
LARGE DEVIATIONS FOR MEAN FIELD MODELS OF

PROBABILISTIC CELLULAR AUTOMATA

P. BALISTER1, B. BOLLOBÁS2, AND R. KOZMA1

Abstract. Probabilistic cellular automata (PCA) form a very large and general
class of stochastic processes. These automata exhibit a wide range of complex be-
havior and are of interest in a number of fields of study, including mathematical
physics, percolation theory, computer science, and neurobiology. Very little has been
proved about these models, even in simple cases, so it is common to compare the
models to mean field models. It is normally assumed that mean field models are es-
sentially trivial. However, we show here that even the mean field models can exhibit
surprising behavior. We prove some rigorous results on mean field models, including
the existence of a surrogate for the ‘energy’ in certain non-reversible models. We also
briefly discuss some differences that occur between the mean field and lattice models.

1. Probabilistic Cellular Automata

Let A be a finite set of states and let Γ be a finite subset of Z
d containing the

origin 0 = (0, . . . , 0). A probabilistic cellular automaton or PCA on Z
d is a stochastic

process giving rise to a sequence of configurations Φt : Z
d → A, where the state Φt(x)

of x ∈ Z
d at time t is determined randomly with probabilities dependent on the states

of the points of the neighborhood x+Γ = {x+y : y ∈ Γ} of x at time t−1. To be more
precise, fix a function p : AΓ ×A → [0, 1] that assigns for each configuration φ : Γ → A
and each a ∈ A a probability pφ,a with

∑

a∈A pφ,a = 1 for all φ. We set Φt+1(x) = a
independently for each x ∈ Z

d with probability pφ,a, where φ(y) = Φt(x + y) is the
restriction to Γ of (a translate of) Φt. We start the process with Φ0 chosen randomly
from some specified probability distribution on the set of all states Φ: Z

d → A.
Usually we define Γ to be the closed neighborhood of 0, consisting of all points

unit distance from 0 together with 0 itself, or more generally, all points within some
fixed distance of 0. Similarly we can define probabilistic cellular automaton on the
d-dimensional torus Zn1

× · · · ×Znd
, or on the corresponding finite grid (with suitable

boundary conditions imposed). These models have also been referred to as contact
processes and have been studied in some simple cases on infinite graphs [21, 22].

Probabilistic cellular automata generalize deterministic cellular automata such as
Conway’s game of life [17], and bootstrap percolation [1, 3, 8, 13, 18, 25, 27], where
the update rules are deterministic, but the initial configuration is random. Oriented
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percolation models in Z
d (see [4, 6, 19, 22]) can also be thought of as (d−1)-dimensional

probabilistic cellular automata, with time representing the direction of orientation.
Given the complexity of deterministic automata it should not come as a surprise that
random automata display extremely complex behavior which is very difficult to analyze
rigorously.

In the models described, we have updated all the sites in Z
d simultaneously at each

step. One can ask what happens if the sites are updated asynchronously? Equivalently,
run the process in continuous time t and change each site according to independent
exponential random variables whose rates rφ,a (defined for a 6= φ(0)) depend on the
neighborhood of the site. For a finite grid the asynchronous model can be obtained as
a limit of synchronous models as follows. Given transition rates rφ,a for all φ : Γ → A,
define for sufficiently small ε > 0 the random automaton with probabilities

pφ,a =

{

εrφ,a if φ(0) 6= a;

1 −
∑

b6=a εrφ,b if φ(0) = a.
(1.1)

Then as ε → 0 this automaton approximates the asynchronous model with rates εrφ,a,
since the chances of neighbors being updated at the same time tends to zero. For the
infinite lattice Z

d one expects the same result to hold — the asynchronous model be-
ing approximated increasingly well by the synchronous model as ε → 0 (with suitable
re-scaling of t). As a result, asynchronous models can be considered as a special lim-
iting case of suitable synchronous models. However the synchronous models display
a richer variety of behavior, such as small period oscillations, that are not possible
in asynchronous models. Also it is not clear that, for example, critical exponents at
phase transitions for asynchronous models necessarily match those of the approximat-
ing synchronous models. There are however reasons for believing that the asynchronous
models are easier to analyze — for example, the Kinetic Ising model can be more easily
described by an asynchronous model (see Section 4).

2. The Mean Field Approximation

From now on we shall restrict our attention to 2-state processes with A = {−, +}.
In this case we write pφ for pφ,+ and so pφ,− = 1 − pφ.

We start by considering p of a certain special form. Assume pφ depends only on
the cardinality of set of neighbors that are in state +, |{x ∈ Γ : φ(x) = +}|, and
on the state of the site itself, φ(0). We shall call these models semi-totalistic. We
write p+

r (resp. p−r ) in place of pφ when |φ−1(+)| = r and φ(0) = + (resp. φ(0) = −).
Semi-totalistic models are substantially more restrictive than the general case, but they
still have complex behavior, sometimes including spontaneous symmetry breaking (see
Section 4). We shall call the model totalistic if p−r = p+

r = pr for all r. In this case,
the site itself is treated on the same basis as its neighbors.

By interchanging + and − throughout we obtain a new model with p′φ = 1 − p−φ

(p′±r = 1 − p∓|Γ|−r for semi-totalistic models). We call the model symmetric if it is the

same under interchange of + and −, so pφ = 1 − p−φ.
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On a finite grid or torus, we can compare probabilistic automata with the cor-
responding mean field models. In the mean field model, instead of taking |Γ| − 1
specified neighbors, we take |Γ|−1 elements of the grid at random (with replacement).
Since there is no ordering of these neighbors, the transition probabilities depend only
on the number of + states in this neighborhood and the state of the site itself, so may
be given by probabilities p±r as in the semi-totalistic case. Because of this, we shall
only consider semi-totalistic models from now on. However, we shall not in general
assume our models are totalistic, since even for a totalistic asynchronous model, the
synchronous approximations described above are only semi-totalistic, and we may wish
to compare asynchronous models to their corresponding mean field versions.

It is clear that the mean field model does not depend on the topology of the grid,
and the only information of relevance in Φt is given by the cardinality of +-states,
|Φ−1(+)| = |{x : Φt(x) = +}|. We define ρt to be |Φ−1(+)|/N where N is the size of
grid. Thus ρt ∈ [0, 1] gives the density of + sites in Φt. Write B(k, p) for a binomial
random variable giving the sum of k independent Bernoulli random variables, each of
which is 1 with probability p.

Theorem 2.1. If there are N points in the grid then ρt is given by

Nρt+1 = B(Nρt, f
+
m(ρt)) + B(N(1 − ρt), f

−
m(ρt)), (2.1)

where the functions f±
m are defined by

f+
m(x) =

∑

r

(

|Γ|−1
r−1

)

p+
r xr−1(1 − x)|Γ|−r, (2.2)

f−
m(x) =

∑

r

(

|Γ|−1
r

)

p−r xr(1 − x)|Γ|−r−1. (2.3)

Hence ρt+1 is given by a distribution with mean fm(ρt) and variance gm(ρt)/N where

fm(x) = xf+
m(x) + (1 − x)f−

m(x) =
∑

r

(

|Γ|
r

)

prx
r(1 − x)|Γ|−r, (2.4)

gm(x) = xf+
m(x)(1 − f+

m(x)) + (1 − x)f−
m(x)(1 − f−

m(x)), (2.5)

and pr = (rp+
r + (|Γ| − r)p−r )/|Γ|.

Proof. Clear. �

For large N , ρt+1 is approximately fm(ρt) with high probability. Therefore, to a first
approximation, the behavior of this model can be described in terms of the iterates
of fm. Note that fm is unchanged if we replace the random automaton by the totalistic
model with parameters pr, however f±

m and gm may be different, and as we shall see,
the dynamics can be significantly altered.

Using Theorem 2.1, we can consider the mean field model to be a special case of a
more general stochastic model where +’s and −’s at time t become +’s at time t + 1
with probabilities f+

m(r/N) and f−
m(r/N) respectively, where r is the total number of

+ states at time t. We can then forget the p±r and just consider f±
m to be arbitrary

continuous functions from [0, 1] to [0, 1]. The functions fm and gm are then defined in
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terms of f±
m by (2.4) and (2.5). Our main results (Theorem 2.2 and Theorem 3.1) are

proved in this more general setting.
Since fm(0) ≥ 0 and fm(1) ≤ 1, there must be at least one fixed point of fm in [0, 1].

Iterating the map fm can result in stable fixed points, stable limit cycles, chaotic
behavior, or a combination of these, depending on the initial value ρ0.

Both Φt and ρt are Markov processes on a finite state space. Thus they have sta-
tionary distributions. For large N one expects these to be heavily concentrated near
stable fixed points and limit cycles when these exist, whereas if iterates of fm behave
chaotically one expects the stationary distribution of ρt to be more complex. When
there are several attractors, the stationary distribution may be heavily concentrated
about just one of them, so the process spends most of its time near just one fixed point
or limit cycle even when several exist for the iterates of fm. In the case when fm is
monotonically increasing (so the only attractors are fixed points) we have the following
result.

Theorem 2.2. Assume f±
m(x) are continuous, f±

m(x) 6= 0, 1, and fm(x) is increasing
with a finite number of fixed points. Then there exists a continuous function λ : [0, 1] →
[0,∞), independent of N , such that in the stationary distribution,

P(ρt = r/N) = e−Nλ(r/N)+o(N). (2.6)

Furthermore, if I is an interval on which fm(x) > x (resp. fm(x) < x) then λ is a
strictly decreasing (resp. increasing) function on I. Also, λ(x) = 0 implies (but is not
implied by) x is a stable fixed point of fm.

The function λ(x), which in general is somewhat awkward to calculate, acts as a
surrogate for the ‘energy’ of the system, even though there is no Hamiltonian defined
for non-reversible Markov chains.

To prove Theorem 2.2, we shall need the following ‘large deviations’ estimate for the
Binomial distribution.

Lemma 2.3. If 0 ≤ r ≤ N and 0 < p < 1, then

P(B(N, p) = r) = exp(−Nh(r/N, p) + O(log N)) (2.7)

where
h(z, p) = z log z

p
+ (1 − z) log 1−z

1−p
. (2.8)

Note that in the case when z = 0 or 1 we use the convention that 0 log 0 = 0.

Proof. P(B(N, p) = s) =
(

N
s

)

ps(1 − p)N−s, and for p = z = r/N , this is maximized
when s = r. Since there are only N + 1 possible values for s, we have

1
N+1

≤
(

N
r

)

zr(1 − z)N−r ≤ 1.

Hence

log
((

N
r

)

pr(1 − p)N−r
)

= log
((

N
r

)

zr(1 − z)N−r
)

− r log z
p
− (N − r) log 1−z

1−p

= O(log N) − Nh(z, p)

as required. �
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Corollary 2.4. With the notation and assumptions as in Theorem 2.2,

P(ρt+1 = x | ρt = y) = exp(−Nt(y, x) + O(log N)), (2.9)

where x = r/N , 0 ≤ r ≤ N ,

t(y, x) = inf
yz++(1−y)z−=x

{yh(z+, f+
m(y)) + (1 − y)h(z−, f−

m(y))}, (2.10)

and the infimum is over all (z+, z−) ∈ [0, 1]2 such that yz+ + (1 − y)z− = x.

Note that here and below, the constant implicit in the O() term is bounded indepen-
dently of the parameters x and y, although it may depend on the functions f±

m.

Proof. Write p± = f±
m(y). By Theorem 2.1, the probability that we want is given by

∑

r++r−=rP(B(Ny, p+) = r+)P(B(N(1 − y), p−) = r−)

=
∑

r++r−=r exp{−Nyh(z+, p+) − N(1 − y)h(z−, p−) + O(log N)}

where z+ = r+

Ny
and z− = r−

N(1−y)
. By the addition of another O(logN) term in the

exponent, the sum can be replaced by a maximum over r±. By the assumptions of
Theorem 2.2, p± are continuous in y, and are never 0 or 1 for y ∈ [0, 1]. Hence p±
and 1 − p± are bounded away from zero, independently of y. Thus, if we vary z± by
at most 1/M , the functions h(z±, p±) given by (2.8) vary by at most O((log M)/M).
(The worst case is when z± varies between 0 and 1/M , or between 1 and 1 − 1/M).
Hence the maximum over r± can be replaced by a supremum over all z± ∈ [0, 1] with
the addition of another O(logN) term in the exponent. The result now follows. �

Before we continue, it is worth describing the function t(y, x) in a little more detail.

First we note that ∂h
∂z

(z, p) = log z(1−p)
p(1−z)

tends to ±∞ as z → 1 or 0. Hence the infimum

in (2.10) occurs with z± in the interior of [0, 1] when y ∈ (0, 1). Indeed, by the method
of Lagrange multipliers, the infimum occurs when

yz+ + (1 − y)z− = x and log z+(1−p+)
p+(1−z+)

= log z−(1−p−)
p−(1−z−)

= β, say. (2.11)

For y = 0 or 1 either z+ or z− is undetermined by (2.10), however any solution of (2.11)
still achieves the infimum in (2.10). Since z±, and hence x, increase monotonically
with β, these equations uniquely determine z±, and hence t(y, x), in terms of x for all
x ∈ (0, 1). Moreover, the limiting solutions of (2.11) as x → 0 or 1 (β → ∓∞) give
the correct value of t(y, x) for x = 0, 1, and

∂t

∂x
(y, x) = β for all x ∈ (0, 1), y ∈ [0, 1]. (2.12)

Since p± are continuous and bounded away from 0 and 1, t(y, x) is continuous in both
variables for all (y, x) ∈ [0, 1]2. Since [0, 1]2 is compact, it is also uniformly continuous.

The minimum value of t(y, x) as x varies is 0 and occurs when β = 0, z± = p±,
and x = fm(y). Indeed, if x ≈ fm(y) then one can check that β ≈ (x − fm(y))/gm(y)
and t(y, x) ≈ (x − fm(y))2/2gm(y), which is what one would expect from the central
limit theorem. For x > fm(y) we have β > 0, and so t(y, x) is strictly increasing in x.
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Similarly, if x < fm(y) then t(y, x) is strictly decreasing in x. Finally, ∂β
∂z±

≥ 2, so
∂β
∂x

≥ 2 and thus by (2.12), t(y, x) ≥ (x−fm(y))2. Hence for any ε > 0 there is a δ > 0,
independent of x and y, such that

t(y, x) < δ ⇒ |x − fm(y)| < ε. (2.13)

The construction of λ(x) is given in the proof of Theorem 2.2 below, however we
note that λ(x) satisfies

λ(x) = inf
y
{λ(y) + t(y, x)}, inf

x
λ(x) = 0. (2.14)

Unfortunately, (2.14) alone does not quite specify λ(x), so we need to be a bit more
careful in its definition.

Proof of Theorem 2.2. We prove Theorem 2.2 in several steps.

Step 1. Approximate the log of the distribution at finite time.
Let N be large and consider the distribution µx0,i of the density of the mean field

model after i steps starting with density x0. The distribution µx0,i is given by

µx0,i(x) =











1 i = 0, x = x0;

0 i = 0, x 6= x0;
∑

y µx0,i−1(y)P(ρt+1 = x | ρt = y) i > 0.

where the sum is over y = r/N . By Corollary 2.4

log µx0,i(x) = log
∑

y=r/N exp{log µx0,i−1(y) − Nt(y, x) + O(log N)},

where the constant implicit in the O(logN) term depends only on the functions f±
m,

and is independent of x, y, x0, and i. There are only N + 1 values of y, so we can, by
the addition of another O(logN) term, write this as

log µx0,i(x) = sup
y=r/N

{log µx0,i−1(y) − Nt(y, x) + O(log N)}.

Extend the definition of µx0,i(x) to arbitrary x ∈ [0, 1] by, for example, linear inter-
polation of log µx0,i between x = s/N and x = (s + 1)/N . Since t(y, x) is uniformly
continuous in both x and y, we can extend the supremum over all y ∈ [0, 1] to get

log µx0,i(x) = sup
y∈[0,1]

{log µx0,i−1(y) − Nt(y, x) + o(N)},

where the o(N) term is bounded independently of x, x0, and i.
Define for each x0 ∈ [0, 1] and i ≥ 0 the function λx0,i inductively so that

λx0,i(x) =











0 i = 0, x = x0;

+∞ i = 0, x 6= x0;

infy∈[0,1]{λx0,i−1(y) + t(y, x)} i > 0.

(2.15)

Note that λx0,i is independent of N , and is continuous in x and x0 for i > 0.
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Since log µx0,0(x) = −Nλx0,0(x), we have by induction,

log µx0,i(x) = −Nλx0,i(x) + o(iN). (2.16)

Unfortunately, one cannot just take the limit as i → ∞ in (2.16) to obtain the station-
ary distribution. Indeed, although µx0,i tends to a limit which is independent of x0,
the limit of the λx0,i does depend on x0. The problem is that there may exist long lived
metastable states at certain densities, so that the convergence of µx0,i to the stationary
distribution is very slow (see Theorem 3.1). The o(iN) error term is then too large for
(2.16) to be useful. Instead, we shall piece together λ(x) from the limits of λx0,i for
various different values of x0.

Step 2. Prove λx0,i(x) converges as i → ∞.
Assume x0 is a fixed point of fm, so fm(x0) = x0 and t(x0, x0) = 0. Then λx0,1(x) ≤

λx0,0(x) for all x, so by induction on i, λx0,i(x) is monotonically decreasing in i. Since
it is also bounded below (by 0), it tends pointwise to a limit λx0

(x) and

λx0
(x) = inf

y∈[0,1]
{λx0

(y) + t(y, x)}. (2.17)

Since t(y, x) is continuous in x, uniformly in y, any solution of (2.17) is continuous.
Also, as λx0,i(x) decreases monotonically to a continuous function on the compact set
[0, 1], this convergence must be uniform in x.

Now assume x0 is not a fixed point, but x is. By considering y = x in (2.15), we
see that λx0,i(x) is monotonically decreasing in i for this particular x (however it will
generally not be decreasing at other points). The limit λx0

(x) is therefore also defined
for all fixed points x and arbitrary x0. Define λ′

x0
(x) for all x, x0 ∈ [0, 1] by

λ′
x0

(x) = min
fm(y)=y

{λy(x) + λx0
(y)}.

By (2.15) and induction on i, λx0,i(x) is just the minimum over all sequences x0 =

y0, y1, y2, . . . , yi = x of
∑i−1

j=0 t(yj , yj+1). From this it can be deduced in general that

λx0,i+j(x) ≤ λy,i(x) + λx0,j(y).

Hence lim supi λx0,i(x) ≤ λ′
x0

(x). It remains to show that lim infi λx0,i(x) ≥ λ′
x0

(x)
since then λx0,i(x) will converge to λx0

(x) = λ′
x0

(x) for all x and x0.
Fix x and ε > 0, and assume i is large. Pick x0 = y0, y1, y2, . . . , yi = x so that

λx0,i(x) =
∑i−1

j=0 t(yj, yj+1). Suppose that |fm(yj) − yj| ≥ 3ε for all j = 1, . . . , i − 1.

Since λx0,i(x) is bounded, and by (2.13), if i is sufficiently large then |fm(yj)−yj+1| < ε
for all but at most k = εi− 2 values of j. In particular, there must be a sequence of at
least i−1

k+1
−1 ≥ 1/ε−1 consecutive values of j, 0 < j < i, for which |fm(yj)−yj+1| < ε.

Without loss of generality, we may suppose fm(yj) ≥ yj and hence fm(yj) − yj ≥ 3ε
for the first such j. Then yj+1 > yj + 2ε and so fm(yj+1)− yj+1 ≥ fm(yj)− yj+1 > −ε
by monotonicity of fm. Since |fm(yj+1) − yj+1| ≥ 3ε we have fm(yj+1) − yj+1 ≥ 3ε,
and so by induction, yj+1 > yj + 2ε for each j in the sequence. Thus we obtain a
sequence of yj of length 1/ε, each more than 2ε larger than the last. This is clearly
impossible in [0, 1], so there must be some yj, 0 < j < i, with |fm(yj) − yj| < 3ε.
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Hence, provided ε is small enough, some such yj is close to a fixed point y. But then
λx0,i(x) = λyj ,i−j(x)+λx0,j(yj) is close to λy,i−j(x)+λx0,j(y) ≥ λy(x)+λx0

(y) ≥ λ′
x0

(x),
and we are done.

Thus λx0,i(x) converges uniformly in (x, x0) to a continuous function λx0
(x), which

is the minimum of some expressions of the form λy(x) + ky where fm(y) = y and
ky = λx0

(y) are constants depending on x0.

Step 3. Approximate the stationary distribution.
Fix ε > 0. Then there is an M such that |λx0,M(x) − λx0

(x)| < ε for all x0 and x.
Hence, for sufficiently large N , (2.16) implies

∣

∣

∣

log µx0,M (x)

N
+ λx0

(x)
∣

∣

∣
< 2ε.

If µ is the stationary distribution of the mean field model, then we have µ(x) =
∑

x0
µ(x0)µx0,M(x). Hence

∣

∣

∣

log µ(x)
N

+ λ(N)(x)
∣

∣

∣
< 3ε,

where λ(N)(x) = infx0
{λx0

(x)− log µ(x0)/N} (once again approximating a log of a sum
by an supremum). Since λx0

(x) can be written in terms of λy(x) where fm(y) = y, we
can write

λ(N)(x) = min
fm(y)=y

{λy(x) + k(N)
y }. (2.18)

The choice of constants k
(N)
y corresponds to a point in R

k where k is the (finite)
number of fixed points of fm. Indeed, we can clearly take this point in the bounded
region [0, K]k where K = supx,y t(y, x). Hence as N → ∞ there will be accumulation
points (ky) and functions

λ(x) = min
fm(y)=y

{λy(x) + ky} (2.19)

such that µ(x) = exp(−Nλ(x) + o(N)) for infinitely many N . We shall fix some in-

creasing sequence Ni for which k
(Ni)
y → ky. We shall show that we can determine

ky uniquely, thus showing that there is only one accumulation point and µ(x) =
exp(−Nλ(x) + o(N)) for all N .

Step 4. Balancing conditions.
We now find relationships between the ky. Fix some fixed point x0 of fm and

consider λx0,i(x). We shall show by induction on i that λx0,i(x) is increasing for x > x0.
Recall that λx0,i(x) ≤ λx0,i−1(x), and by (2.15), λx0,i(x) ≤ λx0,i−1(y0) where fm(y0) = x.
Set x̃ = min{x, y0} so that λx0,i(x) ≤ λx0,i−1(x̃). Suppose x′ > x and λx0,i(x

′) <
λx0,i(x). Then since λx0,i−1(y) is assumed to be increasing for y ≥ x̃ > x0, the infimum
in (2.15) for x′ must occur at some y′ < x̃. But t(y′, z) is strictly increasing for
z > fm(y′) and fm(y′) ≤ fm(x̃) ≤ x. Thus t(y′, x′) > t(y′, x), and the infimum in
(2.15) is smaller for x than for x′, a contradiction. Hence λx0,i(x) is increasing for
x > x0. Taking limits, we see that λx0

(x) is increasing for x > x0. Similarly λx0,i(x) is
decreasing for x < x0.
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Figure 1. x0 lying between stable (s) and unstable (u) fixed points.
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Figure 2. Unstable x0 lying between stable points s, s′.

We can in fact say more. If x > x0 and fm(x) < x′ < x then by (2.17), λx0
(x) −

λx0
(x′) ≥ infy≤x(t(y, x) − t(y, x′)) > 0. Thus λx0

(x) is strictly increasing on intervals
where fm(x) < x. Conversely, if x < fm(x) then λx0

(x) ≤ λx0
(fm(x)) ≤ λx0

(x) and so
λx0

(x) is locally constant. Similarly, if x < x0 then λx0
(x) is strictly decreasing with

increasing x when fm(x) > x, and locally constant when fm(x) < x.
If f(x0) = x0, then x0 is a stable fixed point if f(x) − x changes from positive to

negative as x increases, and is an unstable fixed point if f(x)−x changes from negative
to positive. If f(x)−x does not change sign, we shall call x0 an indifferent fixed point.

Suppose that x0 is an indifferent fixed point and consider the mean field model
for large N which is initially in a state with distribution given approximately by
exp{−Nλx0

(x)}. If fm(x) ≤ x near x = x0 then we shall show that as t increases,
there will a net ‘flow’ from the region (x0 − ε, 1] to [0, x0 − ε), i.e., the probability that
ρt lies in [0, x0 − ε) will increase as t increases. Let s be the largest stable fixed point
less than x0, i.e., s = sup{x ∈ [0, x0] : fm(x) > x}. Then λx0

(x) = 0 iff x ∈ [s, x0]
(see Figure 1). Hence, if N is large, the distribution is concentrated almost entirely in
[s, x0]. Pick ε > 0 so that there is no fixed point in [x0 − ε, x0). For some points x just
below x0−ε, the expression λx0

(y)+ t(y, x) is minimized for some y = f−1
m (x) > x0−ε.

However, for x ≥ x0 − ε, λx0
(y) + t(y, x) is bounded below by some positive constant

for y ≤ x0 − ε, so there is no equivalent matching flow back across x0 − ε. Hence
this cannot be the stationary distribution. In the real stationary distribution, there
must be a counter flow given in λ(x) by some λx1

(x) + kx1
at x = x0. For this to

be sufficient for all Ni and all ε > 0 we need λx1
(x0) + kx1

≤ λx0
(x0) + kx0

= kx0
.

However, λx1
(x) ≤ λx1

(x0) + λx0
(x), so λx1

(x) + kx1
≤ λx0

(x) + kx0
for all x. Hence

the λx0
(x) + kx0

term is redundant in (2.19). A similar argument holds if fm(x) ≥ x
near x = x0.
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Figure 3. Stable y, y′ and unstable u, x0.

Now assume x0 is an unstable fixed point of fm(x) (see Figure 2). Using a similar
argument to above, there will be a net drift out of the region (x0−ε, x0+ε) since for x 6=
x0 the the expression λx0

(y)+t(y, x) is only minimized for |y−x0| < |x−x0|. To counter
this flow in the stationary distribution we must have λx1

(x0) + kx1
≤ λx0

(x0) + kx0
for

some fixed point x1 6= x0. But then as before, λx1
(x) + kx1

≤ λx0
(x) + kx0

and the
λx0

(x) + kx0
term in (2.19) can be removed.

Inductively removing all redundant y’s from the minimum in (2.19), we can assume
the only contributing expressions occur from stable fixed points. (Note that the x1

in both the cases above can always be chosen to be a fixed point that has not been
eliminated so far).

Now consider an unstable fixed point x0. If the value of λ(x0) is given by λy(x0)+ky

where y is a stable point with y < x0, then as before we see that there is a leftward
flux near x0 (see Figure 3). To counter this we must have a term λy′(x) + ky′ with
y′ a stable fixed point y′ > x0 and λy′(x0) + ky′ ≥ λy(x0) + ky. By symmetry, we see
that the minimum in (2.19) must be attained for at least one stable fixed point y with
y < x0, and at least one stable fixed point y with y > x0.

Let s1 < s2 < · · · < sr be the stable fixed points and u1 < · · · < ur−1 the unstable
fixed points of fm(x). Then

0 < s1 < u1 < s2 < · · · < ur−1 < sr < 1.

Since at ui the minimum λ(x) = miny{λy(x) + ky} occurs for some y ≥ si+1 and some
y ≤ si, we see that on the interval (si, ui), λ(x) = miny≤si

{λy(x) + ky}, and so is
strictly increasing, and on (ui, si+1), λ(x) = miny≥si+1

{λy(x) + ky}, and so is strictly
decreasing. For each i, the sequence of values ai,j = λsi

(uj) satisfies ai,1 > · · · > ai,i−1

and ai,i < · · · < ai,r−1. Theorem 2.2 now follows from the uniqueness result in the
following lemma, together with the fact that infx λ(x) must be zero. �

Lemma 2.5. Assume ai,j ∈ R, i = 1, . . . , r, j = 1, . . . , r−1, and for all i, ai,1 > · · · >
ai,i−1 and ai,i < · · · < ai,r−1. Then there exist ki ∈ R so that, setting bi,j = ai,j + ki,
for each j there are integers i0 ≤ j < i1 such that

min
i

bi,j = bi0,j = bi1,j. (2.20)

Moreover, the ki are unique up to the addition of a constant c, independent of i.
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Proof. For r = 2 the result is trivial, so we shall assume r > 2 and prove the result
by induction on r. First we note that if there is any solution then there is a solution
with all ki ∈ [0, K] where K =

∑

j(maxi ai,j − mini ai,j). Moreover, if we weaken
the inequalities to ai,1 ≥ · · · ≥ ai,i−1 and ai,i ≤ · · · ≤ ai,r−1, then the set of points
((ai,j), (ki)) ∈ R

3r−1 for which (ki) is such a solution is closed. Hence it is enough to
prove existence for a dense set of (ai,j).

We consider the case when all the ai,j are rational numbers. Exclude all (ai,j) for
which there exists a cycle, i.e., distinct j0, . . . , js−1 and distinct i0, . . . , is−1 such that
∑s−1

t=0 (ait,jt
− ait+1,jt

) = 0 (where is = i0 and js = j0). This can be done inductively
in j, modifying the ai,j slightly so that none of the differences ai,j − ai′,j are equal to
the finite set of possible sums of differences with smaller j’s. The set of all possible
(ai,j) is still dense in the appropriate region of R

2r−1. Now by linearity it is enough to
prove the result when the ai,j are integers.

We first prove the existence of the ki without the restriction that i0 ≤ j < i1. In
other words, we need to choose ki so that for each j there are (at least) two values of i
minimizing bi,j = ai,j + ki. Initially set all the ki = 0. For each j let Sj be the set of i
such that bi,j = minl bl,j and consider the number s of ‘bad’ j’s for which |Sj| = 1. If
s = 0 then we are done. Otherwise pick a bad j, say j0, with Sj0 = {i0}. Define a
(multi-)graph G on the vertices {1, . . . , r} with edges i′i′′ whenever there is a j such
that Sj = {i′, i′′}. Clearly G has at most r − 1 − s edges, so is disconnected. Also G
contains no cycle, since otherwise there would exist j0, . . . , js = j0 and i0, . . . , is = i0
with Sjt

= {it, it+1} and hence
∑

t(ait,jt
− ait+1,jt

) =
∑

t(bit,jt
− bit+1,jt

) = 0. Indeed, if
{i′, i′′} ⊆ Sj there cannot be any path from i′ to i′′ in G avoiding the edge given by Sj

(if it exists). Thus, for each j, either every element of Sj is in a distinct component
of G, or Sj = {i′, i′′} and i′i′′ is an edge of G whose removal increases the number of
components in G.

Now increase ki by 1 for all i in the component of i0. If |Sj| = 2 then either both or
neither ki, i ∈ Sj, is increased, so Sj is a subset of the new Sj defined by the updated ki.
If |Sj| > 2 then ki is increased for at most one i ∈ Sj , so the new Sj loses at most one
element. Hence the number of bad j does not increase. The value of bi0,j0 increases
by 1, but not all bi,j0 increase, so the average of the bi,j0 increases by less than 1. Hence
if we repeat this process, eventually bi0,j0 will no longer be the unique minimal bi,j0 and
when this occurs, the two smallest values of bi,j0 will become equal. Thus s reduces
and the result now follows by induction on s.

We shall now show that this solution satisfies the extra condition that for each j,
min bi,j = bi0,j = bi1,j with i0 ≤ j < i1. Without loss of generality we can (by adding
ki to ai,j) assume ki = 0 and bi,j = ai,j .

Pick j0 with a minimal value of mini ai,j0 and suppose this minimum occurs at i = i0.
Thus ai0,j0 is the minimum ai,j over all i and j. Now by the inequalities on ai,j we get
ai0,i0 < · · · < ai0,j0 if i0 < j0 and ai0,j0 > · · · > ai0,i0−1 if i0 > j0 + 1. These contradict
the minimality of ai0,j0. Hence i0 = j0 or i0 = j0 + 1. Since there must be at least two
minimal ai,j0, we get aj0,j0 = aj0+1,j0 = mini ai,j0. Thus the result holds for j = j0.



12 P. BALISTER, B. BOLLOBÁS, AND R. KOZMA

Now for each j, replace aj0,j with min{aj0,j, aj0+1,j} and remove the row i = j0 + 1
and column j = j0 from the matrix ai,j. The new matrix satisfies the conditions of
the lemma with r replaced with r − 1. The cycle condition

∑

t(ait,jt
− ait+1,jt

) 6= 0
still holds for the new matrix. Indeed, if a cycle occurred in the new matrix, then one
would obtain a cycle in the original unless some jt = j0 and the terms ait,jt

and ait+1,jt

in the new matrix come from distinct columns j0 and j0 + 1 in the original matrix.
However, since aj0,j0 = aj0,j0+1 and row j0 was deleted in the new matrix, we can use,
e.g., ait,j0 − ait+1,j0+1 = (ait,j0 − aj0,j0) + (aj0,j0+1 − ait+1,j0+1) to extend the cycle to a
cycle in the original matrix.

By the cycle condition in the original matrix with j0 = j0, j1 = j, and i0 = j0,
i1 = j0 + 1, we have aj0,j 6= aj0+1,j for all j 6= j0. Hence ki = 0 is still a solution
to (2.20), since the number of i for which bi,j0 is minimal is not reduced when we
combined rows j0 and j0 + 1. Now by induction on r we have mini ai,j = ai0,j = ai1,j

with i0 ≤ j < i1 and this implies the same result for the original matrix when j 6= j0.
Finally, we need to show that for arbitrary ai,j the solution is unique. Suppose

without loss of generality ki = 0 is one solution and there is one other solution (k′
i)

r
i=1.

By adding a constant to all k′
i we can assume that min k′

i = 0. Let S = {i : k′
i > 0}

and set k′′
i = ε if i ∈ S and k′′

i = 0 if i /∈ S. We assume ε is smaller than any positive
k′

i so that k′′
i ≤ k′

i for all i. Defining Sj = {i : ai,j = minl al,j} as above, the fact that
k′

i is a solution implies that Sj \ S is either empty, or contains i0, i1 with i0 ≤ j < i1.
Thus k′′

i is also a solution with the same Sj when Sj \ S = ∅ and Sj \ S otherwise.
Pick a minimal ai,j and call it ai0,j0. As above, i0 ∈ Sj0 = {j0, j0 +1}. Clearly j0 ∈ S

iff j0+1 ∈ S. Hence the reduction combining rows j0 and j0+1 and eliminating column
j0 described above gives a new matrix with solutions k′′

i which are ε for some i, and
0 for some other i. Note that this is indeed a solution, since if combining rows j0 and
j0+1 reduces the number of minimal values of ai,j +k′′

i for i 6= j0, then it must combine
two minimal values with j < i or two minimal values with j ≥ i. Since there must be
at least one minimal value with j < i and one with j ≥ i, this solution still satisfies
the requirements of the lemma for the reduced matrix. In particular, the solution for
the reduced matrix is not unique (since we can vary ε and ∅ 6= S 6= {1, . . . , r}). By
induction on r this is impossible, hence the original solution was unique up to the
addition of a constant. �

3. Consequences of Theorem 2.2

One consequence of Theorem 2.2 is that the expected time to jump from one stable
fixed point of fm to another is always exponential in N .

Theorem 3.1. Assume the same conditions as in Theorem 2.2 and let x0, x1 be two
distinct stable fixed points of fm. For sufficiently small ε > 0, the expected time to hit
some density in [x1 − ε, x1 + ε] starting with any density in [x0 − ε, x0 + ε] is bounded
above and below by functions of the form exp(cN).

Proof. For the upper bound, note that the probability of jumping from anywhere to
[x1−ε, x1+ε] in one step is bounded below by exp(−cN+o(N)) when c = supx,y t(y, x).
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Hence the expected time to hit [x1−ε, x1 +ε] is at most exp(cN +o(N)). For the lower
bound we show that the expected time to leave I = [x0−3ε, x0+3ε] is exponential in N ,
where we assume that ε sufficiently small so that for each point x ∈ I, |fm(x) − x0| ≤
|x− x0|. To see this, observe that the probability of jumping in one step to a point at
least ε further away from x0 is bounded above by exp(−Nδ + o(N)), where δ > 0 is
chosen so that (2.13) holds. On the other hand, the expected time to leave by passing
through a point in I ′ = [x0−3ε, x0−2ε]∪[x0+2ε, x0+3ε] starting in I ′′ = [x0−ε, x0+ε]
is at most exp(cN + o(N)) where c = infx∈I′,y∈I′′(λ(x) − λ(y)) > 0. �

Theorem 3.1 implies that if x is a stable fixed point of fm and λ(x) > 0, then the
density x is a metastable state for the model, i.e., the model once in this state will
stay there for a very long time, even though in the stationary distribution, the density
x occurs with very small probability. Indeed, it was the existence of these metastable
states that made the proof of Theorem 2.2 so complicated.

Theorem 2.2 holds also for asynchronous models. In this case the function λ can be
defined more simply as

λ(x) =

∫

log
(

x(1−f+
m(x))

(1−x)f−
m(x)

)

dx

with the constant of integration chosen so that infx∈[0,1] λ(x) = 0. Here the f±
m are

defined as those for an approximating simultaneous model (1.1), the expression x(1−f+
m)

(1−x)f−
m

being independent of ε. The proof of this result is significantly simpler that that of
Theorem 2.2, so we shall not include the details here. It can be proved by noting that
in the asynchronous model, the number of + states can change by only 1 at a time, so
in the stationary distribution µ(x), the frequency of transitions from density r/N to
(r + 1)/N must match the frequency of transitions from (r + 1)/N to r/N .

As the parameters pφ vary, one can obtain several types of phase transition. The
simplest examples are due to changes in fm. As fm changes we can obtain bifurcations
of the stable fixed points, formation of limit cycles, and even transitions to chaos. For
example, define a totalistic model with |Γ| = n odd and a simple majority rule

pr =

{

p + h, r < n/2;

1 − p + h, r > n/2.
(3.1)

Assume first that h = 0 so that the model is symmetric. For small p we have two
stable states and one unstable state, while for p close to 0.5 we obtain only one stable
state. There is a second order phase change at a critical point, which occurs when
f ′

m(0.5) = 1. It can be shown that at this point

p = pcrit =
1

2
−

2n−2

n
(

n
0

)

+ (n − 2)
(

n
1

)

+ · · ·+ 1
(

n
(n−1)/2

)

=
1

2
−

2n−2

n
(

n−1
(n−1)/2

) =
1

2
− O(n−1/2). (3.2)
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We also have transitions where the preferred fixed points or cycles change. For
example, if in the above model we fixed p < pcrit, then by varying h we can obtain a
first order phase transition at h = 0.
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Surprisingly, these first order transitions can occur in semi-totalistic models even
with fm fixed, for we can vary p±r in such a way that fm remains constant but f±

m (and
hence λ(x)) varies.

Another example of strange behavior is given by the following example. For large
|Γ| we can choose the rules so as to make fm and gm approximate any continuous
functions satisfying fm(x) ∈ [0, 1], h(x)|fm(x) − x| < gm(x) ≤ fm(x)(1 − fm(x)),
where h(x) = max{fm/x, (1 − fm)/(1 − x)}. (For the upper bound on gm choose
f+

m = f−
m = fm, for the lower set either f+

m near to 1 or f−
m near to 0.) Choose fm so

that there are three stable fixed points x1 < x2 < x3, with gm(x1) much smaller than
gm(x2) and gm(x3), and such that λ(x1) = λ(x2) = λ(x3) = 0. This can be achieved by
making fm(x) very close to x so that there is a wide range of values available for gm.
In this case it is possible that there is a greater chance of jumping from x1 to x3 than
from x2 to x3. Figure 4 shows λ(x) (thick line), as well as λx1

(x1)+ t(x1, x) (thin line).
This second expression gives the contribution to the infimum in equation (2.14) from
y = x1 and corresponds to the chance of jumping in one step from x1 to x. The points
u and u′ are unstable fixed points. We see that for x > w the chances are greater of
jumping from x1 to x in a single step are greater than the chances of getting from x2

to x without going via x1. Moreover, the function λ(x) is not differentiable at x = w,
despite the fact that f±

m(x) are smooth (polynomial) functions of x.
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Graph of fm(x) Model on 256 × 256 torus

p0 = 3
4

= 1 − p5, p1 = p2 = 1
256

= 1 − p3 = 1 − p4.

Figure 5. Symmetric totalistic model with non-isotropic phases.

4. Contrast with lattice models

Our real interest lies in random cellular automata on Z
d rather than the mean

field models. So one question is how well the mean field models approximate the
corresponding random automaton. Since the mean field model is equivalent to that
of an semi-totalistic model, the best we could hope for is that it approximates these
models. However, even totalistic models can exhibit behavior that is much richer than
that of the mean field models.

For example, take the symmetric totalistic model with p0 = 3
4
, p1 = p2 = 1

256
.

Figure 5 shows fm and a typical state of this model on the 256× 256 torus after a few
thousand iterations. From the graph it is clear that fm has two stable fixed points and
an unstable fixed point at x = 0.5. Thus the mean field model will have two phases,
one of low density and the other of high density. The automaton does show distinct
phases, but they all have densities of 0.5. Indeed there seem to be several phases,
none of which are isotropic. This is an example of spontaneous symmetry breaking
— the model is symmetric under interchange of coordinates, but some phases consist
of horizontal lines and some phases consist of vertical lines. The lines are of width
two, so for each orientation there is a choice of alignment modulo 4 in the vertical or
horizontal direction, giving 8 possible phases in this model.

For other parameters, symmetric totalistic models often have behavior similar to the
Ising model. This is no coincidence, since the Ising model can be represented as the
stationary distribution of the asynchronous automaton with rates rφ = rφ,−φ(0) given
by

rφ = exp(2K|{x : φ(x) 6= φ(0)}| − φ(0)H) (4.1)

where K is the inverse temperature and H is the magnetization (see [5]).
For an example, consider the symmetric totalistic model (3.1) with n = 5, h = 0.

For the mean field model (3.2) gives pcrit = 7
30

≈ 0.233, so this has one fixed point at

x = 0.5 for p ∈ [ 7
30

, 1
2
], but for p < 7

30
the fixed point x = 0.5 is unstable and there are

two other fixed points which are stable.
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Figure 6. Symmetric totalistic model near phase transition. Graph
(A) represents the mean field model, (B) the synchronous model, (C)
the asynchronous model. Snapshots are given for the synchronous model
with p slightly below and slightly above the critical value.

The probabilistic automaton on Z
2 with Γ = {(±1, 0), (0,±1), (0, 0)} behaves qual-

itatively similarly, except that the critical probability is significantly lower at about
pc ≈ 0.134. For pc < p ≤ 0.5 it appears that the stationary density distribution of xt

for a sufficiently large but finite lattice is unimodal with peak at p = 0.5. For p < pc

the distribution becomes bimodal, as one would expect from the mean field model,
and there are two phases in the infinite lattice, one with high density and one with
low density. The corresponding asynchronous model behaves similarly, except that the
critical probability is even lower, at about pc ≈ 0.085 (see Figure 6).

Both of these models have behavior similar to that of the Ising model. In particular,
if the modal density is plotted as a function of p, we see a bifurcation at pc and the
modal densities near pc behave as |ρ − 0.5| ∼ (pc − p)β. Numerical evidence suggests
that the critical exponent β is close to that of the Ising model (β = 1

8
), and is different

from that of the mean field model (for which β = 1
2
). Other critical exponents for

these models appear to match those of the Ising model, supporting the universality
hypothesis that critical exponents are exactly the same for large classes of similar
models. This is in contrast to the results of [24] where different critical exponents were
found in a model based on coupled chaotic maps.

In other models different types of phase transition can occur. We have seen above
that a symmetry breaking phase transition can occur in some models. There are also
semi-totalistic models where for values of pφ close to zero or one the model seems
chaotic, but the introduction of more randomness causes a phase transition to a more
ordered phase.

We are lead to the question of what type of phase transition are possible and what are
the values of the critical exponents for these transitions as we change the parameters pφ.
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[9] H. Chaté, A. Lemaitre, Ph. Marcq, P. Manneville, Non-trivial collective behavior in extensively

chaotic dynamical systems: an update. Physica A, 224 (1996) 447–457.
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