_{K/F}(\beta)$ and $\text{Tr}_{K/F}(\alpha + \beta) = \text{Tr}_{K/F}(\alpha) + \text{Tr}_{K/F}(\beta)$.

(b) If $K/L/F$ and $\alpha \in L$ then $N_{K/F}(\alpha) = N_{L/F}(\alpha)^{[K:L]}$ and $\text{Tr}_{K/F}(\alpha) = [K:L] \text{Tr}_{L/F}(\alpha)$.

(c) If $m_{\alpha,F} = X^n + a_{n-1}X^{n-1} + \ldots + a_0$ then $N_{F/(\alpha)}(\alpha) = (-1)^n a_0$ and $\text{Tr}_{F/(\alpha)}(\alpha) = -a_{n-1}$.

(d) If K/F is Galois, $N_{K/F}(\alpha) = \prod_{g \in \text{Gal}(K/F)} g(\alpha)$ and $\text{Tr}_{K/F}(\alpha) = \sum_{g \in \text{Gal}(K/F)} g(\alpha)$.

Proof.

(a) Follows from standard properties of det and tr using $t_{\alpha\beta} = t_\alpha \circ t_\beta$ and $t_{\alpha+\beta} = t_\alpha + t_\beta$.

(b) Let $\{\alpha_i\}$ be a basis for L/F and $\{\beta_j\}$ be a basis for K/L. Then by the tower law $\{\alpha_i\beta_j\}$ is a basis for K/F. In this basis, $t_\alpha(K/F)$ is represented as a matrix with blocks corresponding to $t_\alpha(L/F)$ down the diagonal and zeros elsewhere. Thus $\det t_\alpha(K/F) = (\det t_\alpha(L/F))^r$ and $\text{tr} t_\alpha(K/F) = r \text{tr} t_\alpha(L/F)$ where $r = [K:L]$ is the number of blocks.

(c) Use a basis $\{1, \alpha, \ldots, \alpha^{n-1}\}$ for $F(\alpha)/F$. Then the matrix t_α will be of the form

\[
\begin{pmatrix}
0 & 0 & \ldots & 0 & -a_0 \\
1 & 0 & \ldots & 0 & -a_1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & -a_{n-1}
\end{pmatrix}
\]

(d) $N_{K/F}(\alpha) = N_{F/(\alpha)}(\alpha)^r = (\pm a_0)^r = \prod \alpha_i^r$ where $r = [K:F(\alpha)]$, and $\alpha = \alpha_1, \alpha_2, \ldots$ are the roots of $m_{\alpha,F}$. Let $G = \text{Gal}(K/F)$ and let $H = \text{Gal}(K/F(\alpha))$. For each i there exists a $g \in G$ with $g(\alpha) = \alpha_i$. Moreover if $g' \alpha = \alpha_i$ then $g^{-1}g' \alpha$ fixes α, so $g^{-1}g' \in H$ and $g' \in gH$. Conversely if $g' \in gH$ then $g'(\alpha) = g(\alpha) = \alpha_i$. Hence

\[
\prod_{g \in G} g(\alpha) = \prod_{gH \in G/H} \prod_{g' \in gH} g'(\alpha) = \prod_{gH \in G/H} \alpha_i^{[H]} = \prod \alpha_i^{[H]} = N_{K/F}(\alpha).
\]

A similar argument works for Tr.

Exercises

1. Show that if $K/L/F$ and both K/F and L/F are Galois then $N_{K/F}(\alpha) = N_{L/F}N_{K/L}(\alpha)$ and $\text{Tr}_{K/F}(\alpha) = \text{Tr}_{L/F} \text{Tr}_{K/L}(\alpha)$. [In fact this is true for any finite $K/L/F$.]

2. Describe the functions $N_{\mathbb{C}/\mathbb{R}}$ and $\text{Tr}_{\mathbb{C}/\mathbb{R}}$ explicitly.