SIAM J. DISCRETE MATH. (© 2007 Society for Industrial and Applied Mathematics
Vol. 21, No. 1, pp. 237-250

ADJACENT VERTEX DISTINGUISHING EDGE-COLORINGS*

P. N. BALISTER', E. GYORIf, J. LEHEL', AND R. H. SCHELP'

Abstract. An adjacent vertex distinguishing edge-coloring of a simple graph G is a proper
edge-coloring of G such that no pair of adjacent vertices meets the same set of colors. The minimum
number of colors x/, (G) required to give G an adjacent vertex distinguishing coloring is studied for
graphs with no isolated edge. We prove x/, (G) < 5 for such graphs with maximum degree A(G) = 3
and prove X/, (G) < A(G) + 2 for bipartite graphs. These bounds are tight. For k-chromatic graphs
G without isolated edges we prove a weaker result of the form x,(G) = A(G) + O(logk).
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1. Introduction. Let G be a simple graph. We say a proper edge-coloring of G
is adjacent vertex distinguishing, or an avd-coloring, if for any pair of adjacent vertices
x and y, the set of colors incident to x is not equal to the set of colors incident to y.
It is clear that an avd-coloring exists provided G contains no isolated edge. A k-avd-
coloring is an avd-coloring using at most k colors. Let x/,(G) be the minimum number
of colors in an avd-coloring of G. In [7] the following conjecture was made.

CONJECTURE 1. If G 1is a simple connected graph on at least 3 vertices and
G # Cs (a 5-cycle), then A(G) < xL(G) < A(G) + 2.

Since x/,(G) is at least as large as the edge-chromatic number of G it is clear that
XL (G) > A(G), where A(G) is the maximum degree of any vertex in G. There are
many examples of graphs for which x/,(G) > A(G)+1. For example, consider a graph
of the form G = K, ,, — H, where H is a 2-factor of the complete bipartite graph
K, containing no Cy. Assume we have an avd-coloring of G using A(G) + 1 colors.
Then each vertex is not incident to precisely one color, and assigning this missing
color to each vertex gives a proper vertex-coloring of G with A(G)+1 colors. Since G
is bipartite with equal class sizes, the set of edges of a given color must miss the same
number of vertices in each class. Hence each color occurs the same number of times
on the vertices of each class. Since A(G) 4+ 1 =n — 1 there is a color that occurs at
least twice in each class, but the vertices with this color do not form an independent
set in G. Hence x,(G) > A(G) + 1.

More generally, if G is regular, then both x/,(G) and the total chromatic number
x1(G) are at least A + 1, and the above argument shows that x/,(G) = A + 1 if and
only if x7(G) = A+1. Hence any regular graph with x7(G) > A+1 gives an example
of a graph with x/(G) > A + 1.

We shall prove the following upper bounds for x/,(G).
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THEOREM 1.1. If G is a graph with no isolated edges and A(G) = 3, then
Xa(G) <5.

THEOREM 1.2. If G is a bipartite graph with no isolated edges, then x'(G) <
A(G) + 2.

THEOREM 1.3. If G is a k-chromatic graph with no isolated edges, then x'(G) <
A(G) + O(logk).

In particular, Conjecture 1 holds for all bipartite graphs and all graphs with
A(G) < 3. Note that even for bipartite graphs, Conjecture 1 is best possible, as
the example above shows. Theorem 1.3 is not best possible; indeed, Hatami [5] has
recently shown using probabilistic methods that x/,(G) < A(G) + 300 for sufficiently
large A(G), which is stronger than Theorem 1.3 for graphs with an extremely high
chromatic number. Theorem 1.1 will be proved in section 2, Theorem 1.2 will be
proved in section 3, and Theorem 1.3 will be proved in section 4.

Adjacent vertex distinguishing colorings are related to vertex distinguishing col-
orings in which every pair of vertices sees distinct color sets. This concept has been
studied in many papers; see, for example, [1, 2, 3, 4, 5, 6].

2. Graphs with A(G) = 3. We start with the special case of regular graphs
having a Hamiltonian cycle. Our coloring scheme is based on the idea of using the
four elements of the Klein group Zs X Zy to color the Hamiltonian cycle, defining
the colors used algebraically, and a new fifth color for the chords forming a 1-factor.
Local adjustments will be made to complete the colorings.

LEmMMA 2.1. If G is a 3-reqular Hamiltonian graph, then G has a 5-avd-coloring.

Proof. Let the five colors be the elements {0, a, b, ¢} of the Klein group K = ZoXZs
together with the extra color 5. We have a commutative and associative addition
defined on K such that x + 2 =0 for all x and a+b =¢. Let C = 21...2, be a
Hamiltonian cycle of G and let I be the remaining 1-factor of G. We may assume
G # K, (see Figure 1 for a 5-avd-coloring of K4), so by Brooks’ theorem, G has a
vertex 3-coloring f: V(G) — {a,b,c}. We may also assume that each of the three
colors occurs at least once on GG; otherwise a single vertex can be recolored to introduce
the missing color. Let S =1 | f(z;) € K.

If S = 0, then label z,2; with 0 and inductively label z;x;,1 fori =1,...,n —
1 so that f(z;) is the sum (in the group K) of the colors on z;_1x; and 2;2;41.
Equivalently, the color on x;x;1 is the sum of the color on z;_jx; and f(z;). Then
f(xy) is the sum of the colors on x,x1 and x,,_1x,. Color the 1-factor I with color 5.
Each vertex z sees color 5 and two colors from K summing to f(x). Since f(z) # 0
these two colors from K are distinct, and since f(z) # f(y) for any two adjacent
vertices x and y, the color sets at x and y must be distinct. Thus the coloring is a
5-avd-coloring of G.

Now suppose S # 0. Without loss of generality we may assume S = ¢. Pick any
vertex x; with f(x;) = c. Let 2;2; € I. Then f(z;) is either a or b. Recolor z; with
b or a, respectively. Now S = 0 and we can recolor the edges of the Hamiltonian
cycle as above (see Figure 1). Coloring I with 5 gives a proper edge-coloring that
distinguishes adjacent vertices, except possibly at x;. Since f(z;) # f(x;) the pair of
colors from K meeting x; cannot be disjoint from the pair meeting x;. Hence there
must be some color of K missing from the edges incident to x; or z;. Recoloring the
edge x;x; with this missing color gives a 5-avd-coloring of G. The vertices z; and z;
are distinguished from each other since f(z;) # f(x;) and are distinguished from all
other vertices since all other vertices meet color 5. |

We shall now assume that G is 3-regular with a 1-factor, but is not necessarily
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Fi1G. 2. Graph H with Vy = {z1,z2,z6}, Vo = {xs5, 28}, Vs = {x3, 24, 27}.

Hamiltonian. Since G has a 1-factor, G can be written as a union of this 1-factor and
a collection of cycles. We shall show that under certain conditions we can extend a
partial coloring to each cycle in turn.

We shall first find suitable colorings of graphs H of the following form. Let H
be a cycle C = z1 ...z, with some extra 3-stars and chords added. To be precise,
partition V(C') as Vy UV UVs. For x; € Vy, H will contain an edge x;z}, 2 ¢ V(C),
where 7 is joined to two degree 1 vertices. For z; € V¢, H will contain a chord Tilj,
where z; € V. For z; € Vg, dg(x;) = 2 (see Figure 2).

We shall color such graphs so that adjacent degree 3 vertices are distinguished.
We shall specify the colors incident to the z} for all z; € V3, and try to extend the
coloring to the rest of H.

LEMMA 2.2. Let H be a graph as above with |Vs| > 2. Suppose the edges incident
to each x; with x; € Vy are properly colored with colors from K U {5} and x;x} is
colored 5. Then we can properly color the remaining edges of H with colors from
K U {5} so that adjacent degree 3 vertices are distinguished. Moreover, if z; € Vg,
then we can ensure that either x; meets color 5 or both neighbors of x; meet color 5.

Proof. We partition Vg into two sets V; and V), as follows. If z,y € Vg are
adjacent on C, color the edge zy with color 5 and place = and y in the set Va;. Repeat
with other adjacent pairs of Vg (that have not been used already) until V; = Vg \ Viy
is an independent set. We shall now 3-color the degree 3 vertices of H with {a,b,c}.
For x; € Vi, set the color of z to be the sum of the two colors of K incident to z}.
Extend this vertex-coloring to a proper vertex-coloring of V(H) \ Vs using a greedy
algorithm—proceed around C, starting at any vertex immediately after a vertex of
Vs, coloring each vertex of Vy UV in turn with any color from {a, b, ¢} that ensures
that the coloring is still proper.
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If Viy = 0, then |V7| > 2. By coloring vertices of V; (not necessarily properly)
with colors from {a,b,c}, we can ensure that the sum of the vertex colors on C' is
0 € K. If Vjy # 0, color Vi arbitrarily with {a,b,c}. Color the uncolored edges
around C as in Lemma 2.1. At each vertex we add the vertex color in the Klein group
to get the color of the next edge. The edge after any pair of vertices from V}; can be
colored arbitrarily with any color from K. Color each chord of C' with color 5. The
resulting coloring satisfies the conditions of the lemma. O

Note that if we add an edge z;z} to H for some x; € Vg, then we can color z;z}
with some color from K so that the new coloring is still proper and distinguishes
degree 3 vertices. Indeed, if x; meets color 5 in a coloring given by Lemma 2.2, then
there are three colors which make the coloring proper and at most two of these will
fail to distinguish x; from ;41 or ;1. If 2; does not meet color 5, then x;x; may
be colored with either of the remaining colors of K since both z;,1 and z;_1 meet
color 5.

LEMMA 2.3. Let H be a graph as above with Vs = () and x1 € Vy. Suppose the
edges incident to each x} with x; € Vy \ {x1} are properly colored with colors from
K U {5}, z;x} is colored 5, and either of the following two conditions holds:

(a) All the edges incident to x' are colored, and one of the two edges that are

incident to ' but not x1 is colored 5.

(b) The edges incident to x; are colored, except for x1x) which remains uncolored.
Then the coloring can be completed to form a 5-avd-coloring of H. Moreover, in this
coloring, T2} is not colored 5, but either x1 meets color 5, or both xo and x, meet
color 5.

Proof. We shall provisionally color all chords z;x; of C' with color 5. As in the
proof of Lemma 2.1 we shall 3-color the vertices of H with {a,b,c}. Each 2 for
x; € Vy is assigned the sum of the colors of K meeting it in H. We 3-color the
vertices xa,...,Z, in turn so that the coloring is proper using a greedy algorithm.
The vertex x; will remain uncolored. Let this coloring be denoted by f and write
S =3", f(x). If S # 0, then assign z1x2 any color of K, and color the edges
around the cycle as in the proof of Lemma 2.1. This gives four possible avd-colorings
of H — x|, depending on the choice of color for x;z9, and yields either {0, S} or
K\ {0, S} as the pair of colors on x,2; and x125.

Assume that there is a chord z;xz; of C' which does not meet either x5 or z,.
Suppose without loss of generality that f(z;) = a and f(z;) = b. Recolor either
x; or x; with ¢ and change the color of x;x; to some color of K as in the proof of
Lemma 2.1 so as to keep the coloring proper. Note that the coloring distinguishes z;
and z; from all their neighbors, since their neighbors all meet color 5. In this way
we can construct colorings with three distinct values of S (the original coloring, the
coloring changing f(x;), and the coloring changing f(z;)). At least two of these will
have S # 0, and by varying the choice of color on z;z5 as above, we obtain colorings
with four possible values for the pair of colors on x,x; and xyx2. These four pairs
form the edges of a Cy inside K x—the complete graph on the color set K. Moreover,
both x5 and x,, meet color 5, so are distinguished from z; regardless of the color (in
K) of x12). In case (a) we are done since we can choose a coloring for which the pair
of colors on x,x; and zx2 avoids the color of z12]. In case (b) we are done since we
can choose a coloring for which the pair of colors on x,x; and z1x5 is neither equal
nor disjoint from the pair that meet z. Then there is at least one remaining color of
K with which to color z1z].

Assume now that zoz; is a chord of C. In case (b) color zz) arbitrarily with



ADJACENT VERTEX DISTINGUISHING EDGE-COLORINGS 241

Fi1G. 3. The case when xz2x; is a chord of H.

TABLE 1
Values of S.
flx2)  f(z3) S (j even) S (j odd)
a c a 0 ¢ b|b ¢ 0 a
a b a 0 ¢ blec b a 0
b c b ¢ 0 ala 0 ¢ b
c b c b a 0|a 0 ¢ b

some color of K so that the coloring is proper at ;. Restart from scratch and 3-color
the vertices of H with {a,b, c} as follows. As before, x} gets the sum of the colors of
K meeting it when x; € Vy. For the cycle C, we start the coloring at x;_;, working
backwards greedily until we reach 5. The vertex x5 can be colored in two ways. We
pick one that ensures that S’ = 23;21 (z;) # 0. Now continue coloring greedily with
z1, and then x,,...,z;41. The vertex x; will remain uncolored.

Starting at x; and working backwards around C, color the edges so that f(x;)
is the sum of the colors of K meeting x;. For the edge z;x;_1 pick either color of
K that is not the same as the color of x;41x;, or the sum of this color and S’. We
continue coloring the edges of C' as in Lemma 2.1 until we get to x5. Color x;x4 with
color 5 and color xzox; with the sum of f(z2) and the color on zsz3 (see Figure 3).
This color will be the sum of S” and the color on zjz;_1, so it is distinct from the
colors on zj412; and x;xj—1. The resulting coloring satisfies the conditions of the
lemma.

A similar argument deals with the case when there is a chord of the form z,z;,
so we may now assume there are no chords, Vo = ). Restart by coloring the vertices
of ' — xy with {a,b,c} as follows. Assume f(z3) = --- = f(2}) = a # f(2}4) (or
j =mn). Color z;41 with a and greedily color z; for ¢ > j + 1. The vertices x3, ... ,z;
can be colored alternately by b and ¢, starting with either b or ¢. The vertex x, will
be colored a, b, or ¢ (possibly equal to the color of x4, but not equal to the color of
z3). Let S =30, f(x:).

We now list the possible colorings. For each choice of colorings of x5 and x3,
there are four possible values of S depending on the value of S = Y"1 i1 f(@i) and
j. Table 1 lists the various possibilities. Each value of S’ and j has a column in
the table for S. Since f(z2) and f(z3) can be changed independently of S’ we have
several choices for the vertex-coloring for each S” and j. We describe several cases in
which we can find a suitable corresponding edge-coloring.

Case A. f(x2) # f(ah), S #0.
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As in Lemma 2.1, we can edge color C' starting at x125. Since S # 0, the colors
on r1x, and xixs will be distinct. Depending on the choice of x1x5, the pair of colors
meeting x; can be chosen to be either {0,S} or K \ {0,S}. (We assume ziz] is
uncolored for now.)

Case B. f(x3) = f(zh) £S5, S #0.

As before we color the edges of C. However, this time only two choices for x;x4
are allowed since we must ensure that x5 is distinguished from z, (either color not
meeting x4 will do for x;25). These choices differ by the addition of f(x2) to every
edge of C, and since f(x2) ¢ {0, .5}, this swaps the pairs of colors {0, S} and K\ {0, 5}
on x,xr1 and x1xso.

Case C. f(x2) = f(xh) =5, S #0.

Unfortunately, both choices above of the color for zizs give the same pair of
colors on x,x; and x1x2. Hence we can only guarantee that colorings exist making
x1 meet one of the pairs {0,5} or K \ {0, S}.

For each S" and j (corresponding to a column in Table 1) there are always at
least two possible nonzero values for S. Moreover, for any choice of f(x}), we can find
two choices of f(z2) and f(x3) with distinct values of S # 0, at least one of which
has either f(zq2) # f(x5) or f(xe) = f(x}) # S (the second case occurs only in the
column indicated by *). Hence the set of pairs of colors meeting x; can be chosen as
any edge of a path of edge length 3 in K (one value of S gives a matching in K,
the other value gives at least one more edge in Kr).

In case (a) we are now done, since there is always a choice of the pair of colors
that does not include the color on z1x). Also, z; and z) are distinguished since only
x} meets color 5. In case (b) there is some choice for this pair of colors that is not
equal or disjoint from the pair of colors meeting z7. Hence there is a choice of color
in K for z12}] which makes the coloring proper and distinguishes z; and z. 0

THEOREM 2.4. If G is a 3-regular graph containing a 1-factor, then there exists
a 5-avd-coloring of G.

Proof. Without loss of generality we may assume G is connected. Decompose
G as a 1-factor I and a union of cycles C;. If there is only one cycle, then G is
Hamiltonian and we are done by Lemma 2.1. Otherwise construct a new graph M
with vertex set V(M) equal to the set of cycles C; and edges joining C; and C; when
there is an edge of I joining some vertex of C; to some vertex of €. Since G is
connected, M is also connected. Pick a spanning tree T of M. Decompose T as a
vertex disjoint union of stars S;, |V (S;)| > 2. For each S; let G; be the subgraph of
G with an edge set made up of the edges of the cycles C; of S;, together with their
chords in G and one edge of I joining C; and Cy for each edge C;Cy of S;. Color G
in the following way. Each edge (of I) that does not lie in any G; will be colored 5.
Now color each G in turn. If the star S; has at least 3 vertices in M, use Lemma 2.2
to color the central cycle C;, of S;. The graph H of Lemma 2.2 consists of C}, its
chords in G, and some 3-stars. The vertices of Cj, incident to an edge joining Cj, to
another cycle in G; will be placed in Vg, and we attach a 3-star to each remaining
vertex of C;, that does not meet a chord of C;,. The edges of this 3-star correspond
in an obvious way to some of the edges of G (although the degree 1 vertices and the
edges incident with degree 1 vertices of H may not necessarily be distinct in G). We
color the edges of the 3-stars with the corresponding colors already assigned in G, or
arbitrarily (but properly) if no color has been assigned yet. Note that the edge of a
3-star incident to C;, will be colored 5. Lemma 2.2 now extends the coloring to the
edges and chords of C;,. Now color the edges x;y; joining C;, to the other cycles C;
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Fic. 4. The case when G contains adjacent degree 2 wvertices.

of G; with some color of K if x; meets color 5 on C' in such a way that the coloring is
avd on C (see note after Lemma 2.2). Otherwise leave x;y; uncolored. We now color
the other cycles C; of G; using Lemma 2.3 in a similar manner using the edge x;y;
as the edge z12] of Lemma 2.3. The conditions of Lemma 2.3 ensure that we can
find a coloring that is a 5-avd-coloring regardless of the choices of colors on the edges
already colored. If the star S; consists of just two vertices, use Lemma 2.3 on both
constituent cycles. For the first cycle we use case (b) of Lemma 2.3. This will result
in the edge x12) between the cycles being colored. If 1 does not meet color 5, then
uncolor z1z}. Now color the other cycle using case (a) or (b) of Lemma 2.3. If z12}
is recolored with a new color, then z; does not meet color 5, but both its neighbors
on the first cycle do. Hence the coloring is still avd on the first cycle. ]

Proof of Theorem 1.1. We shall prove Theorem 1.1 by induction on |E(G)|. Paths
and cycles on at least 3 vertices have 5-avd-colorings [7], so we may assume that G is
connected with maximum degree 3.

Assume z is a vertex of degree 1 in G. Let y be the neighbor of x. Then y is of
degree 2 or 3. Since G # P3 we can find a 5-avd-coloring of G’ = G — z by induction.
In G’, y has degree at most 2, so there are at least three colors not incident to y. At
most two of these colors cannot be used to color zy, as they may result in y meeting
the same set of colors as some neighbor in G’. However, there is still at least one color
that can be given to xy so that the coloring is avd. Hence we may assume G contains
no degree 1 vertex.

Assume two vertices of degree 2 are adjacent in G. Let xgx122...2,, n > 2, be
a suspended trail in G, i.e., a trail with dg(zo) = dg(z,) = 3 and dg(z;) = 2 for
0 <i<mn Ifzg# x,, let G’ be the graph obtained by contracting this path to
ToyTy. If 9 = x,, let G’ be the graph obtained by deleting the vertices x1,...,T,_1
and adding two degree 1 vertices y, z to g = x,, (see Figure 4). By induction G’ has
a b-avd-coloring. We may assume without loss of generality that the edge zoy has
color 1 and z,y (or x,z) has color 2. The edges x;x;4+1 of G can be colored with 1
for i =0, 2 for i = n — 1, and cyclically with the colors {3,4,5} for other values of 1.

Hence we can assume that any vertex of degree 2 is adjacent only to vertices of
degree 3. If G contains a bridge zy, let G; and G2 be components of G — xy with
z € V(Gy) and y € V(G2). Give Gy Uxy and G2 U xy 5-avd-colorings by induction.
(These graphs have smaller edge counts than G since G has no degree 1 vertices.) By
permuting the colors on G5 U zy, we can assume the edge zy receives the same color
in each coloring and the color set incident to x in G; Uzy is not the same as the color
set incident to y in G2 U zy. This now gives a 5-avd-coloring of G (see Figure 5).

Hence we can assume that G is a graph with maximum degree 3, no vertices of
degree 1, no pair of adjacent degree 2 vertices, and is bridgeless. By Tutte’s 1-factor
theorem, any cubic graph without a 1-factor must contain at least three bridges, so if
G contains no degree 2 vertices, we are done by Theorem 2.4. If G contains degree 2
vertices, then let G’ be the graph obtained by taking two copies of G and joining their
corresponding degree 2 vertices by an edge. Then G’ is 3-regular and contains at most
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Fic. 5. The case when G contains a bridge.

one bridge. Hence G’ has a 1-factor and so by Theorem 2.4 G’ has a 5-avd-coloring.
This coloring of G’ induces a 5-avd-coloring of G since no two vertices of degree 2 are
adjacent in G. O

3. Bipartite graphs. If G has an edge-coloring with colors cy,...,cg, write
G{ci, ..., ¢} for the subgraph of G consisting of all the vertices of G together with
the edges of G that are colored with a color in {c1,...,¢,}. Write S(v) for the set of
colors incident to v and x' = x/(G) for the edge-chromatic number of G.

The bound x,(G) < A(G) + 3 for regular bipartite graphs comes rather easily
using the 1-factorization of regular bipartite graphs. To see this, observe that a 2-
regular bipartite graph H with bipartition V(H) = A U B has a straightforward
5-avd-coloring along each cycle such that S(a) € {{1,2},{3,4},{3,5}} and S(b) €
{{1,4},1{2,3},{4,5},{1,3}} for every a € A and b € B. For A(G) > 2 use this
coloring for a 2-factor H C G and give G \ H any proper coloring with the remaining
A(G) — 2 colors. To obtain the bound x,(G) < A(G) + 2 for any bipartite graph,
however, much more effort will be required.

LeEmMA 3.1. If G is a bipartite graph with no isolated edges, then there exists a
proper edge-coloring with colors {1,...,Xx' (G)} such that

Al if w € E(G)\ E(G{1,2}), then either {1,2} C S(u) or {1,2} C S(v);

B. if C is a cycle in G{1,2} which does not meet color 3 in G, then {1,2,3} C

S(v) for every neighbor v in G\ C of any vertex of C;
C. if C s a cycle in G{1,2} which does meet color 3 in G, then there ezists a
u € V(C) and wv € E(G{3}) with {1,2} C S(v) (we allow v € V(C)); and

D. if uv is an isolated edge in G{1,2,3}, then S(u) # S(v).

Proof. Consider the set of edge-colorings of G with x’ colors. For all such colorings
pick one such that

(1) G{1,2} has maximal edge count;

(2) subject to (1), G{1,2} has the minimum number of components (counting

isolated vertices as components);

(3) subject to (1)—(2), G{3} has maximal edge count; and

(4) subject to (1)—(3), the number of edges wv in G failing condition D is minimal.
We shall show that such a coloring satisfies conditions A-D.

Condition A. Let wv € E(G) \ E(G{1,2}) be an edge with {1,2} Z S(u), S(v).
Then u and v are either isolated vertices or the end-vertices of paths in G{1,2}. By
recoloring uv with either color 1 or 2 (and possibly interchanging colors 1 and 2 in
the component of v in G{1,2}) we obtain a proper edge-coloring with more edges
colored {1,2}, contradicting (1). Note that if v and v are end-vertices of the same
path in G{1,2}, then since G is bipartite, the edge uv can be recolored without
changing any colors on this path.

Condition B. Assume wv € E(G) with u € V(C), v ¢ V(C), and {1,2,3} € S(v).
Note that uwv is not colored with 1, 2, or 3. If 3 ¢ S(v), then we can recolor uv with 3,
contradicting (3). Hence without loss of generality 1 ¢ S(v). Recolor uv with 1 and
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Fic. 6. Proof of Condition C.

recolor the color 1 edge on C' meeting u with color 3. This contradicts condition (2).

Condition C. Suppose v € V(C) meets color 3 on an edge wv with 1 ¢ S(v).
Clearly v ¢ V(C). Let w be the neighbor of v on C' with uw colored 1. If 3 ¢ S(w),
then recolor uw with 3 and wv with 1. This gives a coloring contradicting (2). If
3 € S(w), let zw be the edge incident to w colored 3. If {1,2} C S(z), then we are
done; otherwise we can assume z is either an isolated vertex or the end of a path in
G{1,2}. Recolor uv and wz with 1, uw with 3, and, if necessary, swap colors 1 and
2 on the path from z in G{1,2} so as to make the coloring proper (see Figure 6). If
the paths in G{1,2} meeting v and z are the same, then recoloring this path will be
unnecessary since G is bipartite. We now have a new coloring with more edges in
G{1,2}, contradicting (1).

Condition D. Let ujv1 be an isolated edge of G{1,2,3}. By Condition A, ujv;
is colored with either 1 or 2. Since G contains no isolated edge, we can assume
that dg(u1) > 2 and that u; meets another color k£ > 3 on some edge of G. Swap
colors 3 and k along a Kempe chain (component path of G{3,k}) starting at wu;
in G. By condition (3) we may assume that the last edge of this chain is recolored k.
This reduces the number of edges failing condition D unless after the recoloring the
other end-vertex vy of this chain lies in some isolated edge usve of G{1,2,3} and
S(uz) = S(v2). In this case ug also meets color k, so we can form a new Kempe chain
starting at ug using colors 3 and k, disjoint from the wi-vs chain. Repeating this
process we get a sequence of Kempe chains on colors 3 and k from u; to v;41. Note
that properties (1)—(3) still hold after these recolorings. Eventually this process must
terminate with a coloring reducing the number of edges failing condition D. Note that
all the Kempe chains are vertex disjoint, and none end at v; since otherwise some
recoloring would increase the number of edges colored 3, contradicting (3). ]

Proof of Theorem 1.2. Color G as in Lemma 3.1. We shall recolor the edges of
G{1, 2,3} with the five colors from K U{3}, where K = {0, a,b, c} is the Klein group.
This will give an avd-coloring with x'(G)+2 = A(G) 42 colors. In addition, a vertex
v will meet color 3 in the new coloring only if it met 3 in the original coloring, so
|S(v) N K| will be at least as large as the original degree of v in G{1,2}.

The edges of G{1, 2} form a set of vertex disjoint paths and even cycles. Construct
a new graph M with a vertex set equal to the nonsingleton components C; of G{1, 2}
and edges joining C; and C; when either

1. there is an edge of G{3} joining a vertex of degree 2 in C; to a vertex of
degree 2 in C}; or
2. either C; or Cj is a single edge and there is an edge of G{3} joining any vertex
of C; to any vertex of Cj.
As in the proof of Theorem 2.4, we take a star decomposition {S;} of a spanning
forest of M and consider a corresponding subgraph G’ of G{1,2,3} in G consisting of
the induced subgraphs in G{1, 2,3} of each cycle C; and a choice of edges from G{3}
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as above, joining C; and C;y when C;Cy is an edge of one of the stars in the star
decomposition. Note that the graph M may contain isolated vertices, so some of the
stars may be isolated vertices as well. We shall color every edge that does not lie in
G’ with its original color in G. The colors 1 and 2 do not appear on these edges. The
subgraph G’ will be colored with colors from K U {3} so as to obtain an avd-coloring
of G using at most two more colors.

We say a component C; of G{1,2} is bad if it is either a single edge where the
end-vertices are not distinguished in the coloring of G, or a cycle of length congruent
to 2 mod 4 that meets color 3, but has no color 3 chord. All other C;’s will be called
good.

If C; is a bad cycle, then by condition C, C; is adjacent by an edge of G{3} to
a vertex of degree 2 in G{1,2}. In particular, C; is not isolated in M. If C; is a
bad edge, then by condition D it meets an edge of G{3}, and so once again C; is not
isolated. Thus all isolated components are good.

Now we consider the stars S;. Suppose we have a star with central component
Cp and end-components C1,...,C,. If r > 2, delete the edge of G’ from Cj to good
components C; in S;, ¢ > 0, until either r =1 or all C, i > 0, are bad. If r =1 and
Co and C are good, delete the edge joining them in S;. If Cj is bad and C is good,
we consider C to be the center of the star. Furthermore, if Cy is an edge, then C}
is not an edge (otherwise we would have two adjacent vertices of degree 1 in G{1, 2},
contradicting condition A). In this case also we swap Cp and C1, so we can assume
without loss of generality that Cj is not a single edge when r = 1 (or r > 2). Any
edge deleted from G’ will remain colored 3 in our final coloring.

Hence we may assume each star S; is either an isolated good C; or a star with
all end-components either bad or single edges. Also, the color 3 edges in G’ joining
Cy to the end-components are incident to degree 2 vertices of Cjy except in the case
when r = 2 and Cj is a single edge.

We now recolor G’ with colors from KU{3}. Let G have bipartition V(G) = AUB.
We shall provisionally color the vertices of A with a € K and the vertices of B with
b € K. We shall color the edges of G in such a way that (with a few exceptions) each
v € A with dg/(v) > 2 will be colored so that S(v) N K € S4, where

Sa = { {O,CL}, {aa b}a {bv C}a {O,G,C}, {O,b,c} }7
while for v € B, S(v) N K € Sp, where

S ={{0,b}, {0,c}, {a,c}, {0,qa,b}, {a,b,c} }.

This is sufficient, since if uv € F(G), u € A, v € B, and S(u) = S(v), then S(u)NK =
S(w)NK. But S4NSp =10, so dg(u) < 2, say. But then [S(v) N K| = [S(u) N K| <
2,50 S(w)yNK ¢ S4,5p and dg/(v) < 2. However, E(G') O E(G{1,2}), so if
wv ¢ E(G{1,2}), then by condition A we can’t have dg/(u),dg (v) < 2. Finally, if
wv € E(G{1,2}), then S(u)N{4,...,x'} # S(w)N{4,...,x’} by condition D and the
fact that we do not recolor any edges of G{4,...,x'}.

We shall now color each component of G’ independently.

Case 1. Good isolated paths. Using the elements of K, color the edges of a
good path arbitrarily so that the sum of the two colors meeting a degree 2 vertex
of the path is equal to the color of this vertex. Any degree 2 vertex v will have
S(w)N K € {{0,a},{b,c}} C Sxif v € Aand S(v) N K € {{0,b},{a,c}} C Sp if
v € B.
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Fic. 8. Stars of components.

Case 2. Good isolated cycles. If the cycle length is divisible by 4, then we can
color the edges from K so that the sum of the two colors meeting a vertex v is equal
to the vertex color in K. Any color 3 chord will remain colored 3. If the cycle length
is not divisible by 4 and there are no color 3 chords, then none of the vertices meets
color 3 in G. However, by condition B of Lemma 3.1 all the neighbors of vertices of
the cycle meet all three colors {1,2,3} in G. If we give the cycle any avd-coloring
using colors from K, we are done since every vertex on the cycle will meet only two
colors from K U {3}, whereas their neighbors off the cycle will meet three such colors.
(This is one case where we do not insist that S(v)NK lies in S4 or Sg.) Finally, if the
cycle has a color 3 chord uwv, recolor u and a neighbor w of u on C with color ¢. Now
color the edges around the cycle so that u meets {0,c} if u € A or {a,b} if u € B.
Then v is still labeled with a or b so the chord uv can be recolored by some color of
K, making the coloring on C proper (see Figure 7). It is easily checked that S(v) N K,
S(u)N K, and S(w) N K lie in the correct set S4 or Sp as required.

Case 3. Stars of components. Remove any edges from G’ that are chords of some
component cycle C; of the star. These edges will remain colored 3. If the central
component Cy is a cycle of length 2 mod 4, relabel one (and only one) vertex u € Cy
that is adjacent to an end-component with b if u € A and a if uw € B. Assume now
that Cy is not a single edge. Color the central component so that the sum of two
colors meeting a degree 2 vertex of Cj is the vertex color of this vertex. Now recolor
the color 3 edges uv from Cj to C; (u € Cp, v € C;) with either O or cif u € A, or a
or bif u € B. Now for each degree 2 or 3 vertex u of Cp, S(u) N K € Sy if u € A and
S(u) N K € Sp if u € B (see Figure 8).

Each end-component is either a bad cycle of length 2 mod 4, or a single edge. For
each end-component that is a cycle C, let v be the vertex of C joined to the central
component Cy. Recolor v and a neighbor of v on C' with color ¢ € K. Now color
the edges of C' so that the colors of K meeting v on C are {0,c} if v € A and {a, b}
if v € B. Now for each degree 2 or 3 vertex w of C, S(w) N K € Sy if w € A and
S(’w)ﬂKE Spif w € Spg.



248 P. N. BALISTER, E. GYORI, J. LEHEL, R. H. SCHELP

F1a. 9. Central component is a single edge.

For each end-component vw that is a single edge, let uv be the edge joining vw
to Cp (see Figure 8). If v € A, then uv has been colored a or b. For either choice
there is a choice of 0 or ¢ on edge vw for which S(v) N K € S4. Similarly, if v € B,
then uv has been colored 0 or ¢. For either choice there is a choice of a or b on edge
vw for which S(v) N K € Sp.

Finally, assume Cj is a single edge xy. Then Cj is joined to two components,
which by condition A must be cycles (see Figure 9). Recolor the edge zy with color 3.
(Note that both x and y meet color 3 in the original coloring.) Now if we color
the edges to the end-components and the edges of the end-components as before, we
obtain a coloring with = distinguished from y. In this case S(z) N K and S(y) N K
are not in S4 or Sp, so we need to check that x and y are distinguished from all
neighbors in G. Clearly z and y are distinguished from their neighbors in G’. If, say,
zx € E(G), then by condition A, {1,2} C S(z) in the original coloring. Hence in the
final coloring |S(2) N K| > 2 > |S(x) N K|, so S(z) # S(x). 0

Note that in the proof of Lemma 3.1 we only recolored the edges colored 1, 2, or
3, and for each edge uwv, either the vertices u and v are distinguished by the colors in
K U{3}, or uv is one of the isolated edges of G{1,2,3} in condition D of Lemma 3.1.

4. General graphs. The bound in Theorem 1.3 will be obtained by decompos-
ing a general graph into bipartite graphs (Lemma 4.1), and by using an extended
version of Lemma 3.1 that makes it possible to color these bipartite graphs “simulta-
neously” (Lemma 4.2).

LemMA 4.1. If G is a k-chromatic graph with no isolated edge or isolated Ks,
then G can be written as the edge disjoint union of [logy k] bipartite graphs, each of
which has no isolated edge.

Proof. Let r = [logy k]. Then k < 2". We first show that G is the union of r
bipartite graphs without the restriction on isolated edges. For » = 1 this is clear. For
r > 1 write V(G) as the union of k independent color classes V1, ..., Vj. Partition the
classes into two groups Vi,..., Vi 21 and Vigjo141,---, Vi- Let G1 be the bipartite
graph formed by taking all edges from the first set of color classes to the second.
Then G\ E(G1) has chromatic number at most [k/2] < 2"~!. Hence, by induction,
G\ E(G1) can be written as the edge disjoint union of r—1 bipartite graphs Ga, ..., G,.
Thus G is the union of r bipartite graphs as required.

Write G as a union of r bipartite graphs in such a way that the total number
of isolated edges in the subgraphs G; is minimized. Suppose there is an isolated
edge xy in G, say. Since there are no isolated edges in G, there must be some other
bipartite graph G5, with some edge incident to x, say. If we can add xy to G5 without
creating an odd cycle, then by removing xy from G; and adding it to G5 we reduce
the number of isolated edges. Hence we may assume there is an even length path
from x to y in Gs.
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If there are edges xz of G5 with dg,(z) = 1, then remove one such edge from Go
and add it to GG;. Since there is an even length path from z to y, no isolated edges
are formed in Gg, but there are fewer isolated edges now in G;. Similarly we are done
if there are edges yz of G with dg,(z) = 1. If no such edge xz or yz exists, remove
an edge of an even length path from z to y in G2 and add it to G;. Use the edge
of this path incident to y if dg,(z) > 1; otherwise use the edge incident to x. This
will reduce the total number of isolated edges, except in the case when G5 contains a
component consisting of a path xzy of length 2 from z to y.

Since G does not contain an isolated K3 there must be some other edge meeting
{z,y, 2} in G. Suppose such an edge is incident to either x or y. Then this edge must
lie in some other bipartite subgraph, say G3. Considering G3 in place of Go we may
assume (3 has a component xwy which is a path of length 2 from z to y. In this case
put edge wz in G; and wy in G5. Both G; and G2 remain bipartite and G3 loses a
component. The number of isolated edges in GG; decreases, contradicting our choice
of decomposition into bipartite graphs.

Hence we may assume G has some other edge meeting z, but dg(z) = dg(y) = 2.
The edge meeting z lies in G; where ¢ = 1 or ¢ > 2. In this case we can move zx to
G; and xy to G3. Both G; and G2 remain bipartite and G loses the isolated edge
zy. This reduces the number of isolated edges and contradicts the assumption that
there is an isolated edge in some G;. Hence there is a decomposition into r bipartite
graphs, each of which has no isolated edge. a

LEMMA 4.2. Assume G is a graph which is the edge disjoint union of bipartite
graphs G1,...,G,, each of which has no isolated edge. Then there exists a proper
edge-coloring with colors {11,...,1,,21,...,2,31,...,3:,4,....X'} such that colors
1, 24, and 3; occur only on the edges of G; and

A if wo € E(G;) \ E(Gi{1:,2;}), then either {1;,2;} C S(u) or {1;,2;} C S(v);

B. if Cisa cycle in G{1;,2;} which does not meet color 3; in G, then {1;,2;,3;} C

S(v) for every neighbor v in G; \ C of any vertex of C,

C. if C s a cycle in G{1;,2;} which does meet color 3; in G, then there exists

au € V(C) and uwv € E(G{3;}) with {1;,2,} C S(v); and

D. if wv is an isolated edge in G{1;,2;,3;}, then either S(u) N {4,...,xX'} #

S(w)N{4,...,x'} or there is an edge in G incident to u colored with color 4.

Proof. By coloring G with {1,...,x'} and splitting colors 1, 2, and 3 into 1;, 2;,
and 3; according to which G; the edge belongs to, we can find a coloring with the
given set of colors so that edges colored 1;, 2;, or 3; occur only in G;. For all such
colorings pick one such that

(1) G{141,...,1,,21,...,2,} has maximal edge count;

(2) subject to (1), the sum over 4 of the number of components of G{1;,2;} is

minimal;

(3) subject to (1)—(2), G{31,...,3,} has maximal edge count; and

(4) subject to (1)—(3), the number of edges uv failing condition D (for any 7) is

minimal.
As in the proof of Lemma 3.1, we see that conditions A—C hold for each i. It remains
to prove condition D. Let ujv; be an isolated edge of G{1;,2;,3;}. Since G; contains
no isolated edge, we can assume that dg,(u;) > 2 and that u; meets another color
k > 4 on some edge of G;. Swap colors 4 and k along a Kempe chain (in G) starting
at uy. This will reduce the number of edges failing condition D unless the other end-
vertex vy of this chain lies in some isolated edge ugve of G{1;,2;,3;} and after the
recoloring uowvs fails condition D. In this case us also meets color k, so we can form a
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new Kempe chain starting at us using colors 4 and k. Repeating this process we get a
sequence of Kempe chains on colors 4 and k from wu; to v;41. Eventually this process
must terminate with a coloring reducing the number of edges failing condition D, or
with some v, = v1. However, in this last case recoloring all these Kempe chains makes
both v; and u; meet color 4. |

Proof of Theorem 1.3. Since K3 has a 3-avd-coloring, we can assume G contains
no K3 component. Decompose G using Lemma 4.1 and color G as in Lemma 4.2. Now
recolor each bipartite subgraph G;, replacing 1;, 2;, 3; with a set of five colors K; =
{0;, a;, b;, ¢;, 3; }, disjoint for each 4, as in the proof of Theorem 1.2. Some edges uv of
G; may be isolated in G;{1;,2;,3;}, so u and v will not necessarily be distinguished in
G;; however, for all other edges uv € E(G;), S(u)NK; # S(v)NK; by the comment at
the end of section 3. Also, this recoloring does not change any of the colors 4, ..., x’
on G. Hence by condition D, if uv € E(G;) and S(u) N K; = S(v) N K;, then either
Sw)N{4,...,x'} #Sw)N{4,...,x'} or 4 € S(u). Let H be the subgraph of edges
wv € E(G) such that u and v are not distinguished by the colors in K; U{4,...,x'},
where uwv € E(G;). Let H; be the subgraph of H consisting of all the isolated edges
of H. Each nonisolated vertex in H meets color 4, so G{4} U H; forms a collection
of paths and cycles with all edges of H; on the interior of any path or cycle. Split
color 4 into three colors 44, 45, and 4¢. By alternately changing 4 into 44 or 4p
along the paths and cycles of G{4} U H; we can distinguish the end-vertices of each
edge of H;. If a cycle of length 2 mod 4 occurs, we shall also need to color some
of the color 4 edges of this cycle with 4¢. All other color 4 edges in G may become
4¢ without loss of generality. This increases the number of colors used by 2 and
distinguishes u and v for all uv € E(Hy). The graph Hc = H \ Hy has no isolated
edge, and A(H¢g) < r < [logy k]. Pick x,,(Hc) new colors and recolor He so that
it has an avd-coloring using these colors. The resulting coloring is avd. To see this,
pick any edge uv of G. If wv € E(G;) and wv ¢ E(H), then S(u) N K; # S(v) N K; or
S(w)N{4a,45,4¢,5,..., X'} # Sw)N{4a,45,4¢,5,. .., X } since the recoloring of Hx
removes elements from S(u) N K; only when u is in an isolated edge of G;{1;,2;,3;}.
But in this case |S(v) N K;| > 2 (by condition A) and |S(u) N K;| =0. If wv € E(Hy),
then S(u)N{4a,4p,4c} # S(w)N{4a,45,4¢c}, and if uv € E(H¢), then u and v are
distinguished by the x., (H¢) new colors.

Thus x,(G) < X' (G) —3 +5r + 2+ x,(H¢). Finally, A(He) < x'(He) <
r < A(G). So by induction on A(G) we may assume x,(H¢) = r + O(logr), and
Xo(G) = A(G) + O(r) = A(G) + O(log k). O
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