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Abstract

A graph is Ramsey unsaturated if there exists a proper supergraph of the same
order with the same Ramsey number, and Ramsey saturated otherwise. We present
some conjectures and results concerning both Ramsey saturated and unsaturated
graphs. In particular, we show that cycles C),, and paths P, on n vertices are Ramsey
unsaturated for all n > 5.

1 Results and Conjectures

Throughout this article, 7(G, H) will denote the Ramsey number of a pair of graphs (G, H),
i.e., the minimum n such that in any coloring of the edges of K, with colors red and blue,
we either obtain a red subgraph isomorphic to G, or a blue subgraph isomorphic to H.
When G = H the notation is reduced to r(G).

For years there has been interest in how the Ramsey number of the complete graph grows
as its order increases. A favorite question of Erdés (personal communication) was whether
one can show that the difference between two consecutive Ramsey numbers is at least
quadratic, i.e., whether r(K, 1) —r(K,) > cn? for some positive constant ¢. Since Kim [9]

has shown that there is a constant ¢; such that r(K,, K3) > f;g"z it is easy to show

r(Knpo) — 7(K,) > 22 Concerning the question of Erdds, the best that is presently

— logn-
known is that the difference of consecutive Ramsey numbers is at least linear [2].

In this paper another growth question is addressed but of a different nature. Given a graph
@, is there a nontrivial supergraph of the same order with the same Ramsey number? Also
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Figure 1: All Ramsey saturated graphs with < 5 vertices and their Ramsey numbers.

there is interest in such edge maximal graphs; graphs in which each nontrivial supergraph
of the same order has a larger Ramsey number than the graph itself. This motivates the
following definitions.

Definition 1. A graph G on n vertices is said to be Ramsey unsaturated if there ewists
an edge e € E(G) such that v(G +e) = r(G). The graph G is Ramsey saturated if
(G +e) > r(G) for all e € E(G), i.e., if G is not unsaturated.

It is well known [11] that r(K,) — r(K, —e) > 0, e an edge of K,, for 3 < n < 6,
with this difference increasing on this interval. Strangely enough, it is not known whether
r(K,) —r(K, —e) > 0 for n > 7. Surely this must be the case, namely, that K, — e is
Ramsey saturated for all n > 3. This leads to an even stronger conjecture.

Conjecture 1. For any C > 0 there exists ng = no(C) such that if n > ng and H is a
collection of edges from K, with |H| < C, then K, —H is Ramsey saturated. In particular,
K,, — e is Ramsey saturated for large n.

It is thought that most graphs are Ramsey unsaturated, since most graphs have around
one half of the number of possible edges, leaving many choices for an additional edge, one
of which could leave the Ramsey number unchanged. This then gives a second conjecture.

Conjecture 2. Almost all graphs are Ramsey unsaturated.

For small n we note that 2 out of the 4 graphs on three vertices, 8 out of the 11 graphs
on four vertices, and 15 out of the 34 graphs on five vertices are saturated (see Figure 1
and [8]).

The first place to look for unsaturated graphs is in a family of graphs that have few (at
most a linear number) of edges, and for which the Ramsey numbers are known. One such
family is the collection of cycles and paths.

Cycles are particularly interesting. Given a cycle C,, on n vertices call xy a k-chord if
the distance between x and y on C,, is k. Consider first a fixed £k with 1 < k < 7 and k
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relatively prime to n. Note the k-chords of C), form another cycle of order n on the vertices
of Cy,. Let C,, (k) be the cycle formed from the k-chords of C},. One wishes to check whether
r(Cy +k-chord) = r(C,,). Assume 7(C,, + k-chord) > r(C,,) and give K, (¢,) a red-blue edge
coloring containing no monochromatic C,, + k-chord. Without loss of generality assume
this coloring contains a red C,,. Now each k-chord of this red C, = C,(1) must be blue,
i.e., Cpn(k) is blue. Likewise C, (k") is red for all even 4, and blue for all odd i (we take
k' modulo n and identify (n — k)-chords with k-chords). It is therefore apparent that
k' # 41 mod n for all odd i. Otherwise, C, (k') = C,(1) would need to both red and blue.
This gives the following theorem.

Theorem 1. Let n and k be integers with n > 5, 1 <k < 3, and ged(k,n) = 1. If there

is an odd i > 0 such that k' = +1 mod n then r(C,, + k-chord) = r(C,,). O

Using Theorem 1 we can now show that C), is Ramsey unsaturated for most values of n.
Let Z) denote the multiplicative group of integers mod n that are relatively prime to n.
Then |Z)| = ¢(n), the Euler phi function. If ¢(n) is not a power of 2, it must be divisible
by an odd prime p. However, in this case, Z) must contain an element & # £1 of odd
order (consider any nontrivial element of a p-Sylow subgroup of Z)). Considering either
k or (n — k)-chords and applying Theorem 1 gives the following.

Theorem 2. If n > 5 and ¢(n) is not a power of 2, then C,, is Ramsey unsaturated. [

If ¢(n) is a power of 2, then n must be of the form n = 2"p; ... ps where p; = 22 41 are
distinct Fermat primes. The only known Fermat primes are 3, 5, 17, 257, and 65537, so
there are very few exceptional values of n for which we cannot apply Theorem 2.

The reader should observe that the arguments just given showing most cycles are unsat-
urated have only used the existence of a monochromatic cycle together with elementary
number theoretic arguments on the order of the cycle. One can prove even more using sim-
ilar techniques when the length of the chord added to the cycle is specified. The following
theorem will be proved in the next section.

Theorem 3. C, is Ramsey unsaturated for all n > 5, while Cy is Ramsey saturated.

More is expected to be true as is indicated by the following conjecture.

Conjecture 3. r(C,, + k-chord) = r(C,,) provided n and k are not both even.

One could say, if this conjecture is true, that for odd n, C, is strongly Ramsey unsaturated,
that is, the Ramsey number is unchanged when adding any edge from the complement.
The results of Section 2 show that Conjecture 3 is true when n is a prime of the form
4q + 3.
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Figure 2: All Ramsey saturated supergraphs G of C,, with r(G) = r(C,,) for n < 8.

It should be noted that something much stronger than Theorem 3 should be true for large
order cycles. One would expect to be able to add more than one edge to the cycle without
increasing the Ramsey number. This has been checked by computer for C; and Cg. For
C7, any single chord can be added, and up to four specific chords can be added leaving
the Ramsey number unchanged. For Cys any combination of three 3-chords, and some
combinations of four 3-chords can be added. It would be nice to be able to show that any
constant number of edges can be added to a sufficiently large cycle without increasing its
Ramsey number.

Knowing the Ramsey number for even cycles and for paths makes it easy to show paths
of order at least 5 are Ramsey unsaturated. Since r(Ps,) = r(Cy,) = 3n — 1 forn > 3
(see [6] and [5], [12]), it follows that P, = (ai,...,as2,) together with an edge ajas,
appears monochromatically in any red-blue coloring of K3, ;. Hence paths of even order
at least 6 are unsaturated. Since r(Py,11) = 3n > 1r(Cy,) for n > 2, one may assume
the red-blue edge colored K3, contains a red Cy,. But either there is a red edge from
Cy, to the remaining n vertices of K3, or there is a blue Ky, ,. In either case, there is a
monochromatic graph consisting of Py,1 = (a1, ..., as,y1) with chord ajas,. Hence paths
of odd order at least 5 are also unsaturated, giving the following result.

Theorem 4. Paths of order n > 5 are Ramsey unsaturated. [

Note that P, is Ramsey saturated for n = 2, 3, and 4 (see Figure 1). Having considered
paths, what can be said about trees? For stars [3],

( ) 2n —3 forn odd, n > 3;
r(Ky, 1) =
ot 2n — 2 for n even, n > 2,

while it is easy to show r(K;,—1+e¢€) = 2n —1 for n > 4. Therefore all stars are saturated.
Stars seem to be the exception (as far as trees are concerned). The first test case would be
the star K ,,_» with one edge subdivided. Let S,, be the graph formed by joining the path
v102v to the central vertex v of the star with endvertices vs,...,v,-1. Further let S¢ be
the graph obtained from S,, by adding the edge v;v3. One can show (see Lemma 4) that

2n —5 for n even, n > 6;
2n —4 for n odd, n > 5,

r(Sn) =r(S;) = {
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so that S, is unsaturated. Therefore one might expect other non-star trees to be unsatu-
rated.

Conjecture 4. Every non-star tree of order n > 5 is Ramsey unsaturated.

It should be noted that if an edge e is added to a tree T}, on n vertices creating an odd cycle
then r(T,, + e) > 2n — 1. This follows from the red-blue edge coloring of Ky, 5 in which
one color class is K, ,—1. Further it was recently announced that M. Ajtai, T. Komlds,
and E. Szemerédi have proved (for n large) the Erdés-Sés conjecture [4] that every graph
of average degree larger than n — 2 contains all trees on n vertices. From this it easily
follows (look at the dominant color) that for large n the Ramsey number for any tree T,
satisfies 7(7},) < 2n — 2. Hence Conjecture 4 can be strengthened.

Conjecture 5. If T, is a non-star tree of order n > 5, then (T, + e) = r(T,) for each
edge e such that T}, + e is bipartite.

There are graphs with many edges that are Ramsey unsaturated. It is known that if a
graph G is formed from K, by adding a new vertex and joining it to precisely two vertices
of K, then r(G) = r(K,) for n large (see [2]). Hence the graph H formed by joining a
new vertex x to one vertex of K, makes H a Ramsey unsaturated graph. This is a graph
with many edges. Indeed, it misses only a linear number of edges.

Conjecture 6. The graph formed by joining a new vertex to a constant number of vertices
of K,, with n large, is unsaturated.

The next objective is to find a large collection of Ramsey saturated graphs on n vertices.
Earlier it was noted that

{Qn —5 for n even, n > 6;

r(S5,) =

2n —4 for n odd, n > 5.

This graph is bipartite with parts of order 2 and n — 2. To obtain a saturated graph
one may add edges from S¢ keeping the graph bipartite as long as possible so that the
Ramsey number of the resulting graph is the same as r(S%). When this is no longer
possible a Ramsey saturated graph is obtained because if any further edge is added then
an odd cycle emerges, thus increasing the Ramsey number to at least 2n — 1. Starting with
different subdivided stars of order n, the same procedure yields distinct Ramsey saturated
graphs as shown in the next theorem.

Theorem 5. For each n > 4 there exists at least L”T_QJ non-isomorphic bipartite Ramsey
saturated graphs.



Proof. For each fixed ¢ > 1 and n > 2¢ + 2, subdivide ¢ edges of a K;,_1_. yielding a
bipartite graph G with parts of size c+1andn—c—1>c+ 1.

To see that r(G) < 2n — 3, give Ko, 3 a red-blue edge coloring. Let z be an arbitrary
vertex of this colored graph and assume without loss of generality that x has a set A of red
neighbors with |A| =n — 2. Set B = V(Ko,-3 \ (AU {z})). If there is a red c-matching
from B to A then the colored K5, 3 has a red copy of GG. Suppose therefore that there is
no such red c-matching. By Konig, there is a subset S C A of vertices who between them
have at most k = |S| — (n—2) + (c— 1) red neighbors in B. Thus there is a blue K\g|,—2_.
But k>0so|S|>n—c—1>c+1l,andk<c—1,s0n—2—k>n—1—c Thus this
blue Kg|,—2— contains a blue K., ,_1—. and hence a blue copy of G.

Therefore, since any supergraph of G of order n containing an odd cycle has Ramsey
number at least 2n — 1, a bipartite Ramsey saturated graph will be obtained from G by
adding bipartite edges to G until any addition increases the Ramsey number. Since each
such graph is distinct for distinct values of ¢, this procedure will yield L”T’ZJ distinct non-
isomorphic bipartite Ramsey saturated graphs. It is worth noting that by probabilistic
arguments, 7(Ks,_2) > (4 — €)n, so that for large n

2n —3< T(KQ,n—c—l) S T(Kc—l—l,n—c—l)-

Hence these Ramsey saturated graphs are strictly smaller than K.i,-.—1, the maximal
bipartite supergraph of G ]

There should be a much larger family of Ramsey saturated graphs on n vertices than that
given in Theorem 5.

Conjecture 7. There exist constants ¢ > 0 and € > 0 such that at least cn'™€ of the
n-vertexr graphs are Ramsey saturated.

A book B, is a set of n triangles with a common edge, being otherwise disjoint. Also if one
adds an edge to a book it changes from a 3-chromatic graph to one that is 4-chromatic.
Since adding an edge to a star changes a 2-chromatic graph to one which is 3-chromatic,
and since that star is Ramsey saturated, it is natural to wonder if a book is also Ramsey
saturated. In [10] it is shown that this is far from being the case, namely, as many as cn?
appropriately selected edges may be added to B, without increasing the Ramsey number.

2 Proofs

In order to prove Theorem 3 first a lemma is needed.

Lemma 1. If n > 6, n # 8,10, 12,24, and if k is relatively prime to n with k* # £1 mod n
then r(C,, + k-chord) = r(C,,).



Proof. Suppose the result is false giving K, (c,) a red-blue coloring with no monochromatic
C, + k-chord. We may assume this coloring contains a red C,,. Since k is relatively prime
to n and C), has no red k-chord, the set of k-chords C, (k) forms a blue C,,. Likewise the set
of k-chords of this blue C,, (k) again forms a red C, = C,,(k?), different from the original
red C,, since k? # 41 mod n.

Set y = k? mod n and note that the above argument shows that any monochromatic C,,
has all its y-chords of the same color. The next objective is to show that a monochromatic
C,, (say a red one) has all odd length chords red as well. This is done inductively. Let the

red C,, = (ag, a1, ..., a,—1) and consider the two consecutive red chords a;a;+y, Qit1@i+y+1,
(all indices taken mod n). But then the 3-chord a; ja;i9 is red since it is a y-chord of
the red C), = (@41, Qivo,s - ., Qigy, iy Qi1, .. ., Qipy+1). Applying this argument for each i

shows that all 3-chords of (), are red. Now assume all (2j — 1)-chords are red in each
red C,,. Consider the two consecutive red (2j — 1)-chords a;a;19j—1, @;+1Gi+2; in the red
Cy = (ag, . ..,an—1). But then the (2j + 1)-chord a;_2a;42;_1 is red since it is a 3-chord in
the red C,, = (@j42j-1, @i, i1, - - -, Qis2j, Qit1, - - -, Gipoj—2). Therefore all (25 + 1)-chords of
any red C,, are red. Thus all odd chords are red in any red C,,.

But all k-chords are blue, so k is even. But then, since k is relatively prime to n, n must be
odd, implying that n — k is odd. Hence all (n — k)-chords are red, and since every k-chord
is an (n — k)-chord, a final contradiction is reached, completing the proof of the lemma.

It is easy to see that the only values of n where k? = 41 mod n for all k relatively prime
ton, n > 6, are n =8, 10, 12, and 24. O

We note that if n > 3 is a prime of the form 4¢q 4+ 3 then k is relatively prime to n and
k* # £1mod n for all k with 1 < k < 5. Thus any single chord can be added to C,
without increasing the Ramsey number.

Proof of Theorem 3. Now r(Cy) = 6 while r(Cy + 2-chord) = r(K4; —e) = 10, so Cj
is Ramsey saturated. Hence Theorem 3 will follow provided we can show that r(C, +
k-chord) = r(C,) for some value of k in each of the cases n = 5, 6, 8, 10, 12, and 24.
In each case we checked the result by computer. For n = 24 we found that all red-blue
colorings of K912 that contains a red Csy4 also contain both monochromatic Cyy 4 5-chords
and Cys+T7-chords. Hence, there is certainly no coloring of K, (c,,) that avoids these graphs.
Note that as in Lemma 1, one can construct a monochromatic C,, + k-chord using just the
vertices of a monochromatic C),. Unfortunately, this does not hold for the other values
of n. For n = 8, 10, and 12, one can check using a computer that any red-blue coloring
of K, 1 that contains a monochromatic C), also contains a monochromatic C,, + k-chord,
where k£ = 3, 3, and 5 respectively. In particular, only one more vertex in addition to the
vertices of the cycle needs to be considered. For n = 5 and 6, more than one additional
vertex is required in order to obtain a monochromatic C, + k-chord. In [7] Hendry has

shown that r(Cgs + 3-chord) = r(Cs) = 8, and in [8] that r(C5 + 2-chord) = r(C5) = 9.
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Figure 3: Cg + 3-chords

Although we do not have explicit proofs for n = 12 and n = 24, we shall give direct proofs
for the cases n = 8 (Lemma 2) and n = 10 (Lemma 3). O

Lemma 2.

r(Cs 4+ 3-chord) = r(Cg) = 11 .

Proof. Color the edges of Kj; red-blue. Then since r(Cs) = 11 (see [5] and [12]), we
may assume there is a red Cg(R) = (vg,v1,...,v7). We also assume that there is no
monochromatic Cg + 3-chord on these eight vertices, so in particular, the 3-chords of
Cs(R) form a blue cycle Cg(B) = (vg, v3, Vg, V1, Vs, U7, Vg, Us).

First we observe that no three red 2-chords are consecutive on Cs(R). Assuming on the
contrary that vovy, v1v3, vavg are red, (vg, U2, V1,3, . .., v7) would be a red Cg with the red
3-chord wyvy. The same is true for the blue 2-chords of Cs(B). Because every 2-chord of
Cs(B) is also a 2-chord of Cs(R), we obtain easily that after appropriate renumbering of
the vertices, the coloring of the 2-chords is one of the following two types. Either vgvs,
v1V3, V406, UsU7 are red and vovg, V107, Vav4, v3U5 are blue (Type I); or (vg, vg, vy, V) is a red
Cy and (vq,v3,vs,v7) is a blue Cy (Type II). Let « ¢ V(Cs(R)) be a new vertex. We can
assume without loss of generality that = has at least four red adjacencies to Cs(R). If no
two consecutive vertices on Cg(R) are red adjacent to x then v;z, v oz and v, 42 are red for
some i. Then (v, T, Vi1, Viys, ..., v;—1) is a red Cg with the red 3-chord v;4x. Therefore
some two consecutive vertices of Cg(R) are red adjacent to x. If these two vertices, say
Vj, Viy1, lie in some red 2-chord v;v; 40, then if v;v;,9 is a red 2-chord disjoint from v;v;4,

(Vi) ©, Vi1, - - ., Vj, Vjta, ... ) is ared Cg with a red 3-chord v;v;+2. The only remaining case
is of Type I with the four red adjacencies of x to Cs(R) being vsz, vyx, vzx, and vgz. Then
(x,vg,ve,...,v7) is a red Cg with the red 3-chord vsx. O]
Lemma 3.

r(Cho + 3-chord) = r(Chp) = 14 .

Proof. Color the edges of Kj4 red-blue. Then since r(Ciy) = 14 (see [5] and [12]), we
may assume there is a red Cyo(R) = (vo,...,v9). We may also assume that there is no



V9 Vo V9 Vo V9 Vo

vs v1 vsgC.. | Ul vs v1
vy Vo U7< o vy v2
V6 v3 V6 . v3 ve U3
V5 V4 V5 V4 Vs V4
Three k-chords Two 2-chords Red 5-cycle

Figure 4: Cyy + 3-chords

monochromatic Cjg + 3-chord on these ten vertices. In particular, the 3-chords of Co(R)
form a blue cycle C1o(B) = (vo, vs, Vg, Vg, V2, Vs, Us, V1, Vg, V7).

(a) No three red k-chords are consecutive on C1o(R), for 2 < k <5.

Assume on the contrary that vyvg, vivgy1, and vevg o are consecutive red k-chords on
C1o(R). Then (vg, Vg, Vk_1,---,V1, Vgs1,---,V9) is a red Cjg with red 3-chord vevyo. Note
that the same statement is obviously also true for the blue k-chords of Cyo(B).

(b) There are no two red 2-chords consecutive on Cho(R).

Assume on the contrary that vgvy and vyvs are red. In the red cycle (vg, vo, v1,vs, . .., vg) the
chords v1v5 and vevg are 3-chords, hence they are blue. In the blue cycle (vg, vg, vo, vs, V5, V1,
vy, U7, Vg, v3) the chords vgvg and vsv; are 3-chords, hence they are red.

Because v1vs, v9vs, and either of vsvg or vgug are consecutive 2-chords of Co(B), both vsvg
and vyqvg are red by (a). Now by symmetry, using the red chords vsv; and vgvs, the chords
vovs and v3vg are also red (see Figure 4).

Similarly, looking at the blue Cio(B), v1vs and vyvg are consecutive 2-chords, so we get a
similar picture in blue chords of Cyo(B). The chord v4ve appears symmetrically in both
C1o(R) and C1o(B). Hence without loss of generality we may assume v,vq9 is blue. Then by
(a), either vyvg or vovy is red. Suppose vyvg is red. Then (vy, va, vy, vg, V3, V4, Vs, U7, Vs, Ug)
is a red C1g with red 3-chord vyvs.

(c) There is a red 5-cycle formed from 2-chords of Cio(R).

Observe that three consecutive blue 4-chords of C¢(B) correspond to 2-chords of Cio(R)
of the form v;1v;43, Vi14Vite, and v 7v;19. By (a), these are not all blue. In particular,
if v;14v;16 and v, 7V, 19 are blue, then both v, v;,3 and v;19v;42 are red. This contra-
dicts (b). Therefore vguy is red implies that v;vg and vyv3 are blue, then vyvg and wvyvy

are red, and so on. In this way one obtains that (vg, va, vy, v6,vs) is a red cycle. Similarly
C19(B) has a blue cycle formed from the 2-chords of C1o(B).

Without loss of generality, we may assume that a new vertex x ¢ V(Cjo(R)) is ad-
jacent to Cio(R) with at least five red edges. In the case when vz and wvyx are red,
(vo, V1, X, V9, ...,v8) is a red Cyo with red 3-chord vyve. If x has no two consecutive red



adjacencies to the cycle Cio(R), then vz, v; oz and v, 4z are red for some 4. In that case
(vi, T, Vg, Viys, ..., v;_1) is a red Cg with red 3-chord v, 4. ]

Finally, we calculate the Ramsey numbers r(.S,,) and r(S¢).

Lemma 4.

r(Sy) = r(S;

n

)= 2n —5 forn even, n > 6;
l2n—4 form odd, n > 5,

Proof. First note that r(S5) > r(S,) > r(K1,-2) and 7(K; ,,—2) = 2n — 5 if n > 6 is even
and 2n — 4 if n > 5 is odd [3]. Now suppose we have a red-blue coloring on Kk, ,,_,)-
We can assume there exists a red K ,_2, say, so there is a vertex v whose set I of red
neighbors satisfies |R| > n—2. Let B be the set of blue neighbors of v If u € B has two red
neighbors in R, we obtain a red S{. Hence we may assume u has at most one red neighbor
in R. But then there are at least n — 2 blue neighbors of v in R U {v} and for any two
vertices of B, there are at least n — 3 > 2 common neighbors. Hence there is a blue S¢ if
|B| > 2. On the other hand, if |B| <1 then |R| >n—|B| >n—1 (since 2n—5)—1>n
for n > 6 and (2n —4) — 1 = n for n = 5). If there is a red P in R, we obtain a red S¢ in
R U {v}, thus the red components in R U B are isolated edges except possibly for one red
P; meeting B. In particular we have a blue Ky,_5 in RU B, and hence a blue 5. O
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