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Abstract We model the dynamical behavior of the neuro-
pil, the densely interconnected neural tissue in the cortex,
using neuropercolation approach. Neuropercolation general-
izes phase transitions modeled by percolation theory of ran-
dom graphs, motivated by properties of neurons and neural
populations. The generalization includes (1) a noisy compo-
nent in the percolation rule, (2) a novel depression function in
addition to the usual arousal function, (3) non-local interac-
tions among nodes arranged on a multi-dimensional lattice.
This paper investigates the role of non-local (axonal) con-
nections in generating and modulating phase transitions of
collective activity in the neuropil. We derived a relationship
between critical values of the noise level and non-locality
parameter to control the onset of phase transitions. Finally,
we propose a potential interpretation of ontogenetic devel-
opment of the neuropil maintaining a dynamical state at the
edge of criticality.

1 Introduction

The emergence of collective behaviors in chaotic systems
were studied extensively using various cellular automata and
lattice models. The results indicated that low-dimensional
structure and collective oscillations may arise on the mac-
roscopic level in a system with extensively chaotic compo-
nents at the microscopic level (Aihara et al. 1990; Kaneko
1990; Pomeau 1993; Marcq et al. 1997). The significance of
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intermediate-range or mesoscopic effects has been outlined
in further studies, with a special emphasis on neurodynamics
(Kozma 1998; Freeman 1999). Random cellular automata
(RCA) appear to have many of the features of these systems,
but are simpler to describe, easier to simulate, and are more
amenable to rigorous analysis. The present paper concen-
trates on applying and generalizing the concept of RCA for
the description of the dynamics of neural populations.

The theory of random cellular automata is closely related
to that of percolation theory, which was an active area of
research in the past decades. Percolation theory lies at the
interface of probability theory, combinatorics, and physics
(Stauffer and Aharony 1994, Grimmett 1999). Interest in var-
ious aspects of standard percolation remains high, including
estimates of critical probabilities (Bollobás 1985; Balister
et al. 1993). Recently, more and more modifications of the
standard percolation models were studied. In particular, there
has been much work on the family of processes know as
bootstrap percolation (Aizeman and Lebowitz 1988; Duarte
1989; Gravener and McDonald 1997; Cerf and Cirillo 1999).
Computer experiments have suggested interesting non-triv-
ial large-scale behavior, and many deep mathematical results
were proved about a number of models. Percolation theory
deals with large-scale properties of certain types of random
graphs, often built on d-dimensional lattice Zd .

In the archetypal percolation problem, the vertices (sites)
are the points of a lattice with edges (bonds) joining neigh-
boring sites. In site percolation, sites are open independently
with probability p and one wishes to answer questions about
the size of the connected components formed by these open
sites. In particular, do infinite connected clusters of open sites
exist? Similar questions can also be asked about bond perco-
lation, where the bonds are chosen to be open with a certain
probability. There are many variants of these problems. For
example, in oriented percolation, one asks for infinite paths
of connected open sites that travel at each step only in certain
directions.

Many percolation problems exhibit phase transitions. In
the case of phase transitions, for p less than some critical
probability pcrit only finite clusters exist, and for p > pcrit
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infinite clusters almost surely exist (Grimmett 1999). Ran-
dom automata are also closely related to certain models in
statistical physics such as the Ising model. This naturally
leads to questions about phase transitions and their associated
critical exponents which describe the properties of systems
that are close to a phase transition. Studying phase transitions
gains increasing popularity in various research fields beyond
physics, including population dynamics, the spread of infec-
tious diseases, social interactions, and computer networks
(Kauffman 1990; Crutchfield 1994; Haken 1999; Watts and
Strogatz 1998; Newman 2000). In the realms of neuroperco-
lation we extend percolation theory to study neural processes
(Kozma et al. 2001, 2004).

Recent studies explain spatial patterns of phase in beta–
gamma EEG activity of human neocortex (Freeman 2003b,c).
Neocortex maintains a stable, scale-free state by homeostatic
regulation of neural firing, through which it adapts instantly
and globally to rapid environmental changes. The coherent
states created by the destabilization of the cortex are called
‘wave packets’ (Freeman 2003a). Destabilization is initiated
at a given, seemingly random point of time and space on the
cortex. This resembles phase transition in physical systems,
which start at a certain nucleus.

EEG analysis gave spatiotemporal amplitude modulation
(AM) patterns of unprecedented clarity (Freeman, 2004) and
supported the theory of self-organized criticality in neural
dynamics (Bak et al. 1987; Bak 1996; Jensen 1998). Spatial
gradients of beta–gamma phase revealed multiple co-exist-
ing phase patterns that were consistent with a state of self-
organized criticality. These results indicate that brains main-
tain themselves at the edge of global instability by inducing
a multitude of small and large adjustments. Each adjustment
is a sudden and irreversible change in the state of a neural
population. Because sensory cortices maintain themselves in
highly sensitive meta-stable states, they can transit instantly
to any designated part of their state space when destabilized
by expected stimuli.

Synchronization of neural electrical activity while com-
pleting cognitive tasks is studied in various animals, e.g.,
cats, rabbits, gerbils, macaque monkeys (Barrie et al. 1996;
Ohl et al. 2001, 2003; Freeman 2003a; Bressler 2003). It was
demonstrated that using an animal model of category learn-
ing, the sorting of stimuli into these categories emerges as
a sudden change in the animal’s learning strategy. EEG and
ECG recordings show that the transition is accompanied by
a change in the dynamics of cortical stimulus representation,
which represent a mechanism underlying the recognition of
the abstract quality (or qualities) that defines the categories.
Synchrony of firing of widely distributed neurons in large
numbers is necessary for emergence of spatial structure in
cortical activity by reorganization of unpatterned background
activity.

Oscillations measured by EEG, MEG, and other brain-
monitoring techniques arise from extensive feedback
interactions among neurons densely connected in local neigh-
borhoods, in combination with the effects of long axons.
Axonal effects have high conduction velocities and support

synchronization over large areas of cortex (Bressler and Kelso
2001; Bressler 2002; Freeman 2004), creating small-world
effects (Watts and Strogatz 1998; Wang and Chen 2003) in
analogy to the rapid dissemination of information through
social contacts. Small-world networks have certain prefer-
ential attachment rules between vertices that make the net-
work diameter much smaller than regular ones, like grids
and lattices. The importance of long-distance correlations
was emphasized by numerous brain theorists (e.g., (Ingber
1995; Hoppensteadt and Izhikevich 1998; Haken 1999; Fris-
ton 2000; Linkenkaer et al. 2001; Kaneko and Tsuda 2001;
Kozma et al. 2004; Stam et al. 2003). In certain networks,
like the www, biological systems, the degree distribution fol-
lows a power law, i.e., it is scale-free. Crucial developments
were reported concerning scale-free networks (Albert and
Barabási 2002; Barabási and Bonabeau 2003; Bollobás and
Riordan 2003).

Neuropercolation approach has some common aspects
with small-world and scale-free network studies. However,
key differences have to be pointed out. While scale-free net-
work studies strongly rely on the established methods of sta-
tistical physics, neuropercolation goes beyond existing tools.
The neural tissues in the brains, called neuropil, have unique
properties requiring not just new models, but completely
new mathematical methods of thorough analysis. Neurop-
ercolation is a generalization of cellular automata, Hopfield
memory arrays and Conway’s game of life (Hopfield 1982;
Berlekamp et al. 1982), by merging the concepts of random
graph theory (Erdős and Rényi 1960; Bollobás 1985) and
non-local interactions represented by axonal connections. It
bridges the gap between Ising-type models and mean-field
approaches (Kozma et al. 2003; Balister et al. 2004). Our
studies identify several key factors that determine phase tran-
sitions in our neural models, including endogeneously gen-
erated noise and the structure and extent of the non-locality
of neural populations. The resulting novel tools were used to
study the intricate complexity of dynamic behaviors of neural
populations (Puljic and Kozma 2003, 2005).

The present paper starts with the description of basic
principles and formalism of neuropercolation. We introduce
results of mean field models as well as locally connected
RCA lattices. Next, the critical behavior in mixed local and
non-local models is described. We build phase diagrams to
characterize the relationship between critical noise and ex-
tent of non-locality. This is followed by the characterization
of a potential developmental process in brain after birth and
early childhood, which may be responsible for maintaining
dynamical state of brains at the edge of criticality.

2 Overview of phenomenology of neuropercolation

2.1 Role of dynamics in neural populations

We model the dynamical behavior of the neuropil, the densely
interconnected neural tissue in the cortex. Most synaptic activ-
ity in the brain occurs in the neuropil. Neuropil is a unique
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felty substance, believed to be one of the most highly or-
ganized in the Universe. It represents a complicated spatial
network comprising interconnected neuronal processes inter-
mingled with irregularly shaped processes of astrocytic glia
(Peters et al. 1991). Neural populations stem ontogenetically
in embryos from aggregates of neurons that grow axons and
dendrites and form synaptic connections of steadily increas-
ing density. At some threshold, the density allows neurons
to transmit more pulses than they receive, so that an aggre-
gate undergoes a state transition from a zero point attractor
to a non-zero point attractor, thereby becoming a popula-
tion. Interacting excitatory and inhibitory populations pro-
duce periodic, limit cycle oscillations. Dopamine induced
bistability may play an important role in shaping oscillations
in the neuropil (Gruber et al. 2003). At the next level of com-
plexity, an increasing volume of research aims at the interpre-
tation of dynamic brain activity in terms of aperiodic, chaotic
processes (Skarda and Freeman 1987; Schiff 1994; Arhem et
al. 2000; Dafilis et al. 2001; Korn and Faure 2003).

A chaotic system has the capacity to create novel and
unexpected patterns of activity. It can jump instantly from
one mode of behavior to another. It retains in its pathway
across its basins a history, which fades into its past, just as its
predictability into its future decreases. A chaotic time series
does not converge to a fixed point, limit cycle, or hyper torus.
It lacks constant frequencies but has a spectral domain with
peak frequencies. In EEG signals, we define a chaotic attrac-
tor as a region of the phase space in which the system is
constrained for several cycles of the peak frequencies, and
to which it can return after it is displaced by a perturbation.
We define a state transition as a passage across a separa-
trix from one attractor to another as the trajectory crosses a
landscape of attractors. There are multiple landscapes, and
a phase transition is defined as the activation of by input
of an attractor landscape, from which the input selects the
basin of one attractor. This process underlies perceptual cat-
egorization. Transitions between chaotic states constitute the
dynamics that explains how brains perform such remarkable
feats as abstraction of the essentials of figures from com-
plex, unknown and unpredictable backgrounds, generaliza-
tion over examples of recurring objects, reliable assignment
to classes that lead to appropriate actions, planning future
actions based on past experience, and constant updating by
way of the learning process (Freeman 1999).

In this paper, we explore several directions of the
generalization of the basic concept of phase transition in
random graphs, including random transition effects and non-
local interactions. Presently, only a very few simple models
allow a strict mathematical treatment and proof of the exis-
tence of phase transitions in generalized systems
(Balister et al. 2003, 2004). Large part of the results described
here are based on extensive numerical computations. It is
to be emphasized that the models introduced in this work
represent the very first basic building blocks of neurody-
namics, namely, the generation of neural populations with
non-zero attractors (Freeman 1975). The present work con-
tains crucial results, which are necessary to firmly establish

the foundations of practically useful computational models
of phase transitions, in the style of brains. Modeling high-
level cognitive processing, like abstraction and generaliza-
tion, which were described previously as transitions between
chaotic states, is well-beyond the goals of this study.

2.2 Random cellular automata formalism

General models of random cellular automata (RCA) are well-
documented, see (Toom et al. 1990; Gács 1990; Maes and
Vande Velde 1997; and others). Here we limit our discussions
to a model on the 2-dimensional lattice Z2. Let x = {i, j} is
a site in Z2. The activation of site x at time t , ax(t), can be 0
or 1. The fate of each site will be influenced by the sites in the
neighborhood �(x). Introduce s(x) as the arousal function
and r(x) as the depression function. The arousal function
gives the probability that an inactive site becomes active,
while the depression function is the probability that an active
site becomes inactive at the next step. At time 0, the sites are
active with probability p. At each time step t , every site is
updated simultaneously according to the rules:

s(x) = {ε1, if Ct ; 1 − ε1 if ¬Ct }, (1)

r(x) = {ε2, if Ct ; 1 − ε2 if ¬Ct }. (2)

Here we introduced event Ct as follows:

Ct :
∑

k∈�(x)

ak(t) ≤ |�(x)|
2

(3)

Ct means that the majority of sites in the neighborhood
�(x) are inactive at time t . Here |�(i, j)| denotes the cardi-
nality of neighborhood �(i, j). For example, in a 2-dimen-
sional lattice with local interactions, we have |�(i, j)| = 5,
when self-connection is included.

In the case when no cell can change from active to inac-
tive (r(x) = 0 for all x), we recover the bootstrap percola-
tion model. Clearly, the family of random cellular automata
is much richer than the family of bootstrap percolations. In
particular, if all the probabilities are 0 or 1, we recover the
theory of deterministic cellular automata, such as that of Con-
way’s Game of Life (Berlekamp et al. 1982). These models
are known to be capable of producing extremely complex
behavior. On the other hand, if we choose j (x), r(x) �= 0,
1 for all x, then there is no need for an initial probability
p, and with a suitable choice of the arousal and depression
functions, we may achieve that the system hovers around a
certain density of active sites.

2.3 Mean field random cellular automata models

Phase transitions in mean field random cellular automata
models are analyzed in details by (Balister et al. 2003). Here
we summarize the results for the case of a finite grid or torus
Z2

n. In the mean field model instead of taking |�| specified
neighbors, we take |�| elements of the grid at random with
replacement. It is clear that the mean field model does not
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Fig. 1 Stable density ρ of the mean field model; critical probability pc

= 0.233

depend on the topology of the grid, and the only information
of relevance is the cardinality

Xt =
∑

k∈Z2
n

ak(t). (4)

We define ρt to be Xt/N where N = n × n is the size of
the finite grid or torus. Thus, ρt ∈ [0, 1] gives the density of
active points.

Let us consider the symmetric model s = 1−r . It is read-
ily shown that the mean field model in this case has one fixed
point at ρ = 0.5 for ε ∈ [εc, 0.5], but for ε < εc, the fixed
point ρ = 0.5 is unstable and there are two other fixed points
which are stable (Balister et al. 2004). Here we illustrate the
results in the 2-dimensional lattice, where the critical prob-
ability εc = 7/30. Indeed, let us write the condition for the
fixed point density as:

d = (1 − ε)

(�|�|/2�∑

i=0

B(|�|, i)d |�|−i (1 − d)i

)

+ε(1 −
�|�|/2�∑

i=0

B(|�|, i)d |�|−i (1 − d)i), (5)

where B(a, b) is the binomial coefficient. Considering |�| =
5, one readily obtains the condition for stable solution as
εc = 0.5 − (12d4 − 24d3 + 8d2 + 4d + 2)−1. After substi-
tuting the value d = 0.5 at criticality, we get εc = 7/30.
The above equation describing the fixed points approximates
power law relationship with very good accuracy:

|d − 0.5| ∝ (εc − ε)β, (6)

where β ≈ 0.5. Figure 1 illustrates the stable density values
for 0 ≤ ε ≤ εc as described by the above equation.

2.4 Local majority percolation models

Theoretical description of phase transitions in local RCA is
a very difficult problem. Mathematical description of phase
transitions in a narrow class of RCA with ε ≈ 0 are given

Table 1 Comparison of RCA and Other Lattice Models

β γ ν Ierror

RCA1 0.1308 1.8055 1.0429 0.02
TCA2 0.12 1.59 0.85 0.13
Ising(2D)3 0.125 1.75 1 -
CML 4 0.115 1.55 0.89 0.00

(1) Kozma et al. (2003), (2) Makowiec (1999); (3) Cipra (1987);
(4) Marcq et al. (1997)

in (Balister et al. 2004). Namely, we gave a rigorous proof
of the fact that the model spends a long time in either low-
or high-density configurations before crossing very rapidly
to the other state. Fairly good bounds were proved on the
very long time the model spends in the two essentially sta-
ble states and on the very short time it takes to cross from
one essentially stable state to another. This result, in fact,
gives a theoretical justification of the terminology ‘neurop-
ercolation’ of our approach. It is expected that these results
can be generalized to a wider range of ε. However, conditions
near the critical regime of RCAs are not tractable by rigorous
mathematical methods at present.

In the following discussions, we use extensive numerical
simulations to study the critical behavior of the neuroperco-
lation model. Simulations were run on a 2-dimensional torus
Z2

n of size up to 256 × 256. The next state of the site at a
given location will be given by the majority of the states of
itself and its four nearest neighbors, see Eqs.(1, 2, 3). All the
sites will be updated simultaneously at a certain time t . At
any time instant, the average activation ρ(t) was calculated
as the mean value over all lattice points, which is analogous
to the magnetization parameter of Ising models (Makowiec
1999).

As we vary ε in the range [0, 0.5], the model exhibits
a behavior similar to that seen in the mean field model. For
small ε there are two stable states, one with low density ρ and
one with high density 1 − ρ. There is a probability that the
system switches between high and low density states. This
probability can be made very small by increasing the grid
size n. For ε close to the critical probability, one sees large
grid regions with high density and large regions with low
density evolving in time and space. The variance of the den-
sity drastically increases as ε → εc. An important difference
between mean field models and local RCA is that the critical
probability is significantly lower in RCA with εc ≈ 0.1342.
For εc < ε < 0.5 the stationary density distribution of ρt is
unimodal for a sufficiently large but finite lattice. For ε < εc

the distribution becomes bimodal, as one would expect from
the mean field model.

In the characterization of RCA, we follow the methodol-
ogy applied by (Makowiec 1999), based on Binder’s finite-
size scaling theory (Binder 1981). Details of this method-
ology will be given in the next section, where models with
nonlocal connections are described. Here we summarize the
results obtained for the local RCA with majority voting rule.
According to finite-size scaling theory, the following power
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two-directional local connection

one-way connection

Fig. 2 Example of an inactive site with local and remote connections

Fig. 3 Example of a lattice with local and remote connections

laws are expected to hold:

ρ ∼ (ε − εc)
β for εc ≤ ε (7)

χ ∼ |ε − εc|−γ for ε → εc (8)

ξ ∼ |ε − εc|−ν for ε → εc . (9)

In the above equations, the following quantities are used:
critical probability εc, susceptibility χ , and correlation length
ξ . The estimated values of the critical exponents β, γ, ν are
given in Table 1. The results are reproduced from (Kozma
et al. 2003), and they are compared with exponents obtained
by the 2-dimensional Ising model, Toom cellular automata
(TCA) based on (Makowiec 1999), and coupled map lattice
model (CML) using (Marcq et al. 1997). For the Ising model,
the following identity function holds:

2β + γ = 2ν . (10)

Table 1 contains the error of the identity function, which
is defined as the difference of the left-hand side and right-
hand side of the above equation Ierror = 2β + γ − 2ν. It
has been concluded that the RCA with local majority voting
satisfies the exponential scaling relationships very well and it
belongs to the Ising, or possibly to a weak-Ising universality
class (Kozma et al. 2003).

3 Critical behavior in mixed models

3.1 Definition of mixed models

In the previous discussions, we have introduced simplified
models with either mean-field interactions, or RCAs with
local neighborhoods in the d-dimensional lattice. In this sec-
tion, we turn our attention to more realistic models of the
neuropil with a mixture of local and non-local connections.
In our model, local connections correspond to dendritic inter-
actions in the arbor of the neuron, while non-local connec-
tions describe far-reaching effects through long axons. In our
treatment, we want to preserve as much as possible from the

results obtained previously, in particular, concerning phase
transitions. At the same time, we generalize the previous re-
sults, to describe better the dynamics of cortical processes.

The mixed model has neurons with local and non-local
connections in the 2-dimensional lattice; see Figs. 2 and
3. Starting with a lattice having only local neighborhoods,
we add non-local (remote) connections to randomly selected
sites. The cardinality of the neighborhood does not change.
Accordingly, for each non-local neighbor, we cut a randomly
selected local neighbor. The locations of remote connections
are fixed and chosen randomly at the initiation. In the updates,
we use the majority rule as given by Eqs. (1–3). The lo-
cal neighborhood of site x = {i, j} is given as �({i, j}) =
{{i−1, j}, {i+1, j}, {i, j}, {i, j−1}, {i, j+1}}.An example
of the neighborhood in case of an additional remote neighbor
is: �({i, j}) = {{i, j}, {i, j − 1}, {i, j + 1}, {i + 1, j}, {i +
1, j + 1}}; see Fig. 2.

3.2 Experiments with mixed models

Starting with a lattice with randomly initiated site activation
and having a small value of ε, the activity of the network
quickly stabilizes in either mostly active or mostly inactive
mode of behavior. Because the systems are of finite size, they
jump after a sufficiently long time from one mode of behavior
to the other.

Examples of temporal dynamics of a system with 5% of
the sites having one remote neighbor are shown in Fig. 4.
Results are obtained with experiments on 128 × 128 lattices
for 106 steps. The figures illustrate subcritical (ε = 0.146),
critical (ε = 0.147), and supercritical (ε = 0.147) configura-
tions, respectively.

Figure 4 shows that the two modes are symmetrical.As εc

increases, jumps between the two stable states become more
frequent. Beyond the critical probability εc, the oscillations
become unimodal and the oscillation intensity decreases.

Figure 5 shows the average densities as the functions of ε
for four typical systems: the systems with no remote neigh-
bors (local), the systems with 25% sites having one remote
connection (25% (1)), the systems with 100% sites having
one remote connection (100% (1)), and the systems with
100% sites having four remote connections (100% (4)).

Figure 6 shows the typical spatial patterns for various
configurations of remote neighbors. We applied three levels
of ε in each configuration. The applied ε values correspond to
subcritical, critical, and supercritical regimes. Let us define
the parameter m(t) = ρ(t)−0.5, which can be interpreted as
magnetization in our model. The sites were initiated as mostly
active. On the left side in Fig. 6, ε is far below εc. In the mid-
dle part, ε ≈ εc. On the right side of Fig. 6, ε is greater then
εc. We can observe that subcritical and supercritical regimes
give spatial distributions indicating ferromagnetic and para-
magnetic states, respectively, as described by Ising models. In
the case of critical noise level (middle column), spatial clus-
tering is apparent, especially for configurations with smaller
number of remote connections, i.e., on Fig. 6a and b.



372 R. Kozma et al.

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

de
ns

ity

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

de
ns

ity

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

de
ns

ity

(a)

(b)

(c)

Fig. 4 Typical temporal behavior of the active sites for 106 steps. 5% of the sites have one randomly selected remote neighbor. Lattice size is
128 × 128; a ε = 0.146, b ε = 0.147, c ε = 0.151
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Fig. 5 Activation density as the function of ε for the systems with no
remote neighbors, 25%(1), 100%(1), and 100%(4), respectively

3.3 Critical exponents of mixed models

The probability distribution of the density (magnetization) is
bimodal for ε < εc. As ε increases, the peaks of the prob-
ability distribution function get closer to each other and its
peakedness increases. Measures of the peakedness are given
by the kurtosis, the fourth moment of the probability distri-
bution. Peakedness is given by:

α4(ρ) = 〈(ρ − 〈ρ〉)4〉
〈(ρ − 〈ρ〉)2〉2

. (11)

In our model 〈ρ〉= 0.5. Binder (1981) defines the 4th order
cumulants of the magnetization (m = ρ − 0.5) as follows:

U(l, ε) = 1 − 〈m4〉
3〈m2〉2

. (12)

Finite-size scaling theory implies that the interpolated
values of Eq. (12) are expected to intersect at a unique point
at the critical state, independently of the lattice size, which
we denote here as l. The location of this intersection will
give εc. Following (Makowiec 1999) we write the scaling
equations near the critical point, to obtain scaling exponents
ν, β, and γ . Exponent ν describes scaling of the correlation
length, and it is obtained from the 4th order cumulant U(l, ε)
as follows:

dU(l, εc)

dε
∝ l

1
ν . (13)

For the magnetization, the following relationship holds:

〈|d(l, εc)|〉 ∝ l−β/ν, (14)

where the average magnitude of the magnetization is given
by:

Table 2 Critical exponents in mixed models

εc β γ ν Ierror

local 0.1342 0.1308 1.8055 1.0429 0.02
25%(1) 0.1702 0.3071 1.1920 0.9504 0.09
100%(1) 0.2032 0.4217 0.9873 0.9246 0.02
100%(4) 0.2227 0.4434 0.9371 0.9026 0.02

〈|d|〉 = 1

n

n∑

t=1

|d(t) − 1

2
|. (15)

Susceptibility χ is defined as follows:

〈χ(l, εc)〉 = l2(〈|d(l, εc)|2〉 − 〈|d(l, εc)|〉2) (16)

Susceptibility χ satisfies the scaling relationship:

〈χ(l, εc)〉 ∝ lγ /ν−2. (17)

3.4 Estimating critical parameters in mixed models

Experiments were conducted for four different lattice sizes
l = 64, 80, 96, and 112, respectively. For each lattice size, we
have performed experiments with the following lattice con-
figurations: system with no remote connections, and systems
with remote connections 25%(1), 100%(1), and 100%(4),
i.e, 25% and 100% of sites having one remote neighbor, and
100% of sites having four remote neighbor, respectively. The
model with local connections only were introduced in the pre-
vious section. Results with mixed configurations are shown in
Fig. 7. Simulations were conducted with at least 5×107 steps
or until 〈|0.5 − d|〉 ≤ 0.00005. Using linear interpolations
of the scaling relations in the previous section, we determine
the critical exponents for all the systems and configurations.
The obtained critical parameters are summarized in Table 2.

The first step is to calculate εc; see Fig. 7a, top row. Having
εc,ν equals to the slope of linearly interpolateddU(64, εc)/dε,
dU(80, εc)/dε, dU(96, εc)/dε, and dU(112, εc)/dε in log
(dU) versus log(l) coordinates. ν is obtained in a similar way,
usingd(log |d(εc|)/dε,d(log |d(εc|2)/dε, andd(log |d(εc|4)/
dε; see Fig. 7b, second row from the top. −β/ν equals to
the slope of linearly interpolated 〈|d(64, εc)|〉, 〈|d(80, εc)|〉,
〈|d(96, εc)|〉, and 〈|d(112, εc)|〉 in log(〈|d|〉) versus log(l)
scale.β can also be calculated using |d(εc)|2, or using |d(εc)|4;
see Fig. 7c, third row from the top. To get the ratio −2β/ν
and −4β/ν, 〈|d|2〉 and 〈|d|4〉 are used similarly as the 〈|d|〉
for the ratio β/ν. γ equals to the slope of linearly interpo-
lated 〈χ(64, εc)〉, 〈χ(80, εc)〉, 〈χ(96, εc)〉, and 〈χ(112, εc)〉
in log(〈χ〉) versus log(l) scale; see Fig. 7d, bottom row.

Identity function 2β + γ = 2ν holds for Ising systems.
The error of this identity Ierror is used to verify the criti-
cal exponents estimation; see Table 2. We conclude that the
critical exponents significantly deviate from each other and,
in particular, from the Ising model. Parameters ν and γ are
decreasing, while β and εc are increasing, as the number of
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Fig. 6 The systems from top to bottom; a no remote neighbors; b 25% of sites have one remote neighbor 25%(1); all sites have one remote
neighbor 100%(1); and all four neighbors are remote 100%(4)

remote connections increases. εc is higher for systems with
more nonlocal connections. Still, the identity function is sat-
isfied in most cases with reasonable accuracy. It is expected
that the somewhat larger errors can be further reduced if the
number of iterations is increased.

4 Density of non-local links as critical parameter

In this section, we study the quantitative relationship between
the density of non-local connections and critical probabil-

ity εc. Previously we have observed that εc increases as the
density of remote connections increases. We have conducted
a large number of experiments with various system configura-
tions to quantify this relationship. In Fig. 8a–d, εc is shown as
a function of the proportion of sites with remote connections
for many different systems. To calculate εc, we applied the
same method as before. In the experiments in Fig. 8, we used
shorter runs than previously, as less accuracy is sufficient if
we do not aim at determining the critical exponents.

For a given number of remote links, usually there is a
range of critical probabilities, depending on the actual way
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Fig. 7 Estimation of various critical parameters of mixed models using Binder’s method of finite-size scaling. Experiments were conducted with
l × l lattices of size l = 64, 80, 96, and 112
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Fig. 8 εc as the function of the proportion of remote connections; a combinations of 50% of each 1 and 1, 1 and 2, 1 and 3, and 1 and 4 remote
connections; b 50% of each 1 and 1, 2 and 3, and 2 and 4 remote connections; c 50% sites having 3 and 4 remote connections; d all sites have
four remote connections

the connections are distributed. If the remote neighbors are
evenly distributed among the neurons in the network, we get
higher εc values. At the same, time the εc values are lower
when the remote neighbors are clustered towards a fewer
number of sites. It is concluded that the density of nonlo-
cal connections acts as a critical parameter. Accordingly, by
varying nonlocal connectivity while all other parameters of
the system are fixed, we can produce critical behavior and
phase transitions. This allows us to build phase diagrams in
the state space of noise and nonlocality of interactions.

Such a phase diagram is shown in Fig. 9 where results
obtained by various configurations are combined. Network
structures with higher number of reciprocal remote connec-
tions make the system more vulnerable to disturbances, when
the system evolution is governed by the random majority
rule. One-way connections increase the network resistance
to changes. In the case of only local or only remote neigh-
bors, obviously we have only one configuration giving εc

values of 0.13428 and 0.2242, respectively.

5 Evolution of critical behavior in the neuropil

We propose the following hypothesis on the emergence of
critical behavior with the potential of frequent phase transi-
tions in the neuropil. The neural connectivity is sparse in the
neuropil at the embryonic stage. Following birth, the con-
nectivity increases and ultimately reaches a critical level, at
which the neural activity becomes self-sustaining. The brain
as a collective system is at the edge of criticality, and it now
can undergo repeated phase transitions in a self-organized
way, under the influence of external and internal factors. We
suggest to implement this approach in a computational model
as follows:

• Start with an initial population of nonlinear units, which
model neural populations with given local properties;

• Incrementally increase the long-range connectivity us-
ing any desired strategy, producing, e.g., a scale-free
network with preferential attachment, or other objects;
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• Stop changing the connectivity when the critical state is
approached. From this stage on, the structure is essen-
tially fixed. Modifications still happens, e.g., due to
learning effects;

• Use the effects of inputs and endogenous noise to bal-
ance the system at the edge of phase transitions during
its operation;

• Operate the system through repeated phase transitions
as it processes, retrieves, and transforms data.

The above strategy is schematically illustrated in Fig.
10. By way of structural evolution, the neuropil evolves to-
ward regions of criticality or edge-of-criticality. Once the
critical regions are established, the connectivity structure
remains essentially unchanged. However, by adjusting the
noise and/or gain levels, the system can be steered towards
or away from critical regions. This is a control mechanism
that provides the conditions to phase transitions in the neuro-
pil. Obviously, the outlined mechanism is incomplete and in
realistic neural systems, a host of additional factors play cru-
cial role. However, the given mechanism is very robust and it
may provide the required dynamical behavior in a wide range
of real life conditions.

6 Conclusions

By describing certain topological and dynamical properties
of the neuropil, we aim at modeling phase transitions in
brains. Destabilization by sensory stimuli and sudden changes
in the spatio-temporal neurodynamics in the cortex resem-
bles phase transitions in physical systems. Phase transitions
are much more complex in brains than in physics. In brains,
transitions to a more organized phase are intermittent. The
transition to the highly organized state happens in a matter
of 3–5 ms. Multiple states commonly exist in both time and
space in each cerebral hemisphere.

We suggested a novel method for modeling and function-
ing of the neuropil. The neuropercolation approach to phase

Fig. 10 Illustration of self-organization of critical behavior in the per-
colation model of the neuropil

transitions in the neuropil has the prospect of creating power-
ful, robust computational models that match the performance
of neural systems. Our study identified key control parame-
ters of this process, i.e., communication noise, and relative
proportion of axonal connections. Phase diagrams were con-
structed and used to outline a hypothesis of self-organized
development of the neuropil.

The postulated self-organization of behavior near the crit-
ical state assumes learning and adaptation in the system, as
described in the previous section. The present random cel-
lular automata, however, utilizes uniform weights between
nodes, i.e., all nodes in a neighborhood are equally important.
As a result, the system exhibits relatively simple dynamics
with oscillations between two states. Clearly, learning effects
will shape the attractor landscape and carve out evolved land-
scapes with multiple attractors. Adding learning effects is an
important future task in building the hierarchy of dynamical
memory models.

The proposed method of controlling phase transitions in
the neuropil will be tested both in discrete neuropercolation
models and in the continuous domain of K models, which use
ordinary differential equations (Kozma and Freeman 2001)
We explore the dynamics of spatio-temporal patterns in the
neuropercolation model. In particular, we will study condi-
tions that may lead to the emergence of phase cones and
itinerant chaotic dynamics, as observed by brain monitoring
methods.
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