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1. Introduction

Every two maximum length paths in a connected graph have a common
vertex. Gallai in [1] asked whether all maximum length paths share a
common vertex of the graph. This perfect “Helly–property” on longest
paths is not true in general. The first counter–example was constructed
by H. Walther, and the smallest known counter–example in Fig. 1 is
due to Zamfirescu [6].
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Figure 1. No vertex covers all longest paths

These and many further examples in Skupień [4] all contain induced
cycles longer than three with no chord. In other words, the known
counter–examples are not chordal graphs.
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2 Balister, Győri, Lehel, Schelp

We have not been able to determine whether the longest paths
of every chordal graph have the Helly–property envisioned by Gallai.
However, Klavžar and Petkovšek in [3] observed that this is true in a
connected split graph (split graphs are chordal graphs whose comple-
ment is also chordal). In addition we shall prove that Gallai’s question
has an affirmative answer for interval graphs, another distinguished
subfamily of chordal graphs.

A graph G = (V, E) is an interval graph, if there exists a mapping ι
of its vertex set V into a collection of intervals of the real line such that,
for every u,w ∈ V , uw is an edge of G if and only if ι(u) ∩ ι(w) 6= ∅.

The interval representation approach was successfully applied to a
non–chordal extension of interval graphs leading to the main theorem
of our paper.

A graph G = (V, E) is a circular arc graph, if there exists a mapping
α of its vertex set V into a collection of arcs of a circle such that, for
every u,w ∈ V , uw is an edge of G if and only if α(u) ∩ α(w) 6= ∅.

THEOREM 1.1. All maximum length paths of a connected circular arc
graph have non–empty intersection.

2. Intervals

Given a finite collection F of (open) intervals on the real line, C =
(I1, . . . , It) is called a t–chain in F if Ik ∈ F are distinct for 1 ≤ k ≤ t,
and Ik ∩ Ik+1 6= ∅, for every 1 ≤ k ≤ t − 1. A chain containing the
maximum number of intervals is called a longest chain of F . Note that
the chains in F correspond to the paths in the intersection graph of F .
The support of a chain C is defined as the set

Supp C = I1 ∪ (I2 ∩ I3) ∪ . . . ∪ (It−2 ∩ It−1) ∪ It .

Observe that for a longest chain C and an interval J ∈ F , we have J ∈ C
if and only if J ∩Supp C 6= ∅. In fact, if J 6∈ F and J ∩Supp C 6= ∅ then
J could be inserted into the chain between two consecutive intervals or
at the end of C, thus contradicting its maximality.

THEOREM 2.1. In every finite collection of intervals on the real line
with connected union there is an interval belonging to all longest chains.

Proof. Assume that t is the maximum number of intervals of a chain in
the collection F , and let N be the number of t–chains in F . We show
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that for each n = 2, . . . , N , every n of the t–chains in F have a common
interval. The proof is induction on n. For the case n = 2, observe that
the intersection graph of F is connected, by the assumption, and in a
connected graph any two longest paths have a common vertex. In other
words, every two t–chains in F share a common interval.

Next let n ≥ 3, and let C1, C2, . . . , Cn be n longest chains in F . Set
Ck = (Ik

1 , . . . , Ik
t ), 1 ≤ k ≤ n. We assume that for every 1 ≤ k ≤ n,

there is an interval Jk ∈ F such that

Jk ∈
⋂
{Ci : 1 ≤ i ≤ n and i 6= k} .

Clearly we may assume that Jk ∩ Supp Ck = ∅, otherwise Jk ∈ Ck, and
the proof is complete. We show that one can assume even the stronger
condition Jk∩Conv(Supp Ck) = ∅, where Conv(Supp Ck) is the smallest
interval containing Supp Ck.

Assuming that Jk∩Conv(Supp Ck) 6= ∅, there exist points of Supp Ck

on both sides of the interval Jk. Therefore there exists 1 < r < t such
that Jk is between the intervals Ik

r−1 ∩ Ik
r and Ik

r ∩ Ik
r+1. In particular,

we have Ik
r ⊇ Jk. Then for every 1 ≤ i ≤ n and i 6= k, we have Jk ∈ Ci

which implies Ik
r ∩ Supp Ci 6= ∅. In addition, Ik

r ∈ Ck, thus we conclude
that Ik

r ∈
⋂{Ci : 1 ≤ i ≤ n}.

Now we assume that Jk ∩ Conv(Supp Ck) = ∅, for every 1 ≤ k ≤ n.
This means that either Jk < Supp Ck or Supp Ck < Jk, where the
inequality means left–to–right ordering of disjoint intervals in the real
line. Because n ≥ 3, we have the same alternative for two indices. We
shall assume that Supp C1 < J1 and Supp C2 < J2 (w.l.o.g. since one
can freely reverse the left–to–right ordering on the real line). Then
we obtain that either Supp C1 < J2 or Supp C2 < J1. Either of them
contradicts the induction hypothesis J2 ∈ C1 or J1 ∈ C2. 2

Note that Theorem 2.1 proves Theorem 1.1 in the particular case
when the circular arc is an interval graph.

COROLLARY 2.2. All maximum length paths of a connected interval
graph have non–empty intersection. 2

When extending this theorem to circular arc graphs we will use
a lemma motivated (and implicitly included) by Keil’s work on the
hamiltonicity of interval graphs [2].

LEMMA 2.3. Let X = {x1, x2, . . . , xt+1} be a set of real numbers, and
let J1, J2, . . . , Jt be a sequence of open real intervals with xk, xk+1 ∈ Jk,
for every 1 ≤ k ≤ t. If xi1 < xi2 < . . . < xit+1 are the elements of X in
increasing order, then the intervals have a permutation Jj1 , Jj2 , . . . , Jjt

such that xik , xik+1
∈ Jjk

, for every 1 ≤ k ≤ t.
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Proof. For every i = 1, . . . , t, let J∗i ⊂ Ji be the closed interval with
endpoints xi and xi+1, so that J∗i = [xi, xi+1] if xi < xi+1 and J∗i =
[xi+1, xi] otherwise. We shall show the existence of a bijection ψ from
the set of consecutive segments X = {[xi1 , xi2 ], [xi2 , xi3 ], . . . , [xit , xit+1 ]}
onto J ∗ = {J∗1 , . . . , J∗t } such that [xik , xik+1

] ⊆ ψ([xik , xik+1
]), for every

1 ≤ k ≤ t. Then the required permutation of the Jks follows from
xik , xik+1

∈ ψ([xik , xik+1
]) = J∗jk

⊂ Jjk
.

To see the existence of such a bijection we shall verify Hall’s condi-
tion for the bipartite graph on X ∪ J ∗ with an edge between vertices
[xik , xik+1

] ∈ X and J∗i ∈ J ∗ if and only if [xik , xik+1
] ⊆ J∗i .

Let S ⊆ {1, . . . , t} and let

X(S) = {xik ∈ X : [xik , xik+1
] ⊆ J∗i for some i ∈ S} .

Write
⋃

i∈S
J∗i =

r⋃
j=1

[aj , bj ], where the [aj , bj ] are disjoint intervals. Let

[aj , bj ] =
⋃

i∈Sj

J∗i , for j = 1, . . . , r. Clearly |X ∩ [aj , bj ]| ≥ |Sj | + 1

implying |X(Sj)| ≥ |Sj |. Since X(Sj) are disjoint, the Hall’s condition
is obtained from

|{[xik , xik+1
] ∈ X : [xik , xik+1

] ⊆ ⋃
j∈S

J∗i }|

= |X(S)| =
r∑

j=1
|X(Sj)| ≥

r∑
j=1

|Sj | = |S| = |{J∗i ∈ J ∗ : i ∈ S}| .

Hence the required permutation does exist. 2

3. Arcs

Let C be a circle and let F be a finite collection of open arcs of C.
Note that if C has a point not in

⋃F , then the intersection graph
of F is an interval graph. Thus we assume that

⋃F = C. Let K =
{K0, . . . ,Kn−1} be a set of n arcs of F such that

(0) C = K0 ∪ . . . ∪Kn−1,
(1) n is minimal, and
(2) each Ki is maximal, so A ⊇ Ki and A ∈ F imply A = Ki.

It is clear that such a set K exists. Note that n ≥ 2 iff no arc contains
C which is assumed in the sequal. We also assume that for any two arcs
A,B ∈ F , the endpoints of A and B are distinct.
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We order K so that Ki+1 is the arc immediately clockwise from Ki.
In particular, note that requirement (1) implies that Ki intersects only
Ki−1 and Ki+1, where the indices are taken mod n.

A path on t vertices in the intersection graph of F corresponds to a
t–chain P = (A1, . . . , At) in F . Define the support of P as the set

SuppP = A1 ∪ (A2 ∩A3) ∪ . . . ∪ (At−2 ∩At−1) ∪At .

Assume from now on that t is the maximum number of arcs of a chain
in F . Observe that if P is a longest chain in F , then A ∈ P if and only
if A ∩ SuppP 6= ∅.
LEMMA 3.1. If P is a longest chain in F , then P ∩ K = {Ki : i ∈ I}
is non–empty and I is a contiguous set of elements of Zn.

Proof. By (0), the support of each longest chain P does intersect at
least one arc of K. Then this arc belongs to P and P ∩ K 6= ∅ follows.

The lemma is obviously true for n ≤ 3. Assume that n ≥ 4, and
suppose that Ki,Kj ,Kk,K` ∈ K are ordered cyclically with Ki,Kk ∈ P
and Kj ,K` /∈ P. By the minimality of n required in (1), we have
C \ (Kj ∪K`) is a union of two disjoint arcs, and SuppP meets both
arcs (since it meets both Ki and Kk). By the connectedness of P there
exists A ∈ P meeting both components of C \ (Kj ∪ K`). But then
either Kj ⊂ A or K` ⊂ A, contradicting (2), the maximality of either
Kj or K`. 2

If P is a t–chain in F , then by Lemma 3.1, we have P ∩ K =
{Ka+1,Ka+2 . . . , Kb−1}. Assume that K 6⊆ P so that Kk /∈ P for every
k = b, b + 1, . . . , a, (possibly a = b, and integers are taken mod n).

If A ∈ P, then A 6⊆ Kk, because otherwise, (Kk ∩ SuppP) ⊇ (A ∩
SuppP) 6= ∅ would imply Kk ∈ P. Furthermore, A 6⊇ Kk by the
maximality of Kk. Therefore, for every Ai ∈ P, the set Ai\(Ka∪Kb) is a
non–empty arc of C ′ = (Ka+1∪ . . .∪Kb−1)\(Ka∪Kb). We shall assume
that the points of the arc C ′ are ordered clockwise. These considerations
combined with Lemma 2.3 are elaborated into the following lemma.

LEMMA 3.2. Let P be a longest chain in F , and assume that P∩K =
{Ka+1,Ka+2 . . . , Kb−1} 6= K. Then the arcs in P have a reordering into
a chain P∗ such that in this reordering

(a) Ka+1 preceeds Kb−1 provided they are distinct,
(b) if A preceeds Kb−1 then A 6⊇ Kb−1 ∩Kb,
(c) if A preceeds Ka+1 then A ⊆ Ka ∪Ka+1.

Proof. Let P = (J1, . . . , Jt), and let {x1, . . . , xt+1} ⊂ SuppP be a
set of distinct points such that xk, xk+1 ∈ Jk, for every 1 ≤ k ≤ t.
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Because Ka,Kb /∈ P, each xi belongs to the arc C ′ = (Ka+1 ∪ . . . ∪
Kb−1) \ (Ka ∪ Kb). Let xi1 , xi2 , . . . , xit+1 be the permutation of these
points in clockwise order in C ′. Now the permutation of the arcs of P
given in Lemma 2.3 is another longest chain (Jj1 , Jj2 , . . . , Jjt) such that
[xik , xik+1

] ∈ Jjk
, for every 1 ≤ k ≤ t (where [x, y] is the circular arc

going clockwise from x to y). We show a procedure of rearranging the
arcs in this chain in order to fulfill the requirements (a) – (c).

Let p < q, Jjp = Kb−1 and Jjq = Ka+1. Because the left endpoint
of Ka+1 preceeds the left endpoint of Kb−1, and the right endpoint of
Ka+1 preceeds the right endpoint of Kb−1, we have xip ∈ Ka+1 and
xiq+1 ∈ Kb−1. This implies [xip , xip+1 ], [xiq , xiq+1 ] ⊆ Jjp ∩ Jjq . Thus it
is possible to swap Jjp and Jjq in the chain. In this reordering (a) is
satisfied.

Let p < q, Jjp = A and Jjq = Kb−1. Assume that A is an arc with
A ⊇ Kb−1 ∩Kb. Because A 6⊇ Kb−1, the left endpoint of Kb−1 preceeds
the left endpoint of A, and the right endpoint of Kb−1 preceeds the
right endpoint of A. Thus we have xip ∈ Kb−1 and xiq+1 ∈ A which
implies [xip , xip+1 ], [xiq , xiq+1 ] ⊆ Jjp ∩ Jjq . Then it is possible to swap
A = Jjp and Kb−1 = Jjq in the chain. By successive swapping of such
arcs A we obtain a reordering where (a) and (b) are satisfied.

Let p < q, Jjp = A and Jjq = Ka+1. Assume that A is an arc
with A 6⊆ Ka ∪ Ka+1. We know that A ∩ C ′ 6= ∅, furthermore, A 6⊇
Ka and A 6⊇ Ka+1. Therefore, the left endpoint of Ka+1 preceeds the
left endpoint of A, and the right endpoint of Ka+1 preceeds the right
endpoint of A. Thus we have xip ∈ Ka+1 and xiq+1 ∈ A which implies
[xip , xip+1 ], [xiq , xiq+1 ] ⊆ Jjp∩Jjq . Then, as before, it is possible to swap
A = Jjp and Ka+1 = Jjq in the chain. By successive swapping we obtain
a chain satisfying (c) as well. Thus we obtain a reordering P∗ satisfying
(a) – (c) as required. 2

We will prove Theorem 1.1 in the following form.

THEOREM 3.3. If F is a finite collection of arcs of a circle with
connected union, then the longest chains in F have a common arc.

Proof. If the intersection graph of F is an interval graph, then Corollary
2.2 proves the claim. Otherwise, the cover K of the circle exists as
defined above in the present section. Recall that every longest chain in
F contains an arc of K. Let P be a longest chain such that |P ∩ K| is
the smallest possible. If |P∩K| = n then all longest chains contain each
arc of K. The theorem is also true in the case of n = 1 by the same
reason. Thus we assume that n ≥ 2 and |P ∩ K| < n or equivalently,
P ∩K = {Ka+1, . . . , Kb−1} 6= K. We shall show that each longest chain
contains Kb−1.
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Assume otherwise, and let Q be a longest chain with Kb−1 /∈ Q.
By the choice of P, we have Q ∩ K = {K`+1, . . . , Km−1}, Kb−1 ∈
P \Q,K`+1 ∈ Q\P, and Kb,Kb+1, . . . , K` 6∈ P ∪Q. Let R be the chain
(Kb, . . . , K`), and let R be empty if ` = b− 1.

Next we reorder P and Q as in Lemma 3.2, let P∗ = P1Kb−1P2

and Q∗ = Q1K`+1Q2. Define the trails C1 = P1Kb−1RK`+1Qr
1 and

C2 = Pr
2Kb−1RK`+1Q2 where the superscript r indicates reversal of

the sequence, and juxtaposition means the concatenation of arcs and
subchains.

We claim that both C1 and C2 are chains in F . To verify this for C1,
it is enough to show that P1 ∩ Q1 = ∅. Assume on the contrary that
A ∈ P1∩Q1. Then A preceeds K`+1 inQ∗, so that A ⊆ K`∪K`+1 follows
by Lemma 3.2. Observe that A 6⊆ K`, because K` 6∈ Q. Also A 6⊆ K`+1,
because otherwise, A ∈ P would imply K`+1 ∈ P, a contradiction.
Therefore, we obtain

K` ∩K`+1 ⊆ A ⊆ K` ∪K`+1 .

Because A preceeds Kb−1 in P∗, by Lemma 3.2, we have

Kb−1 ∩Kb 6⊆ A .

The left hand sides of the two conditions on A are contradictory when
` = b− 1. Thus R is non–empty, in particular, K` 6∈ P.

Because A ∈ P and A ⊆ K`∪K`+1, either we have (SuppP)∩K` 6= ∅
which implies K` ∈ P or we have (SuppP) ∩K`+1 6= ∅ which implies
K`+1 ∈ P, each is impossible. Therefore A does not exist, hence C1 is
a chain in F .

The same type of argument applies and shows that C2 is a chain as
well. Now we have |C1|+ |C2| ≥ 2+ |P|+ |Q| contradicting the fact that
both P and Q are maximum. Thus Q does not exist, hence Kb−1 is a
common arc of all longest chains in F . 2

4. Remarks

4.1. Longest cycles

Gallai’s question is also investigated for the longest cycles of a graph
instead of its longest paths (see related problems in Voss [5]). The proof
of Theorem 2.1 leads to a result parallel to Corollary 2.2 as follows.

THEOREM 4.1. All maximum length cycles of a 2–connected interval
graph have non–empty intersection.
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Proof. (Sketch) Note that 2–connectivity is required for the prop-
erty that any two longest cycles share a common vertex. Cycles of an
interval graph correspond to circular chains of intervals in its inter-
val representation. The definition of the support of a circular chain
C = (A1, A2, . . . , At) will be the more symmetric expression

Supp C = (A1 ∩A2) ∪ . . . ∪ (At−1 ∩At) ∪ (At ∩A1) .

Making these changes, each step of the proof of Theorem 2.1 remains
valid. 2

The question whether the longest cycles have a non–empty intersec-
tion is open for further families of graphs, among others, for circular
arc graphs.

4.2. Chordal graphs

So far we have not been able to determine whether the longest paths (or
cycles) of every chordal graph have the Helly–property envisioned by
Gallai. Klavžar and Petkovšek in [3] observed that the intersection of
the longest paths is non–empty in a connected split graph (split graphs
are chordal graphs whose complement is also chordal). In addition,
Corollary 2.2 shows that Gallai’s question has an affirmative answer
for interval graphs, another distinguished subfamily of chordal graphs.

It is known that chordal graphs are exactly the intersection graphs
of subtrees in some host tree. We could not extend our approach based
on the interval representation of an interval graph to the subtrees in
the tree representation of a chordal graph. However, using the subtree
representation and the Helly–theorem on subtrees one can easily obtain
that in a connected (or 2–connected) chordal graph there is a clique
meeting every longest paths (or cycles). It is possible that all longest
paths must go through a common vertex in that clique.
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