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Packing Circuits into KN .

PAUL BALISTER

Department of Mathematical Sciences

University of Memphis, Memphis TN 38152

We shall pack circuits of arbitrary lengths into the complete graph KN . More pre-
cisely, if N is odd and

∑t
i=1 mi =

(N
2

)
, mi ≥ 3, then the edges of KN can be written

as an edge disjoint union of circuits of lengths m1, . . . , mt. Since the degrees of the
vertices in any such packing must be even, this result cannot hold for even N . For N
even, we prove that if

∑t
i=1 mi ≤

(N
2

)− N
2

then we can write some subgraph of KN

as an edge disjoint union of circuits of lengths m1, . . . , mt. In particular, KN minus
a 1-factor can be written as a union of such circuits when

∑t
i=1 mi =

(N
2

)− N
2

. We
shall also show that these results are best possible.

1. Introduction

The main result of this paper is the following:

Theorem 1. Let L =
∑t

i=1 mi, mi ≥ 3, with L =
(
N
2

)
when N is odd and

(
N
2

)−N
2 −2 ≤

L ≤ (
N
2

)−N
2 when N is even. Then we can write some subgraph of KN as an edge disjoint

union of circuits of lengths m1, . . . , mt.

Note that we only guarantee the existence of circuits (even connected subgraphs) of
the appropriate sizes. We have no control over their exact form, in particular we cannot
ensure that they are all cycles.

Corollary 2. Let L =
∑t

i=1 mi, mi ≥ 3, then we can write some subgraph of KN as
an edge disjoint union of circuits of lengths m1, . . . , mt if and only if either

1 N is odd, L =
(
N
2

)
or L ≤ (

N
2

)− 3, or
2 N is even, L ≤ (

N
2

)− N
2 .

Proof. (Assuming Theorem 1).
If L ≤ (

N
2

) − 3 (N odd) or L ≤ (
N
2

) − N
2 − 3 (N even) then add an extra mi so that

L =
(
N
2

)
or L =

(
N
2

) − N
2 respectively. Using Theorem 1 and removing the final circuit

proves the “if”. For the “only if”, assume we have such a packing. The vertices of the
packed subgraph G of KN must be of even degree, so the vertices of the edge complement
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Gc of this graph must have even degree if N is odd and odd degree if N is even. In the
first case Gc must have either zero or at least three edges. In the second case Gc must
have at least N

2 edges since each vertex must have degree at least one.

A weaker result was proved in [1], which showed that for
∑

mi ≤
(
N
2

)
the circuits can

be packed into a complete graph with about 9N/2 vertices.
If we replace “circuits” by “cycles” in Theorem 1 and add the condition that all

mi ≤ N , then we obtain a conjecture of B. Alspach [4]. In general this conjecture is
much stronger than Theorem 1, however since all circuits of length at most five are
cycles, Theorem 1 does imply the main result of [7] which states that this conjecture
holds when all the cycle lengths mi are three or five.

Theorem 1 has been proved by F. Hwang and S. Lin [9] in the special case when all
the circuits are of the same length. More recently, the stronger Alspach’s conjecture has
also been proved when all the cycles are of equal length [5, 6].

Another application of Corollary 2 is in proving a conjecture of Burris and Schelp on
vertex-distinguishing proper edge-colorings of graphs in the case of 2-regular graphs (see
[1, 2] and especially [3] for details).

2. Notation

Write Kn for a complete graph, En for an empty graph and Cn for a cycle on n vertices.
If we have a specific set S of vertices in mind, we shall also use notations such as KS

and ES . Write K ′
n = Kn if n is odd and K ′

n = Kn \ I if n is even, where I is any 1-factor
of Kn. Here G1 \G2 represents the graph G1 with the edges of the subgraph G2 removed.
The graph K ′

n is the largest subgraph of Kn for which each vertex has even degree and it
has

(
n
2

)
or

(
n
2

)− n
2 edges depending on whether n is odd or even. Write P (v1, v2, . . . , vr)

for the trail of length r− 1 on the vertices vi with edges vivi+1. Also write C(v1, . . . , vr)
for the circuit P (v1, . . . , vr, v1) of length r. Note that we do not require the vertices vi

to be distinct.
If G1 and G2 are vertex disjoint graphs, G1 ∪G2 will denote the union of G1 and G2.

We also write G1 + G2 for the join of G1 and G2, i.e., the graph G1 ∪G2 with all edges
connecting G1 and G2 included.

If G1 and G2 are graphs, a packing of G1 into G2 is a map f : V (G1) → V (G2) such that
xy ∈ E(G1) implies f(x)f(y) ∈ E(G2) and the induced map on edges xy 7→ f(x)f(y)
is an injection from E(G1) into E(G2). Note that f is not required to be injective on
vertices, so if G1 contains a cycle or path, its image in G2 will be a circuit or trail. A
packing will be called exact if it induces a bijection between E(G1) and E(G2). We shall
write G1 7→ G2 to mean that an exact packing of G1 into G2 exists. With this notation,
the problem is one of packing a disjoint union of cycles ∪t

i=1Cmi into KN .
We shall write G1.G2 for the union of two graphs which are not disjoint on vertices.

In other words, it is the image of a packing of G1 ∪G2 which is injective on V (G1) and
injective on V (G2), but in which some vertices of G1 are identified with some vertices
of G2. To make this precise, we shall always make it clear which vertices of G1 are
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C4 C3 C4.C3

Figure 1. Example of linking graphs C4 and C3.

identified with which vertices in G2. Vertices of Gi that are identified will sometimes be
called a link of Gi, and we shall call the identification a linking of G1 and G2.

Later on we shall define for some graphs initial and final links as (ordered) sets of
vertices, possibly the same set. In these cases G1.G2 will identify the vertices of the final
link of G1 with the vertices of the initial link of G2 (in the same order). Clearly this is
only well defined if the two links are of the same size and no edge appears in both links.
The initial link of the resultant graph will be that of G1 and the final link will be that of
G2. This makes . an associative operation on graphs (when defined). Similarly, the initial
link of G1 ∪ G2 will be that of G1 and the final link will be that of G2. We shall write
G.n and G∪n for G.G . . . G and G ∪ . . . ∪G respectively, where in each case there are n

copies of G. We shall sometimes refer to G.n (or the image of G.n under some packing)
as a trail of G’s.

Assume we have a graph of the form Ca.Cb in which two cycles are linked at at least
one vertex. We can pack Ca+b into this graph by picking such a link vertex v and going
round Ca starting at v, then going round Cb. By induction, if we have a sequence of cycles
Ca1 .Ca2 . . . Car with each meeting the next in at least one vertex, we can pack a cycle of
length

∑r
i=1 ai exactly into such a graph. We shall use this observation many times in

what follows. We shall call a sequence of (connected) subgraphs in which each subgraph
meets the next a connected sequence of subgraphs. A circular connected sequence will be
a connected sequence in which the last subgraph also meets the first.

If we have an exact packing of a graph G with triangles, then each edge in G belongs
to a unique triangle in the packing. We can define trails, cycles, etc., of triangles as
trails, cycles, etc., (of edges) in which each edge belongs to a distinct triangle. The
existence of a trail of triangles T1, . . . , Tr is stronger than the existence of a connected
sequence of triangles. Indeed, for such a sequence to form a trail of triangles we need
V (Ti) ∩ V (Ti+1) = {vi} with vi 6= vi+1. Note that if we define initial and final links of a
triangle as single distinct vertices, then this terminology fits with the previous definition
of a trail of triangles as a packing of T .n (see Figure 4).

Define graphs Gn,r, for n and r not both odd, to be K ′
n+r with the edges of a subgraph

isomorphic to K ′
r removed. More explicitly, let R be a set of r vertices and M a set of n

vertices and let IM (resp. IR) be a 1-regular graph on M (resp. R) when n (resp. r) is
even. Then

Gn,r =





KM + ER, n even, r odd,

(KM \ IM ) + ER, n even, r even,

KM + IR, n odd, r even.

In all cases, we can write K ′
n+r = Gn,r.K

′
r by identifying (linking) R with the vertices
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Figure 2. Examples of graphs Gn,r.

of K ′
r, and identifying IR with the missing 1-factor of K ′

r when r is even. Whenever we
have a graph of the form Gn,r, the sets of vertices M and R will be defined as above.

Given a sequence of numbers m1, . . . , mt with mi ≥ 3, write L =
∑t

i=1 mi for their
sum. We shall define nj to be the number of terms mi that are equal to j, so that
L =

∑
mi =

∑
jnj .

3. The Strategy

The proof of Theorem 1 will be by induction on N , so for many of the lemmas we shall
assume the following:

Induction Hypothesis. The conditions of Theorem 1 hold for N and Theorem 1 holds
for all smaller values of N .

The idea behind the proof is to pack some cycles into KN \Kr and the rest by induction
into Kr to obtain a packing of all the cycles into KN . For reasons of parity, we use the
Gn,r defined above with n + r = N instead of KN \Kr since every vertex of Gn,r has
even degree. We can pack Gn,r∪Kr (or Gn,r∪K ′

r if n is odd) into KN . The advantage of
this approach is that we can choose the subset of cycles that we pack into Gn,r, leaving
any “awkward” cycles to be packed by induction into Kr.

One major complication is that an exact packing into Gn,r may not exist. Indeed, there
may be no subset S ⊆ {1, . . . , t} with

∑
i∈S mi = |E(Gn,r)|. To allow greater flexibility,

we need to allow some “overflow” out of Gn,r. To be precise, we shall pack our subset
of cycles ∪i∈SCmi into graphs of the form Gn,r.(∪k

i=1Cli), where we have linked some
extra cycles Cl1 , . . . , Clk to Gn,r at some vertices of R. The extra cycles and the manner
in which they are linked to Gn,r are chosen so as to make such a packing possible.

We shall then pack (∪k
i=1Cli)∪ (∪i∈ScCmi)—the Cli and the remaining Cmi—into Kr

using the Induction Hypothesis. We aim to combine these two packings into one packing
into Gn,r.Kr ⊆ KN (or Gn,r.K

′
r = KN when n is odd). However, when packing into KN ,

we must make sure that the packed cycles Cli in Kr meet Gn,r at the correct vertices so
that we get a packing of Gn,r.(∪k

i=1Cli) and ∪i∈ScCmi into KN (see Figure 3) Lemma 3
of Section 4 gives some sufficient conditions that ensure that this is possible. The details
are somewhat technical, but the basic idea is that the strategy works provided that there
are not too many additional cycles Cli and they are not linked to Gn,r at too many
vertices.

For small values of n we can write Gn,r as a connected sequence of squares and triangles.
This and Lemma 3 allows us to prove some special cases of Theorem 1 when we either
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C8 ∪ C6 7→ G2,5.C3 and C3 ∪ C7 7→ K5 ⇒ C8 ∪ C6 ∪ C7 7→ K7

Figure 3. Example with m1 = 8, m2 = 6, m3 = 7, l1 = 3, S = {1, 2}.
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T .3 = T.T.T O.3 = O.O.O

Figure 4. A trail of Triangles and a trail of Octahedra.

have a large number of cycles Cmi of certain lengths (Section 4, Lemmas 4 and 5) or if N

is sufficiently small (Section 5). These results are needed to cover some special cases not
handled by the general methods of later sections. However, for more general combinations
of cycle lengths this approach will fail since we would need to link too many additional
cycles Cli to Gn,r. Instead, for more general combinations of cycle lengths we need to
look at Gn,r for large n. For these n, Gn,r becomes a much more complicated graph, so
we shall decompose it into simpler graphs.

Our strategy then is to decompose some Gn,r with n+r = N into connected sequences
of octahedra (K ′

6). We shall then devise methods of packing our cycles Cmi into such
connected sequences. Octahedra were chosen because they are large enough to allow a
wide range of packings by cycles but sufficiently small to analyze these packings. The
situation is complicated by the fact that in general Gn,r cannot be packed with octahedra
exactly. Indeed, we will only be able to get such packings when N ≡ 2 mod 4. For other
N , we shall need to pack some other small graphs into Gn,r to fill the “gaps” left by the
octahedra.

Sections 6 and 7 deal with the decomposition of Gn,r into octahedra. In Section 6 we
pack Gn,r for suitable n and r with trails of triangles. In Section 7, we double up vertices
to obtain packing of some larger Gn,r with trails of octahedra together will some other
small graphs. Generating octahedra from trails of triangles ensures that the octahedra
are linked together in a suitable manner.

Define O to be the graph of an octahedron, so O = K ′
6 = K2,2,2 = E2 + E2 + E2.

The first E2 will be the initial link and the last E2 will be the final link of O. In fact by
symmetry it does not matter which E2’s are chosen, or the order of the vertices in either
link. The trail of octahedra generated in Section 7 is then a packing of O.r = O.O . . . O

where the final link of each octahedron is linked to the initial link of the next one (recall
the notation defined in Section 2 and see Figure 4).
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Having packed trails of octahedra into some Gn,r, we now need to pack our cycles Cmi

into these trails. In general, it will not be possible to group the cycles into combinations
with total length |E(O)| = 12. We therefore need to allow some “overflow” from one
octahedra to the next. This is done in Section 8, where we define the “overflow” graphs
Ln and inductively pack (almost) arbitrary combinations of cycles into trails of octahedra.
The proof of Theorem 1 will follow, at least in the case when N ≡ 2 mod 4. For other N ,
Gn,r is not packed completely with octahedra, and we need to pack cycles into some other
small graphs. In the case N ≡ 3 mod 4 these extra graphs are triangles. We can pair the
triangles up with octahedra into trails of the form T.O.T.O . . ., and we can handle T.O

in very much the same way as O. The cases N ≡ 2 and 3 mod 4 are proved in Section 9.
For N ≡ 1 mod 4, the extra graphs are K5’s linked at a single vertex. These can also
be packed with a wide variety of cycles. The proof of Theorem 1 in this case is given in
Section 10. Since K5’s cannot pack every cycle length, we need to handle a number of
special cases separately. These are the special cases in Section 4 described above. The
most difficult case is when N ≡ 0 mod 4. For these we pack cycles into linked G4,4’s. The
graph G4,4 has 20 edges, which makes packing cycles into G4,4 much more complicated
than octahedra and K5’s. Also, G4,4’s cannot be used to pack triangles, so we run into
problems when there are many triangles to be packed. In particular, we need to construct
several special packings to handle the case when N is small and there are many triangles.
Section 11 gives the details of the proof in this case.

4. Some Packing Lemmas

As described in Section 3, we shall pack some subset ∪i∈SCmi , S ⊆ {1, . . . , t}, of the
cycles into a graph of the form Gn,r.(∪k

i=1Cli) and then pack the Cli and the remaining
Cmi into Kr using the Induction Hypothesis. We aim to combine these two packings into
one packing into Gn,r.Kr ⊆ KN (or Gn,r.K

′
r = KN if n is odd). However, when packing

into KN , we must make sure that the packed cycles Cli in Kr meet Gn,r at the correct
vertices so that we get a packing of Gn,r.(∪k

i=1Cli) and ∪i∈ScCmi into KN . The following
lemma gives some sufficient conditions that ensure that this is possible.

Lemma 3. Assume the Induction Hypothesis. Suppose that we can pack some subset of
the cycles ∪i∈SCmi exactly into some graph of the form Gn,r.(∪k

i=1Cli) where N = n + r

and assume the links V (Cli)∩V (Gn,r) are pairwise disjoint subsets of R (of Gn,r). Then
we can pack all the cycles into some subgraph of KN provided any one of the following
conditions holds.

1 n is even, k ≤ 9 and |V (Cli) ∩R| = 1,
2 n is odd, k ≤ 3 and V (Cli) ∩R = {vi} where vi are in distinct components of IR,
3 n is even, |V (Cli) ∩R| = 1 for i ≥ 2, l1 = 3, 4 or 5 and k ≤ 5, 2 or 1 respectively,
4 n is even, k ≤ 6, |V (Cl1) ∩R| = 2 and |V (Cli) ∩R| = 1 for i ≥ 2,
5 n is even, k = 2, l1 = 3 and |V (Cli) ∩R| = 2 for i = 1, 2.

Proof. By the Induction Hypothesis, we can find a packing f which packs the remaining
cycles ∪∈ScCmi and all the Cli into Kr. The conditions on the total length of these cycles
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in Theorem 1 are satisfied since |E(K ′
N )| − |E(Gn,r)| = |E(K ′

r)| and N even implies r

even. We shall consider the five cases separately.
1. If we take s ≥ 1 of the circuits f(Cli), then they contain in total at least 3s

edges of Kr. Assume these circuits meet no more than s− 1 vertices. By looking at the
degrees of these vertices we see that (s − 1)b 1

2 (s− 2)c ≥ 3s. This is not possible when
s ≤ k ≤ 9, so the circuits meet at least s vertices. By Halls’ marriage theorem, we can
pick distinct vertices u1, . . . , uk with f(Cli) meeting ui. By a suitable identification of
the vertices of Kr with those of R, we can assume that V (Cli)∩R = {ui}. We now have
a packing of (Gn,r.(∪k

i=1Cli)) ∪ (∪i∈ScCmi
) into some subgraph of Gn,r.Kr ⊆ KN by

extending f by the identity on Gn,r. Composing with the given packing of (∪i∈SCmi
)

into (Gn,r.(∪k
i=1Cli)) gives the result.

2. Let G be the image of f in Kr. Now r is even and N is odd, so |E(G)| =
(
N
2

) −
|E(Gn,r)| =

(
r
2

) − r
2 . Therefore the complementary graph I = Gc must have r/2 edges

and all vertices of odd degree. Hence I is a 1-factor of Kr and G = Kr \ I. Since
(2s− 2)b 1

2 (2s− 3)c < 3s for s ≤ k ≤ 3, each set of s circuits f(Cli) meets at least 2s− 1
vertices and hence at least s components of I. Pick u1, . . . , uk in distinct components of
I with f(Cli) meeting ui. We can now identify G with KR \ IR in such a way that I

corresponds to IR and ui = vi. The result now follows as in part 1.
3. The image f(Cl1) must be a cycle since l1 ≤ 5. We can therefore match the vertices

of V (Cl1) ∩ R with their images under f in Kr. To match the remaining vertices, we
need to find distinct vertices u2, . . . , uk in Kr with f(Cli) meeting ui and ui /∈ f(Cl1).
It is sufficient to ensure that s ≤ k − 1 of the other circuits meet at least s + l1 vertices
given that a l1-cycle already uses l1 edges. This can be checked as above by showing
(s + l1 − 1)b 1

2 (s + l1 − 1)c < 3s + l1 holds for 1 ≤ s ≤ k − 1 when l1 = 3, 4, 5 and
k ≤ 5, 2, 1 respectively.

4. We must first show that if we pick two vertices wi and wj of Cl1 = C(w1, . . . , wl1),
we can ensure their images under f are distinct. Assume this is not the case and the
image under f is u = f(wi) = f(wj). Modify f on Cl1 by cyclically moving its image
vertices one step around the circuit, say f+(wi) = f(wi+1) and f+ = f on all other
cycles. If the images of wi and wj are still identical, say u′ = f+(wi) = f+(wj), then the
edge uu′ occurs twice in the image f(Cl1), contradicting the definition of the packing f .
The argument now proceeds as before. We check that any s ≤ k−1 ≤ 5 of the remaining
circuits meet at least s +2 vertices (so the matching of vertices to the remaining circuits
avoids the two vertices f(wi) and f(wj)).

5. It is enough to require that |f(Cl2 ∩R)| = 2 and |f(Cl2 ∩R) ∩ f(Cl1)| ≤ 1 since by
cyclically permuting f on Cl1 we can then make f(Cl1 ∩R) and f(Cl2 ∩R) disjoint pairs
of vertices. Let f(Cl1) = {u1, u2, u3} and Cl2 ∩R = {w1, w2}. Since f(Cl2) 6⊆ {u1, u2, u3}
we can cyclically permute f on Cl2 so that f(w1) /∈ {u1, u2, u3}. If f(w2) 6= f(w1)
then we are done. Otherwise let u = f(w1) = f(w2) and cyclically permute f one step
forward and backwards on Cl2 as in part 4 to get f+ and f− with f+(w1) 6= f+(w2) and
f−(w1) 6= f−(w2). Since f(w1) = f(w2) the points w1 and w2 must be distance at least
three apart on Cl2 . Now if f+(w1) = f−(w2) = u′ then we have two edges in Cl2 whose
image under f is uu′ contradicting the definition of the packing f . Similarly we can’t
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G2,4 = C4.C4 G2,3 = C4.C3 G1,4 = C3.C3

Figure 5. Packing G1,r and G2,r with C3’s and C4’s.

have f+(w2) = f−(w1). Hence, f±(w1), f±(w2) are four distinct vertices and so at least
one is not in {u1, u2, u3}. Replacing f by either f+ or f− then gives the result.

The next two lemmas use Lemma 3 with small values of n to obtain packings in some
special cases when we have enough cycles of lengths divisible by three or four or equal
to seven. Recall that nj is the number of cycles of length j.

Lemma 4. Assume the Induction Hypothesis. If
∑

jn4j ≥ 1
2 (N−3) then the conclusion

of Theorem 1 holds.

Proof. The cases when N ≤ 3 are trivial, so assume N ≥ 4. Let n = 2, r = N − 2
and consider the graph G2,r. Write R as the union of pairs {ai, bi}, i = 1, . . . , br/2c and
an extra vertex {c} if r is odd (see Figure 5). Then Si = EM + E{ai,bi} = E2 + E2 are
squares. Since the squares are all connected (via M), these form a connected sequence
of squares S1.S2 . . . Sbr/2c. Take each cycle Cmi with mi ≡ 0 mod 4 in turn and pack
them into mi/4 consecutive squares in this sequence. We continue until we run out of
squares. To pack the last such Cmi we may need to link an extra cycle to the vertex
abr/2c, say, to pack all of this cycle exactly. Since the total length of all such Cmi is at
least 4br/2c, we shall not run out of these cycles. If N is even, we have used all the edges
of G2,r = EM + ER and we are done by part 1 of Lemma 3 with k ≤ 1.

Now assume N is odd. The remaining edges of G2,r = KM + ER form the triangle
T = KM + E{c} = K2 + E1. If one of the remaining cycles Cmi , mi 6≡ 0 mod 4, is of
length 3 or ≥ 6, we can pack this into T (linking a cycle Cmi−3 to vertex c if mi ≥ 6). By
part 1 of Lemma 3 with k ≤ 2 we are done in this case. This also covers the case when∑

jn4j ≥ 1
2 (N + 1) and not all of these cycles are squares. (Link a C5 to c, and start by

packing a cycle of length mi ≥ 8, mi ≡ 0 mod 4, into this C5, T and possibly some Si

first. Then pack the remaining Cmi with mi ≡ 0 mod 4 into the other Si’s as above.)
Now assume there are two cycles of length 5. We can pack these into KM∪{a1,b1,c} = K5

(as C(a1, b1, c, u1, u2) and C(a1, c, u2, b1, u1) where M = {u1, u2}). Now pack the the
cycles of length mi ≡ 0 mod 4 into S2, . . . , Sbr/2c as above. This uses all the edges of
G2,r, the triangle C(a1, b1, c) and possibly one other cycle linked to abr/2c, say. We are
now done by part 3 of Lemma 3 with l1 = 3, k ≤ 2.

The only remaining cases are when every cycle has length divisible by 4 except possibly
for a single C5. In this case L =

(
N
2

) ≡ 0 or 1 mod 4, so N ≥ 7 and
∑

jn4j ≥ 1
4 (

(
N
2

) −
5) ≥ 1

2 (N + 1). We can therefore assume we have at least 1
2 (N + 1) squares. Pack

1
2 (N−5) squares into S2, . . . , Sbr/2c, and 3 squares as C(a1, u1, u2, b1), C(a1, u2, c, a2) and
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C(b1, u1, c, b2). This gives a packing using the edges of G2,r and C(a1, b1, b2, c, a2) = C5.
We are now done by part 3 of Lemma 3 with l1 = 5, k = 1.

Lemma 5. Assume the Induction Hypothesis with N odd. If
∑

jn3j ≥ 1
2 (N − 1) or

n7 ≥ 1
2 (N − 1) then the conclusion of Theorem 1 holds.

Proof. First assume
∑

jn3j ≥ 1
2 (N−1) and let n = 1, r = N−1. Then G1,r = K1+IR

forms r/2 triangles linked by a common vertex. Pack cycles of length divisible by 3 into
this graph in a manner analogous to Lemma 4. We may need to link a cycle to one of
the vertices of R to pack the last cycle. Using part 2 of Lemma 3 with k ≤ 1 gives the
result. Now assume n7 ≥ 1

2 (N − 1). Let n = 3, r = N − 3. Then G3,r = K3 + IR is an
edge disjoint union of r/2− 1 graphs E3 +K2, each of which can be packed with a single
C7, and one K3 + K2 = K5, which can be packed with a C7 and a C3. By permuting the
vertices of this K5, we can ensure that the C3 meets R, so by linking a C4 to one of the
vertices of R we can pack another C7. We now have a packing of r/2 + 1 = 1

2 (N − 1)
C7’s into G3,r.C4. The result now follows from part 2 of Lemma 3 with k = 1.

5. Packing KN for small N .

Since the methods that we shall use in subsequent sections do not always apply for
small N , it will be necessary to give alternative proofs for these N . We include these
proofs first, since some of these results will be useful later. The cases treated here require
long and tedious case by case checking. As a result, we do not include all the details.
Since the methods used in these proofs are not used again (except briefly at the end of
Section 11), the reader may wish to skip the proofs in this section on first reading. For
N ≤ 10, most of the cases are also implied by the results in [11].

Lemma 6. Assume the Induction Hypothesis with N ≤ 11, N odd. Then the conclusion
of Theorem 1 holds.

Proof. The cases when N < 5 are clear, so we shall assume 5 ≤ N ≤ 11. Write
each cycle length mi 6= 5 as a sum of 3’s and 4’s. For example, 11 = 4 + 4 + 3 and
6 = 3+3. All cycle lengths except for 5 can be written in this way (though not necessarily
uniquely). Let tT , sT and pT be the total number of 3’s, 4’s and remaining C5’s so that
L =

(
N
2

)
= 3tT +4sT +5pT . The idea is to pack some of the cycles as connected sequences

of triangles, squares and pentagons in certain explicit constructions.
Assume first that sT ≥ 1

2 (N − 3). If all of the 4’s occur in cycles that are written
without 3’s, then these cycles have lengths divisible by four and we are done by Lemma 4.
Hence we may assume that at least one of the cycles, Cm1 say, is written with both 3’s
and 4’s. Using the construction of Lemma 4 we can write G2,N−2 as a connected sequence
T.S1 . . . Sbr/2c, where T is the triangle KM +E{c}. Now pack the cycle m1 = 3+r.4+s.3
into the triangle and the first r squares. Link, if necessary, a C3s to the rth square at a
vertex of R. Proceed with each other cycle in turn that has at least one 4 in its expansion,
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packing at least one square and linking a cycle to a vertex of R whenever necessary. Since
sT ≥ 1

2 (N − 3), we shall pack the whole of G2,r.(∪Cli) where the Cli are linked to G2,r

at single distinct vertices of R. The result now follows from part 1 of Lemma 3 with
k ≤ 1

2 (N − 3) ≤ 4.
Now assume tT ≥ 1

2 (N − 1). Using the first construction of Lemma 5, we can write
G1,N−1 as a connected sequence of triangles. Pack cycles written with 3’s into this con-
nected sequence linking extra cycles Cli when necessary at vertices in R. We pack the
cycles written with 3’s only first. Hence if we need to link more than one cycle to G1,N−1,
each linked cycle will arise by packing a Cmi

with mi written with at least one “4”. Since
we can assume sT ≤ 1

2 (N − 3)− 1 ≤ 3, we shall need to link at most three cycles Cli to
G1,N−1. The cycles Cli are linked at single vertices to distinct components of IR, so we
are done by part 2 of Lemma 3.

Finally, assume pT ≥ 1
2 (N − 1). Remove 1

2 (N − 1) C5’s, add a C(N+1)/2 and use the
Induction Hypothesis to pack these cycles into KN−2. (The total number of edges is(
N
2

) − 5
2 (N − 1) + 1

2 (N + 1) =
(
N−2

2

)
.) By suitably labeling vertices of KN−2 = KR as

ai, 1 ≤ i ≤ 1
2 (N − 1) and bi, 1 ≤ i ≤ 1

2 (N − 3), we can assume the cycle C(N+1)/2 is
packed as C(x, a1, a2, . . . , a(N−1)/2) where x = b1 when the cycle is packed as a cycle, and
x = a3 in the special case when N = 11 and C(N+1)/2 = C6 is packed as two connected
triangles. Now pack 1

2 (N − 1) pentagons into G2,N−2.C(N+1)/2 as follows:

C(ai, u1, bi, u2, ai+1), 1 ≤ i ≤ 1
2 (N − 3), and C(a1, u2, u1, a(N−1)/2, x),

where M = {u1, u2}. This uses the edges of C(N+1)/2 and G2,N−2 and hence gives a
packing of the original cycles into G2,N−2.KN−2 = KN .

If none of these conditions hold, the total number of edges can be at most

3( 1
2 (N − 1)− 1) + 4( 1

2 (N − 3)− 1) + 5( 1
2 (N − 1)− 1) = 6N − 22.

However L =
(
N
2

)
> 6N − 22 when N ≥ 5.

Packing KN for even N is more difficult since we cannot use Lemma 5 in this case.
Before we prove the result for small even N , we shall list some explicit packings that we
will need. Recall that a circular connected sequence of triangles is an edge-disjoint set of
triangles T1, . . . , Tr with V (Ti) ∩ V (Ti+1) 6= ∅ and V (Tr) ∩ V (T1) 6= ∅.

Lemma 7.

1 For N = 8, 10 and 4 ≤ m ≤ N , or for N = 14 and 7 ≤ m ≤ N we can pack
KN with a circular connected sequence of triangles T1, . . . , Tr and a cycle Cm with
3r + m ≥ (

N
2

) − N
2 − 2 and the cycle packed as a cycle (i.e., the packing is injective

on the vertices of Cm).
2 We can pack G8,4 exactly with a circular connected sequence of triangles together

with either one C5 meeting R or two linked C4’s which meet distinct vertices of R (of
G8,4).

3 We can pack C3 ∪ C4 ∪ C5, C6 ∪ C6 and C6 ∪ C3 ∪ C3 into K ′
6 with the C6’s packed

as cycles.
4 We can pack Cm and two connected triangles into K6 when m = 4 or 5.
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Proof. (We made use of a computer search to find the constructions in this proof.)
Label the vertices of KN as 0 to N−1 in part 1, and the vertices of G8,4 = (KM \IM )+ER

as R = {0, 1, 2, 3}, M = {4, 5, 6, 7, 4′, 5′, 6′, 7′} in part 2 where IM consists of the edges
nn′. Remove the following circular connected sequences of triangles from K8, K10, K14

and G8,4 respectively

From K8 C(0, 3, 5), C(0, 4, 6), C(1, 3, 6), C(1, 4, 7), C(2, 5, 7)
From K10 C(0, 3, 6), C(0, 4, 7), C(0, 5, 8), C(1, 4, 8), C(1, 3, 7)

C(1, 6, 9), C(2, 4, 9), C(2, 6, 8), C(2, 5, 7), C(3, 5, 9)
From K14 C(0, 4, 6), C(0, 5, 7), C(0, 8, 10), C(0, 9, 11), C(1, 6, 9), C(1, 3, 5)

C(1, 4, 8), C(1, 7, 11), C(1, 10, 12), C(2, 5, 10), C(2, 4, 9), C(2, 6, 11)
C(2, 7, 13), C(2, 8, 12), C(3, 6, 12), C(3, 7, 10), C(3, 8, 11), C(3, 9, 13)
C(4, 10, 13), C(4, 7, 12), C(5, 9, 12), C(5, 11, 13), C(6, 8, 13)

From G8,4 C(0, 6′, 7′), C(0, 4′, 5′), C(0, 6, 7), C(1, 5′, 7), C(1, 5, 7′), C(1, 4′, 6′)
C(2, 4′, 5), C(2, 4′, 7), C(2, 5′, 7′), C(2, 4, 6), C(4, 5′, 6′), C(3, 6′, 7)
C(3, 5′, 6), C(3, 4′, 5), C(3, 4, 7′), C(4′, 6, 7′)

The resulting graphs are shown below (where we have removed some unimportant vertices
and edges for clarity).
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H8 H10 H14 H8,4

We shall pack H8, H10 and H14 with Cm and some triangles. These triangles will meet
the underlined vertices above so can be inserted in the circular connected sequences at
the points where the sequences are connected via these vertices. The result follows by
inspection for N = 8, m = 8, 7 (with no triangles), m = 6, 5, 4 (with triangle C(0, 1, 2)),
N = 10, m = 10, 9, 8 (with no triangles), m = 7, 6, 5 (with triangle C(7, 8, 9)), N = 14,
m = 14, 13 (with no triangles), m = 12, 11, 10 (with triangle C(0, 1, 2)), m = 9 (with
triangles C(0, 1, 2) and C(7, 8, 9)) and m = 8, 7 (with triangles C(0, 1, 2) and C(0, 12, 13)).
For N = 10, m = 4, delete C(2, 4, 9) from the connected sequence of triangles (leaving it
still connected), use the three triangles in H10 and the square C(2, 3, 4, 9). Similarly H8,4

can be packed with two squares or a pentagon and a triangle C(7, 4, 5). Parts 1 and 2
now follow. Parts 3 and 4 are easy to check.

Following the proof of Lemma 6, we shall write the cycle lengths mi as a sum of 3’s,
4’s and 5’s. However, unlike Lemma 6, we shall write them so as to use as many 4’s as
possible. For example, 9 = 4 + 5, 13 = 4 + 4 + 5, 10 = 4 + 3 + 3. It is clear that all mi

will be written in one of the following forms:

3, 5, 3 + 3, n.4, n.4 + 3, n.4 + 5, or n.4 + 3 + 3 (n ≥ 1).
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As in Lemma 6, we write tT , sT and pT for the total number of 3’s, 4’s and 5’s so that
L = 3tT +4sT +5pT . As before, we shall attempt to pack some of the cycles as connected
sequences of triangles, squares and pentagons.

Lemma 8. Assume the Induction Hypothesis with N even, N ≤ 12 or with N = 16
and 2sT + pT ≤ 7. Then the conclusion of Theorem 1 holds.

Proof. The cases when N < 6 are clear, so assume N ≥ 6. Let n = 2, r = N − 2 and
consider packings of G2,r. As in Lemma 4 this can be written as a connected sequence
of r/2 squares. If sT ≥ r/2, we are done by a similar (but slightly simpler) argument to
that in Lemma 6, so assume sT < r/2. We shall use the following packings of t triangles,
p pentagons and s squares into G2,r.Cl where t is even, l = t+ p ≥ 3 and t+2p+2s = r.
Label the vertices of R as a1, . . . , al, al+1 = a1 and b1, . . . , br−l and let M = {u1, u2}.
Pack pairs of triangles as C(ai, u1, ai+1) and C(ai+1, u2, ai+2) with i odd, 1 ≤ i < t.
Then pack pentagons as C(ai, u1, bj , u2, ai+1) for 1 ≤ j ≤ p, i = j + t. Finally, pack
squares as C(bj , u1, bj+1, u2) with j > p. This uses all the edges of G2,r and the cycle
Cl = C(a1, . . . , al). All the squares and pentagons are connected to every other cycle in
this packing (via M) and the triangles form a connected sequence. We shall consider four
cases.

1. The cases r/2− 2 ≤ sT < r/2, 1 ≤ pT ≤ 2, 6 ≤ N ≤ 12.
Use the construction above with s = r/2−2, p = 1, t = 2, l = 3. Pack cycles written with
4’s or 5’s into the squares and pentagons of this construction. We may need to link extra
cycles to the squares and pentagons in this construction to pack these cycles fully. At
most s + p ≤ 4 extra cycles will be needed and they can be linked to distinct vertices bj

(so avoiding Cl). If these cycles also use at least two 3’s between them, we can use them
to pack the remaining two triangles in the construction. Otherwise use two cycles Cmi

of length 3 or one cycle of length 6 (if they exist). By considering the total number of
edges it can be shown that we can fill the two triangles in the construction except in
three cases. The first is packing C7 ∪C7 ∪C5 ∪C5 into K8. For this split one of the C7’s
into a C3 and a C4. Pack these and check that we can make the C3 meet the C4 in the
final packing. The next case is tT = sT = pT = 1 in K6. This case follows from part 3
of Lemma 7 (the cycles clearly all meet in this packing since there are only six vertices).
Finally there is the case pT = 2, tT = sT = 0 in K6. In this case we have a packing into
K5 which is a subgraph of K6. In the general case we are done by part 3 of Lemma 3
with l1 = l = 3, k ≤ 4.

2. The cases r/2− 2 ≤ sT < r/2, pT = 0, 6 ≤ N ≤ 12.
Use the construction above with s = r/2− 2, p = 0, l = t = 4. Pick a minimal subset of
cycles that use at least s 4’s between them and as many 3’s as possible. By minimality,
these cycles must use at most k 3’s where k ≤ 2s ≤ 6. By counting edges, it can be
shown that if k < 4 then there are enough cycles of lengths 3 and 6 to pack all the
remaining 4 − k triangles of the construction except in the case sT = 1, tT = 2 in K6.
This exceptional case can be packed into K5 which is a subgraph of K6. In the general
case we take a minimal set of C3’s and C6’s to pack the remaining triangles. Pack these
and then pack each of our minimal subset of cycles into the triangles and squares of the
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construction. It can be shown that we need to split at most one cycle and hence need
only link an extra cycle to at most one of the squares. The result follows from part 3 of
Lemma 3 with l1 = l = 4 and k ≤ 2.

3. The cases sT < r/2− 2, sT + pT < r/2 or N = 16.
Use the construction above with s = sT , p = pT , t = r−2s−2p ≥ 0. Pack all cycles that
use 4’s or 5’s, then continue with the C3’s and C6’s until we have packed G2,r.Cl. In all
these packings, t ≥ 2(s− 1), so at most one extra cycle needs to be linked (at most two
3’s occur in each cycle written with 4’s and none occur in cycles written with 5’s). The
linked cycle is of length 3 or 6 (if it exists) and all unpacked cycles are C3’s and C6’s.
These can be packed together with Cl into KN−2 by part 1 of Lemma 7 when N > 8.
We pack the C3’s and C6’s into the sequence of triangles. Since the sequence is circular
and meets every vertex, we may start at any vertex and the cycle linked to G2,r.Cl can
be connected up properly. For N = 8 use parts 3 and 4 of Lemma 7 instead.

4. The cases sT + pT ≥ r/2, pT ≥ 3, 6 ≤ N ≤ 12.
Since pT ≥ 3, N ≥ 8 and r/2 ≥ 3. Use the construction with t = 0, s = min(sT , r/2− 3),
l = p = r/2 − s ≥ 3. Pick a minimal subset of cycles that use at least s 4’s and p 5’s
between them. Pack these into G2,r.Cl as before. We may have to link extra cycles to
the squares and pentagons in the construction. If l > 3 then all the 4’s are used and the
only extra cycles are 3’s and 5’s linked to 4’s. There will be at most s such cycles, but
s+ l = r/2 ≤ 5, so if l = 5 then s = 0 and if l = 4, s ≤ 1. Finally if l = 3 we may need to
link cycles to all but one of the 4’s and 5’s, so we may need to link s + p− 1 ≤ 4 cycles.
(We will never need to link cycles to all the squares and pentagons since 5’s can only be
linked to 4’s.) These can be linked to distinct vertices bj as in part 1. In all cases we are
done by part 3 of Lemma 3.

We have now covered all possible cases, so the result follows.

6. Packing Trails of Triangles in G2n,r

In this section we shall pack some graphs of the form G2n,r with trails of triangles. If
we have an exact packing of G2n,r with triangles, then each edge belongs to a unique
triangle. Recall that in Section 2 we defined trails and cycles of triangles as trails and
cycles (of edges) in which each edge belongs to a distinct triangle. These trails will be
used in two ways. One is when we have a very large number of cycles of length divisible by
three. These cycles can be packed into such a trail by a method analogous to Lemma 5.
(A similar method was used in [1] to prove Theorem 1 when all the cycle lengths are
divisible by 3). However, we shall also use these trails in Section 7 to construct packings
of octahedra and related graphs into larger G2n,r. We shall then pack these trails of
octahedra with cycles of arbitrary lengths.

In Section 7 we will need to be careful about where the trail ends, and we may have
to pack a cycle of triangles separately. Unfortunately, this introduces many technicalities
into the proofs, which could be done much more simply otherwise.

Packings of G2n,r with triangles exist whenever 2n > r and |E(G2n,r)| ≡ 0 mod 3. We
shall not prove this here in full generality, (for the cases r ≡ 1, 3 mod 6 see [8], for the
general case see [10] and [7]), but restrict ourselves to some specific r and n. Let r = r(N)
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Figure 6. Examples of Zm and IS .

be defined by

r(N) =





r(N + 1)− 1, N ≡ 0 mod 2,
1
2 (N − 1), N ≡ 3 mod 4,
1
2 (N − 7), N ≡ 1 mod 4, N ≥ 13,

3, N = 9,

Undefined, N = 0, 1, 4, 5.

For these values of r, define n by N = 2n + r. We shall pack triangles into G2n,r.
Define a prism Zm, m ≥ 3, to be a 3-regular graph on 2m vertices {ai, bi : i ∈ Z/mZ}.

The edges of Zm are those of the form aibi, aiai+1 and bibi+1, so Zm is two cycles
of length m joined by a 1-factor. Define 1-factors of K2m by labeling the vertices as
{c} ∪ {ci : i ∈ Z/(2m− 1)Z} and setting

Is = {cicj : i + j ≡ s mod 2m− 1} ∪ {cci : 2i ≡ s mod 2m− 1}, s ∈ Z/(2m− 1)Z.

For S ⊆ Z/(2m − 1)Z, let IS be the edge disjoint union of Is for s ∈ S. In particular
I{0,...,2m−2} = K2m.

Lemma 9.

1 For all s, I{s,s+1} is a Hamiltonian cycle of K2m.
2 Both I{0,1,2} and Zm are edge disjoint unions of three 1-factors, two of which form a

Hamiltonian cycle.
3 C2m +E2 can be packed exactly with a cycle of triangles. It can also be packed exactly

with a trail of triangles ending at a vertex v of E2 and starting with a triangle that
meets the other vertex of E2. Moreover, all but one of the vertices of C2m occur as
interior vertices of the trail (of edges) corresponding to the trail of triangles.

4 Both Zm+E3 and I{0,1,2}+E3 can be packed exactly with a trail of triangles ending at
a vertex v of E3 and starting with a triangle that meets one of the other two vertices
of E3. Moreover, all but at most one of the vertices of Zm or I{0,1,2} occur as interior
vertices of the trail (of edges) corresponding to the trail of triangles.

Proof.
1. By relabeling ci as ci−s0 where 2s0 ≡ s mod 2m− 1 we can assume s = 0. Now

I{0,1} = C(cm, cm−1, cm+1, cm−2, cm+2, . . . , c2, c2m−2, c1, c0, c).

2. The cycle C(a1, a2, . . . , a2m−1, a0, b0, b2m−1, . . . , b2, b1) is a Hamiltonian cycle of Zm



Packing Circuits into KN . 15

and the remaining edges I = {aibi : 2 ≤ i < m} ∪ {a0a1, b0b1} form a 1-factor. Since the
cycle is of even length, it can be decomposed into two 1-factors. For I{0,1,2} the subgraph
I{0,1} forms a Hamiltonian cycle and I2 is the remaining 1-factor.

3. Let the cycle be C(a1, . . . , a2m) and let the two other vertices be u and v. The
sequence of triangles C(u, a1, a2), C(v, a2, a3), C(u, a3, a4), . . . , C(v, a2m, a1) gives a cycle
of triangles corresponding to C(a1, . . . , a2m) and a trail of triangles corresponding to
P (u, a2, . . . , a2m, v). All the vertices of C2m except a1 occur in the interior of the trail.

4. Let the three vertices of E3 be {u, v, w}. Relabel the vertices of the Hamiltonian cycle
of Zm or I{0,1,2} given in part 2 as C(u1, v1, u2, v2, . . .). We obtain triangles C(u, ui, vi),
C(v, vi, ui+1) and triangles formed by joining the remaining 1-factor I to w. The subgraph
G = {uui} ∪ {vvi} ∪ I contains one edge from each triangle and has degree two at each
vertex except possibly at u and v. We now show that it is also connected (except for the
isolated vertex w). In the Zm case, I joins a2 = v1 and b2 = um. In the I{0,1,2} case, I2

joins c0 = um and c2 = vm−2. In both cases, all the ui are connected to u and all the
vi are connected to v, so G is connected. Therefore G has an Eulerian trail. If m is odd,
the trail starts at u and ends at v. If m is even, we get an Eulerian circuit. For even m,
remove one edge xy of I, and replace it with an edge xw. This gives a graph G′ with an
Eulerian trail ending at w and starting with an edge from a triangle meeting either u

or v. In both cases, each edge of the trail lies in a unique triangle, so the result follows.
Note that every vertex of Zm or I{0,1,2} except possibly y has degree two in G or G′, so
occurs as an interior vertex of the trail.

Theorem 10. If N = 2n+r and r = r(N) then for N ≥ 6 there exists an exact packing
of triangles into G2n,r which forms a trail of triangles with the last vertex v ∈ R and the
first triangle meeting R \ {v}. If N ≥ 9, then there is also an exact packing which is an
edge-disjoint union of a Hamiltonian cycle of triangles in M and such a trail.

By a Hamiltonian cycle of triangles in M we mean that we can replace each triangle with
a single edge so as to get a cycle of length 2n inside the subset M of vertices. We do not
require each triangle to have all its vertices in M .

Proof.
1. The cases N ≡ 2, 3 mod 4, N ≥ 6.

In these cases r = 2n− 1 if N is odd and r = 2n− 2 if N is even. Label the vertices of
R as v0, . . . , vr−1 and write G2n,r as an edge-disjoint union of Is + E{vs}, where the Is

are the 1-factors of KM constructed above (with m = n). If N is even, I2n−2 will not be
used, so this will be the missing 1-factor IM of K ′

M in G2n,r = K ′
M + ER. For even N ,

use part 3 of Lemma 9 to pack I{0,1} + E{v0,v1} with a trail of triangles. For odd N , use
part 4 of Lemma 9 to pack I{0,1,2} + E{v0,v1,v2} with a trail of triangles. In both cases,
pair up the remaining subgraphs as I{s,s+1} + E{vs,vs+1} and use part 3 of Lemma 9 to
pack them with Hamiltonian cycles of triangles in M . By inserting cycles before the last
triangle of the trail we can always combine any surplus Hamiltonian cycles of triangles
with the trail to get a longer trail starting and ending with the same triangles. For N ≥ 9
(and N 6= 13), r > 2 and we have at least one such Hamiltonian cycle.
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2. The cases N ≡ 0, 1 mod 4, N ≥ 13.
Split M = Ma ∪ Mb into two subsets of n vertices and label the vertices as Ma =
{ai : i ∈ Z/nZ} and Mb = {bi : i ∈ Z/nZ}. For s ∈ Z/nZ let I ′s be the 1-factor
{aibi+s : i ∈ Z/nZ}. If n is odd, define 2-factors Ss = {aiai+s, bibi+s : i ∈ Z/nZ} for
1 ≤ s < n/2. If n is even, we can decompose Kn = K2m into a 1-factor and 1

2 (n − 2)
Hamiltonian cycles as above. Combining 1-factors for Ma and Mb gives a 1-factor I∗
of M . Combining corresponding Hamiltonian cycles gives 2-factors Ss, 1 ≤ s < n/2 of
M (each a union of two n-cycles). In both n even and n odd cases we may assume that
S1 consists of cycles C(a0, a1, . . . , an−1) and C(b0, b1, . . . , bn−1). The edge disjoint union
of S1, I ′1, I ′n−1, I ′2 and I ′n−2 can be packed with the triangles

C(ai, ai+1, bi+2), C(bi, bi+1, ai+2), i ∈ Z/nZ.

These triangles form a Hamiltonian cycle of triangles in M corresponding to the cycle
C(a0, b2, a1, b3, . . .).

If n is odd, then the edge union of any Ss with any I ′t is a vertex disjoint union
of n/m prisms Zm where n/m = gcd(s, n). It is therefore a union of three 1-factors.
There are 1

2 (n− 3) remaining Ss’s and n− 4 remaining I ′t’s. Since n ≥ 5 when N ≥ 13,
n − 4 ≥ 1

2 (n − 3) and so all remaining edges can be decomposed into 1-factors. These
then form 2n − 7 1-factors, and three of these 1-factors can be chosen to form a prism
Zn made up of Ss and I0 for some s with gcd(s, n) = 1 (e.g., s = 2).

If n is even then Ss is a union of two 1-factors. These and the remaining I ′t and I∗
give 2n − 7 1-factors. Three of these 1-factors can be chosen to form a prism Zn made
up from Ss and I0 for some s as before.

If N is odd, part 4 of Lemma 9 gives a trail of triangles in Zn + E3 where E3 is any
three vertices in R. If N is even, write Zn as a union of a Hamiltonian cycle and a 1-
factor. Remove this 1-factor, it will be the missing 1-factor IM of K ′

M . The remaining
Hamiltonian cycle when joined to two vertices in R gives a trail of triangles by part 3 of
Lemma 9.

In both cases, the remaining edges of G2n,r can be decomposed into cycles of triangles
by pairing the remaining 1-factors of M , joining each pair to a pair of points in R and
using part 3 of Lemma 9. The the cycles (of edges) corresponding to these cycles of
triangles each meet an interior vertex of the trail corresponding to the trail of triangles
(since the all but at most one of the vertices of M are such a vertex). Hence we can insert
the cycles into the trail giving a longer trail with the same initial and final triangles. Doing
this with each excess cycle in turn gives the result.

3. The cases N = 8 and N = 9.
Label the vertices M = {a0, a1, a2, b0, b1, b2} and R = {v0, v1} (N = 8) or R = {v0, v1, v2}
(N = 9). We can pack G6,3 with triangles Ta = C(a0, a1, a2), Tb = C(b0, b1, b2) and
Tijk = C(ai, bj , vk) for all j ≡ i+k mod 3. If we remove all Tij2’s we get a packing of G6,2.
For N = 8 we have the trail of triangles T000T110T011T121TaT220TbT201, corresponding to
P (a0, v0, b1, v1, a1, a2, b2, b0, v1). For N = 9, we have a cycle TaT000T102T121TbT212 and
a trail T110T011T201T220T022, corresponding to the cycle C(a2, a0, b0, a1, b2, b1) and the
trail P (v0, b1, v1, a2, b2, v2) respectively.
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Corollary 11. If N ≥ 6, r = r(N), N = 2n + r and TS = 1
3 |E(G2n,r)|, then for any s

with 0 < s ≤ TS it is possible to pack G2n,r exactly with triangles so that s of them form
a trail of triangles C(vi, ui, vi+1), 1 ≤ i ≤ s corresponding to a trail P (v1, . . . , vs+1) with
vs+1 ∈ R. Also
(a) If N = 7 or N ≥ 9 and s ≥ 2n then we can make v1, . . . v2n a permutation of vertices

of M .
(b) If s < TS then one of the remaining triangles can be made to meet R \ {vs+1}.
(c) If N ≥ 9 and 2n ≤ s < TS then both (a) and (b) can be made to hold simultaneously.

Proof. Use the first part of Theorem 10 to get a trail of triangles and take the last
s triangles in this trail. This gives the first part and (b) since if s < TS then the first
triangle of the original trail is not used and meets R\{vs+1}. For N ≥ 9 use Theorem 10
to obtain a Hamilton cycle and a trail. Use the last s− 2n triangles of the trail (or just
the last one if s = 2n). The first of these triangles must meet M in at least two vertices,
so we can attach the Hamiltonian cycle (or a Hamiltonian path if s = 2n) onto the front
of this trail. Part (a) and (c) now follow provided N 6= 7. Finally, for N = 7 we have the
following packing of G4,3 with triangles where M = {a0, a1, a2, a3} and R = {v0, v1, v2}:

C(a0, a1, v0), C(a2, a3, v0), C(a0, a2, v1), C(a1, a3, v1), C(a0, a3, v2), C(a1, a2, v2).

The following trails give suitable trails of triangles in (a) for N = 7:
P (a0, a1, a2, a3, v1, a0, v2) for s = TS = 6,
P (a0, a1, a2, a3, a0, v1) for s = 5 and
P (a0, a1, a2, a3, v1) for s = 4.

7. Packing Trails of Octahedra into G2n,r.

We shall now pack some graphs of the form G2n,r with trails of octahedra and related
graphs. First, however, we need to define how these graphs are linked up.

Recall that for some graphs we can define initial and final links as (ordered) sets of
vertices, and G1.G2 will identify the final link of G1 with the initial link of G2. The initial
link of the resultant graph is that of G1 and the final link is that of G2. Similarly, the
initial link of G1 ∪ G2 is that of G1 and the final link is that of G2. We also write G.n

for G.G . . . G and G∪n for G ∪ . . . ∪G where there are n copies of G.
We have also defined O to be the graph of an octahedron, so O = K ′

6 = E2 +E2 +E2.
The first E2 will be the initial link and last E2 will be the final link of O. By symmetry, it
does not matter which E2’s are chosen, or the order of the vertices in either link. Define
K5 = K4 + E1 to have initial and final link both equal to the same single vertex E1.
Define W = G4,4 = C4 + E4. The E4 will be both the initial and final link (with the
vertices in the same order). Define the triangle T = K2 + E1 with K2 both the initial
and final link (with vertices in the same order). Note that this differs from the links of a
triangle as described in Section 3.

Theorem 12.
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1 If N ≡ 2 mod 4 and N ≥ 14 then there are exact packings of O∪a ∪ O.b into G4n,2r

with 4n + 2r = N , r = r(1
2N) ≥ 3 and the final link mapped into R.

2 If N ≡ 3 mod 4 and N ≥ 15 then there are exact packings of O∪a ∪ (T.O).2n.O.b into
G4n,2r+1 with 4n+2r+1 = N , r = r(1

2 (N−1)) ≥ 3 and the final link mapped into R.
In addition, the packing maps the non-link vertices of each T to a single vertex in R.

3 If N ≡ 1 mod 4 and N ≥ 13 then there are exact packings of K .n
5 ∪ O∪a ∪ O.b into

G4n,2r+1 with 4n+2r+1 = N , r = r(1
2 (N−1)) ≥ 2 and the final link mapped into R.

Also, the link vertex of K .n
5 is packed as a vertex of R distinct from the image of the

vertices of any O.
4 If N ≡ 0 mod 4 and N ≥ 16 then there are exact packings of W .n ∪ O∪a ∪ O.b into

G4n,2r+4 with 4n+2r+4 = N , r = r(1
2 (N−4)) ≥ 2 and the final link mapped into R.

Also, the link vertices of W .n are packed as vertices of R disjoint from the image of
the vertices of any O.

In each case such packings exist for all a, b with a + b = 1
3 |E(G2n,r)|, a, b ≥ 0. Also, if

a > 0, N 6= 15, then at least one O in the O∪a can be required to have its final link in R

and disjoint from the final link of O.b (or of (T.O).2n in part 2 if b = 0).

Proof.
1. Set r = r( 1

2N), 2n + r = 1
2N . By Corollary 11, we can pack G2n,r with a trail of

triangles with the final vertex in R. Replace each vertex v of G2n,r by a pair of vertices v0,
v1, and each edge uv by four edges uivj . The resulting graph is just G4n,2r. The triangles
become octahedra and a trail of triangles becomes a packing of linked octahedra O.m.
The result now follows from Corollary 11.

2. As in 1, construct G4n,2r with 2n+ r = 1
2 (N − 1). Add one vertex v to R and join it

to the missing 1-factor IM of M in G4n,2r. This gives G4n,2r+1. The extra triangles can
be linked to the first 2n links in the O-trail by part (a) of Corollary 11 since 1

2 (N−1) = 7
or 1

2 (N − 1) ≥ 9. Provided N 6= 15 (so 1
2 (N − 1) ≥ 9) we can also ensure that one of the

isolated O’s has a link that maps into R as a set disjoint from the final link of the trail.
3. As in 1, construct G2n,r and double up vertices. This time r is even, so to obtain

G4n,2r+1 we must join the extra vertex v to n vertex disjoint copies of K4 in KM = K4n.
(Each of these K4’s comes from doubling vertices in a component of IM .) This gives K .n

5 .
The rest of the proof is similar to part 1.

4. As in 3, except that we add the four extra vertices to R and join them to n vertex
disjoint copies of K ′

4 = C4 in KM = K4n. This gives n copies of C4 + E4 with the E4’s
linked. In other words W .n.

We now have the decompositions of Gn,r into octahedra and other small graphs as
described in Section 3.

8. Packing Cycles into O and T.O

Having packed trails of octahedra into suitable Gn,r, we now need to pack cycles into
these octahedra. In general it will not be possible to group the cycles into combinations



Packing Circuits into KN . 19

•v

•u

•v

•u

•
...................

...................
...................

...................
.............

•
............

............
............

............
................................................................................................. •v

•u

•

...........
...........
...........
...........
...........
...........
......

........................................................................

•
...................

...................
...................

...................
.............

•
.........
.........
.........
.........
..............

...................
...................

...................
...................

...

•v

•u

•

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

...

...........
...........
...........
...........
...........
...........
......

........................................................................

•v

•u

•v′

•u
′

•
•
•

•

•

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

...........................................................................................................................

................................................................................................................................
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
....

L0 = P∅ L3 = C′3 L5 = P2,3 T = P1,2 S4,1,2,2

Figure 7. Graphs Ln, T and Sa,b,c,d.

of length |E(O)| = 12. Therefore we shall attach cycles to the link vertices of O to allow
overlaps from one octahedron to the next. These overlaps are the Ln defined below.

For a path Pn of length n with endpoints u and v, we shall make (u, v) both the initial
and final link of Pn. Write C ′n = Cn ∪ E1 to denote a cycle of length n together with
an extra independent vertex. The pair (u, v) will be both the initial and final link of C ′n
where u is the independent vertex in E1 and v is any vertex of the cycle Cn. The graph
Pa1,...,ar = Pa1 .Pa2 . . . Par will be a graph with specified link vertices (u, v) consisting of r

internally vertex disjoint paths of lengths a1, . . . , ar from u to v. In the special case when
r = 0 we write P∅ for the empty graph E2 on {u, v}. We write Sa,b,c,d for a cycle with
initial link (u, v), final link (u′, v′) and four internally vertex disjoint paths connecting
these four vertices as follows. A path of length a connects u and v, a path of length b

connects u and u′, a path of length c connects v and v′ and a path of length d connects
u′ and v′ (see Figure 7)

Definition. The graphs Ln are defined as

L0 = P∅, L3 = C ′3, L4 = P2,2, L5 = P2,3, and Ln = P4,n−4 for n ≥ 7.

The graph L6 will be defined as either P3,3 or P4,2. By this we mean that whenever we
pack a graph involving L6 into another graph, we require that packings exists for both
choices of L6. On the other hand, if we pack a graph into L6 then we only require a
packing exists for some choice of L6. We define the triangle T = P1,2 as before. Note that
Ln is a cycle for n ≥ 3, and we can always pack C ′n 7→ Ln with initial and final links
matching.

Lemma 13. The following can be packed into O with initial and final links matching:

P2,2,2,2 ∪ P2,2, P∅ ∪ P3,3,3,3, S4,1,1,3.C
′
3, S4,1,2,2.C

′
3,

Ln.C ′3 ∪ L9−n, (4 ≤ n ≤ 6) and Ln ∪ L12−n, (3 ≤ n ≤ 9).

Proof. These packings are trivial to find, but their descriptions are somewhat tedious.
Number the vertices of O from 0 to 5 so that O = E{0,1}+E{2,3}+E{4,5} with (0, 1) the
initial link and (4, 5) the final link. We pack the paths and cycles as follows:

P2,2,2,2 ∪ P2,2 7→ {P (0, 2, 1), P (0, 3, 1), P (0, 4, 1), P (0, 5, 1); P (4, 2, 5), P (4, 3, 5)}
P∅ ∪ P3,3,3,3 7→ {; P (4, 0, 2, 5), P (4, 2, 1, 5), P (4, 1, 3, 5), P (4, 3, 0, 5)}
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S4,1,1,3.C
′
3 7→ {P (0, 2, 4, 3, 1), P (0, 4), P (1, 5), P (4, 1, 2, 5); P (5, 0, 3, 5)}

S4,1,2,2.C
′
3 7→ {P (0, 2, 4, 3, 1), P (0, 4), P (1, 2, 5), P (4, 1, 5); P (5, 0, 3, 5)}

P4,2.C
′
3 ∪ C ′3 7→ {P (0, 2, 4, 3, 1), P (0, 4, 1); P (1, 2, 5, 1); P (5, 0, 3, 5)}

P3,3.C
′
3 ∪ C ′3 7→ {P (0, 4, 3, 1), P (0, 2, 4, 1); P (1, 2, 5, 1); P (5, 0, 3, 5)}

P2,3.C
′
3 ∪ P2,2 7→ {P (0, 3, 1), P (0, 2, 4, 1); P (1, 2, 5, 1); P (4, 3, 5), P (4, 0, 5)}

P2,2.C
′
3 ∪ P2,3 7→ {P (0, 3, 1), P (0, 4, 1); P (1, 2, 5, 1); P (4, 3, 5), P (4, 2, 0, 5)}

P4,5 ∪ C ′3 7→ {P (0, 2, 4, 3, 1), P (0, 4, 1, 2, 5, 1); P (5, 0, 3, 5)}
P4,4 ∪ P2,2 7→ {P (0, 2, 4, 3, 1), P (0, 3, 5, 2, 1); P (4, 1, 5), P (4, 0, 5)}
P4,3 ∪ P2,3 7→ {P (0, 2, 4, 3, 1), P (0, 5, 2, 1); P (4, 1, 5), P (4, 0, 3, 5)}
P4,2 ∪ P4,2 7→ {P (0, 4, 2, 5, 1), P (0, 2, 1); P (4, 1, 3, 0, 5), P (4, 3, 5)}
P3,3 ∪ P4,2 7→ {P (0, 2, 4, 1), P (0, 3, 5, 1); P (4, 3, 1, 2, 5), P (4, 0, 5)}
P3,3 ∪ P3,3 7→ {P (0, 4, 3, 1), P (0, 3, 5, 1); P (4, 1, 2, 5), P (4, 2, 0, 5)}

In each case the edge union of the trails on the right is O. In most cases, the decom-
position is a minor variant of a preceding one, so can be checked easily. Note that by
symmetry, a packing of L3 ∪ L9, for example, follows from a packing of L9 ∪ L3. Also
note that whenever L6 is used, both versions have been checked.

Theorem 14. Suppose that either m +
∑

mi ≥ 15 or m +
∑

mi = 12 with m ≥ 0,
m 6= 1, 2, mi ≥ 5, mi 6= 6. For some subset S and some m′ we can pack Lm ∪ (∪i∈SCmi)
into O.Lm′ exactly with initial link matching, except in the cases when m ∈ {0, 4, 5, 9}
and all the mi = 5. If m = 8 we can also pack P2,2,2,2 ∪ (∪i∈SCmi) in the same way.

Proof. See Table 1 for the packings used. In each case we can pack graph (A) into (B)
by linking up suitable paths, with the initial link of Lm in (A) mapped to the initial link
in (B). (For ease of checking, the underlined cycles in (A) are packed into the underlined
paths and cycles in (B).) We then pack (B) into (C) by Lemma 13. In the case †, the P3

part of L7 = P4,3 meets vertex 5 of O (see proof of Lemma 13) so can be linked with the
C ′3 to pack L10 = P4,6. It is easy to check that if m > 0 and we are not in one of the
exceptional cases, then we must have a subset of one of the forms in Table 1. If m = 0,
pack some Cmi0

into Lmi0
first and then use the result with m > 0. If there are C5’s,

make sure to use one as our Cmi0
. The only additional case that cannot be packed is

when all the mi = 5, which is included in the list of exceptional cases.

We now repeat the previous two results with O replaced by T.O.

Lemma 15. The following can be packed into T.O with initial and final links matching:

L8 ∪ P5,2, L8 ∪ P4,3, L7 ∪ P6,2, L7 ∪ P5,3, P3,3 ∪ P7,2, P3,3 ∪ P6,3,

P3,3 ∪ P5,4, L5 ∪ P4,3.C
′
3, L5 ∪ P5,2.C

′
3, L4 ∪ P4,3,2,2, L4 ∪ P5,2,2,2.
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Table 1. Packings into O.Ln used in Theorem 14.

(A) (B) (C) Conditions

Lm S4,1,2,2.C′3.C′m−12 O.Lm−12 m ≥ 15

L14 ∪ Cn S4,1,2,2.C′3.P4,n−2 O.Ln+2 n ≥ 5

L13 ∪ Cn S4,1,1,3.C′3.P4,n−3 O.Ln+1 n ≥ 5

L12 S4,1,2,2.C′3 O.L0

L11 ∪ Cn S4,1,2,2.C′3.P4,n−5 O.Ln−1 n ≥ 7

L11 ∪ C5 S4,1,1,3.C′3.P2,2 O.L4

L10 ∪ Cn S4,1,1,3.C′3.P4,n−6 O.Ln−2 n ≥ 8

L10 ∪ C7 S4,1,2,2.C′3.P2,3 O.L5

L10 ∪ C5 L7 ∪ L5.C′3 O.L3 See text†
Lm ∪ Cn Lm ∪ L12−m.C′n+m−12 O.Ln+m−12 3 ≤ m ≤ 9, n + m ≥ 15

Lm ∪ Cn Lm ∪ Ln O.L0 3 ≤ m ≤ 9, n + m = 12

L8 ∪ C5 ∪ C5 L8 ∪ P2,2.P3,3 O.L6

P2,2,2,2 ∪ Cn P2,2,2,2 ∪ P2,2.C′n−4 O.Ln−4 n ≥ 7

P2,2,2,2 ∪ C5 ∪ C5 P2,2,2,2 ∪ P2,2.P3,3 O.L6

L7 ∪ C7 ∪ Cn L7 ∪ P2,3.P4,n−2 O.Ln+2 n ≥ 5

L6 ∪ C8 ∪ Cn L6 ∪ P4,2.P4,n−2 O.Ln+2 n ≥ 5

L6 ∪ C7 ∪ Cn L6 ∪ P3,3.P4,n−3 O.Ln+1 n ≥ 5

L6 ∪ C5 ∪ C5 L6 ∪ P3,3.P2,2 O.L4

L5 ∪ C9 ∪ Cn L5 ∪ C′3.P2,2.P4,n−2 O.Ln+2 n ≥ 5

L5 ∪ C8 ∪ Cn L5 ∪ P4,3.P4,n−3 O.Ln+1 n ≥ 5

L4 ∪ C10 ∪ Cn L4 ∪ P2,2,2,2.P4,n−2 O.Ln+2 n ≥ 5

L4 ∪ C9 ∪ Cn L4 ∪ C′3.P2,3.P4,n−3 O.Ln+1 n ≥ 5

L4 ∪ C7 ∪ C7 L4 ∪ P4,4.P3,3 O.L6

L4 ∪ C5 ∪ Cn L4 ∪ C′3.L5.C′n−3 O.Ln−3 n ≥ 7

L3 ∪ C11 ∪ Cn L3 ∪ C′3.P4,2.P4,n−2 O.Ln+2 n ≥ 5

L3 ∪ C10 ∪ Cn L3 ∪ C′3.P3,3.P4,n−3 O.Ln+1 n ≥ 5

L3 ∪ C8 ∪ Cn L3 ∪ C′3.P4,2.P4,n−5 O.Ln−1 n ≥ 7

L3 ∪ C7 ∪ Cn L3 ∪ C′3.P3,3.P4,n−6 O.Ln−2 n ≥ 8

L3 ∪ C7 ∪ C7 L3 ∪ C′3.P4,2.P2,3 O.L5

L3 ∪ C5 ∪ Cn L5.C′3 ∪ L4.C′n−4 O.Ln−4 n ≥ 7

L3 ∪ C5 ∪ C5 ∪ C5 L5.C′3 ∪ P2,2.P3,3 O.L6

Proof. Number the vertices of O 0 to 5 as before and let T = C(0, 1, v) with initial
and final link equal to (0, 1). We pack the paths as follows:

P4,4 ∪ P5,2 7→ {P (0, 2, 4, 3, 1), P (0, 3, 5, 2, 1); P (4, 0, 1, v, 0, 5), P (4, 1, 5)}
P4,4 ∪ P4,3 7→ {P (0, 2, 4, 3, 1), P (0, 3, 5, 2, 1); P (4, 1, v, 0, 5), P (4, 0, 1, 5)}
P4,3 ∪ P6,2 7→ {P (0, 2, 4, 3, 1), P (0, 5, 2, 1); P (4, 0, 1, v, 0, 3, 5), P (4, 1, 5)}
P4,3 ∪ P5,3 7→ {P (0, 2, 4, 3, 1), P (0, 5, 2, 1); P (4, 1, v, 0, 3, 5), P (4, 0, 1, 5)}
P3,3 ∪ P7,2 7→ {P (0, 4, 3, 1), P (0, 5, 2, 1); P (4, 2, 0, 1, v, 0, 3, 5), P (4, 1, 5)}
P3,3 ∪ P6,3 7→ {P (0, 2, 4, 1), P (0, 5, 2, 1); P (4, 0, 1, v, 0, 3, 5), P (4, 3, 1, 5)}
P3,3 ∪ P5,4 7→ {P (0, 4, 3, 1), P (0, 5, 2, 1); P (4, 1, v, 0, 3, 5), P (4, 2, 0, 1, 5)}

P2,3 ∪ P4,3.C
′
3 7→ {P (0, v, 1), P (0, 4, 2, 1); P (4, 1, 0, 2, 5), P (4, 3, 1, 5); P (5, 0, 3, 5)}

P2,3 ∪ P5,2.C
′
3 7→ {P (0, v, 1), P (0, 4, 2, 1); P (4, 3, 1, 0, 2, 5), P (4, 1, 5); P (5, 0, 3, 5)}
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Table 2. Packings into T.O.Ln used in Theorem 16.

(A) (B) (C) Conditions

L8 ∪ Cn L8 ∪ P5,2.C′n−7 T.O.Ln−7 n ≥ 10

L8 ∪ C9 ∪ Cn L8 ∪ P5,2.P4,n−2 T.O.Ln+2 n ≥ 7

L8 ∪ C8 ∪ Cn L8 ∪ P4,3.P4,n−3 T.O.Ln+1 n ≥ 7

L8 ∪ C7 L8 ∪ P4,3 T.O.L0

L7 ∪ Cn L7 ∪ P6,2.C′n−8 T.O.Ln−8 n ≥ 11

L7 ∪ C10 ∪ Cn L7 ∪ P6,2.P4,n−2 T.O.Ln+2 n ≥ 7

L7 ∪ C9 ∪ Cn L7 ∪ P5,3.P4,n−3 T.O.Ln+1 n ≥ 7

L7 ∪ C8 L7 ∪ P5,3 T.O.L0

L7 ∪ C7 ∪ C7 L7 ∪ P5,3.P4,2 T.O.L6

L6 ∪ Cn P3,3 ∪ P7,2.C′n−9 T.O.Ln−9 n ≥ 12

L6 ∪ C11 ∪ Cn P3,3 ∪ P7,2.P4,n−2 T.O.Ln+2 n ≥ 7

L6 ∪ C10 ∪ Cn P3,3 ∪ P6,3.P4,n−3 T.O.Ln+1 n ≥ 7

L6 ∪ C9 P3,3 ∪ P6,3 T.O.L0

L6 ∪ C8 ∪ Cn P3,3 ∪ P5,4.P4,n−5 T.O.Ln−1 n ≥ 7

L6 ∪ C7 ∪ C7 P3,3 ∪ P5,4.P2,3 T.O.L5

L5 ∪ Cn L5 ∪ P5,2.C′3.C′n−10 T.O.Ln−10 n ≥ 13

L5 ∪ C12 ∪ Cn L5 ∪ P5,2.C′3.P4,n−2 T.O.Ln+2 n ≥ 7

L5 ∪ C11 ∪ Cn L5 ∪ P4,3.C′3.P4,n−3 T.O.Ln+1 n ≥ 7

L5 ∪ C10 L5 ∪ P4,3.C′3 T.O.L0

L5 ∪ C9 ∪ Cn L5 ∪ P5,2.C′3.P4,n−5 T.O.Ln−1 n ≥ 7

L5 ∪ C8 ∪ Cn L5 ∪ P5,2.C′3.P3,n−5 T.O.Ln−2 n = 7, 8

L5 ∪ C7 ∪ C7 L5 ∪ P5,2.C′3.C′4 T.O.L4

L4 ∪ Cn L4 ∪ P4,3,2,2.C′n−11 T.O.Ln−11 n ≥ 14

L4 ∪ C13 ∪ Cn L4 ∪ P4,3,2,2.P4,n−2 T.O.Ln+2 n ≥ 7

L4 ∪ C12 ∪ Cn L4 ∪ P4,3,2,2.P4,n−3 T.O.Ln+1 n ≥ 7

L4 ∪ C11 L4 ∪ P4,3,2,2 T.O.L0

L4 ∪ C10 ∪ Cn L4 ∪ P5,2,2,2.P4,n−5 T.O.Ln−1 n ≥ 7

L4 ∪ C9 ∪ Cn L4 ∪ P5,2,2,2.P4,n−6 T.O.Ln−2 n ≥ 8

L4 ∪ C8 ∪ C8 L4 ∪ P5,2,2,2.P3,2 T.O.L5

L4 ∪ C7 ∪ Cn L4 ∪ P5,2,2,2.C′n−4 T.O.Ln−4 n ≥ 7

P2,2 ∪ P4,3,2,2 7→ {P (0, v, 1), P (0, 3, 1); P (4, 1, 2, 0, 5), P (4, 0, 1, 5), P (4, 2, 5), P (4, 3, 5)}
P2,2 ∪ P5,2,2,2 7→ {P (0, v, 1), P (0, 3, 1); P (4, 0, 1, 2, 0, 5), P (4, 1, 5), P (4, 2, 5), P (4, 3, 5)}

Theorem 16. Suppose that either m +
∑

mi ≥ 18 or m +
∑

mi = 15, with m ≥ 0,
m 6= 1, 2 and mi ≥ 7. For some subset S and some m′ we can pack Lm ∪ (∪i∈SCmi) into
T.O.Lm′ exactly with initial link matching.

Proof. We can assume m > 0 by first packing some Cmi0
into Lmi0

. If m = 3 we
pack Lm into T and use Theorem 14 with m = 0. If m ≥ 9 we pack Lm = P4,m−4

into T.Lm−3 = P1,2,4,m−7 and use Theorem 14. If m = 6 and L6 = P4,2 we pack it into
P1,2.C

′
3 = T.L3 and use Theorem 14. Since there are no C5’s the result follows in each

of these cases. Otherwise 4 ≤ m ≤ 8 and if m = 6 we can assume Lm = P3,3. In each of
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these remaining cases we can use one of the packings listed in Table 2. As before we can
pack graph (A) into (B) by linking up suitable paths, with the initial link of Lm in (A)
mapped to the initial link in (B). We can then pack (B) into (C) by Lemma 15.

Corollary 17.

1 If
∑

mi = 12, mi ≥ 3 then we can pack ∪Cmi into O.
2 If

∑
mi = 15, mi ≥ 3 then we can pack ∪Cmi

into T.O.

Proof.
1. Follows from Lemma 8 since we can pack a subgraph of K6 of size 12 and this

subgraph must be isomorphic to K ′
6 = O.

2. If mj = 3 we can pack Cmj
into T and then use part 1 to pack the remaining

cycles. If mj ≥ 6 then we can pack Cmj−3 ∪ (∪i6=jCmi
) into O. Since the vertices of O

are equivalent, we may assume Cmj−3 meets T and hence forms a circuit of length mj .
The only remaining case is C5 ∪C5 ∪C5 7→ P1,2.(P4,3 ∪L5) 7→ T.O (using Lemma 13).

9. Packing Cycles into Trails of O’s and T.O’s

Now we put the results of the previous sections together to get a proof of Theorem 1 in
the cases when N ≡ 2 or 3 mod 4. We use the results of the last section to pack (almost)
arbitrary cycles into trails of O’s and T.O’s, then we use Theorem 12 to pack these trails
into some Gn,r and then Lemma 3 to pack everything into KN . The details, as usual,
are somewhat more complicated.

Theorem 18. Suppose
∑

mi ≥ 12a + 9 with mi ≥ 3. We can pack some subset of the
cycles exactly into some graph of the form

O.a or O.a.Pc,d or O.a−1.P2,2 ∪O.T.

The last form is only needed if n5 ≥ 7 and a ≥ 3.

Proof. By Corollary 17, we can pack O with any combination of cycles of total length
exactly 12. If we can pack the first O in the trail in this way then we are done by induction
on a. Hence we may assume no combination of cycles has total length 12. In particular
n4 ≤ 2 and n3 + 2n6 ≤ 3. We shall now try to pack any remaining C3’s, C4’s and C6’s.
In general, not all of these can be packed, so we may need to discard some. Provided we
do not discard cycles of total length more than 6, we shall still have

∑
mi ≥ 12a+3. We

can pack C4 ∪ C4 7→ P2,2,2,2, C3 7→ L3 and C4 7→ L4. Packing the maximum length like
this will leave the remaining C3’s, C4’s and C6’s with total length at most 6 except in the
cases when n3 +2n6 = 3 and n4 = 1 or 2. In these cases we can assume n5 = n8 = n9 = 0
(since 5 + 3 + 4 = 8 + 4 = 9 + 3 = 12). Since the total length of all cycles is at least
12+9 > 17 ≥ 3n3 +4n4 +6n6, we must have at least one cycle Cn with n = 7 or n ≥ 10.
Pack Cn into C3.Cn−3 and C3∪C3∪C6 or C3∪C3∪C3∪C3 into O. Since at least one of
the C3’s meets vertex number 5 of O, we can pack the C3’s, C6’s and Cn into O.C ′n−3. If
n4 = 1 or a = 1 discard the remaining C4’s and pack O.C ′n−3 7→ O.Ln−3. Otherwise pack
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the C ′n−3 into C ′4.C
′
n−7 (if n ≥ 10) and C4 ∪ C4 ∪ C4 7→ O. We can assume one of these

C4’s meets both vertex 1 and 5 of O, so we have a packing C ′n−3 ∪ C4 ∪ C4 7→ O.C ′n−7

with initial links matching. We therefore obtain a packing into O.O.Ln−7 with no cycles
discarded.

Now we pack the other cycles. We can assume that we have already packed an O.b.Ln

or O.b.P2,2,2,2 with 0 ≤ b < a. If there are some C5’s remaining, we can also assume
n ∈ {0, 3, 4, 6}. We pack the remaining cycles inductively into graphs of the same form
with larger values of b. If we have enough remaining C5’s use the packings

L3 ∪ C5 ∪ C5 ∪ C5 7→ O.L6

L6 ∪ C5 ∪ C5 7→ O.L4,

P2,2,2,2 ∪ C5 ∪ C5 7→ O.L6

C5 ∪ C5 ∪ C5 ∪ C5 7→ P∅ ∪ P3,3,3,3.P2,2,2,2 7→ O.P2,2,2,2,

L4 ∪ C5 ∪ C5 ∪ C5 ∪ C5 7→ P2,2 ∪ P2,2,2,2.P3,3,3,3 7→ O.O.

The first three of these packings come from Theorem 14, the last two follow from
Lemma 13. In each case the initial links match, so we can pack O.b.Ln or O.b.P2,2,2,2

into O.b+1.Ln′ or O.b+1.P2,2,2,2 or O.b+2 = O.b+2.L0. When b+1 = a, we must avoid the
last two forms if we are to pack graphs of the type listed in the statement of the theorem.

Assume we have enough C5’s to reach a total length of at least 12a + 3. We shall use
up all the O’s except in the cases when we have packed O.a−1.Ln with n = 0 or 4. If
n = 0 we can use

C5 ∪ C5 ∪ C5 7→ L5 ∪ P4,3.P1,2 7→ O.P1,2.

However, for n = 4 we cannot pack L4∪C5∪C5∪C5 into the final O. If the L4 came from
an original C4, we can discard the C4 and pack C5 ∪ C5 ∪ C5 7→ O.P1,2 for the last O.
Otherwise we must have had at least seven C5’s and three O’s (the minimum number
occurs if we started with P2,2,2,2 in the first O). For this case, pack C5 ∪C5 ∪C5 7→ O.T .
We then get a graph of the form O.a−1.L4 ∪O.T .

Now assume we do not have enough C5’s to pack all the octahedra. After packing
as many C5’s as possible, we shall have at most two C5’s left or three C5’s if we have
packed O.b.L0 or O.b.L4. Use the L0 ∪ C5 7→ L5 and L4 ∪ C5 ∪ Cn 7→ O.Ln−3 packings
from Theorem 14 to ensure we have at most two C5’s left. Now continue packing the
remaining cycles using Theorem 14. Whenever we have packed O.b.Ln or O.b.P2,2,2,2

with b < a, we have enough extra cycles to pack Ln or P2,2,2,2 and some cycles into
O.Ln′ with initial link matching by Theorem 14, and hence we can pack O.b+1.Ln′ . The
only exception is when we try to pack L9∪C5∪C5 into the last O (since there are at most
two C5’s and the other combinations not allowed by Theorem 14 have too few edges).
Since 9 + 5 + 5 < 12 + 9, even this case does not occur unless there are some discarded
cycles. Since n5 6= 0, we have n3n4 = 0 and the only possible discarded cycles are C3’s
and C6’s. In this case use the discarded cycles with the packings

L9 ∪ C3 7→ L9 ∪ L3 7→ O.L0 and L9 ∪ C6 7→ L9 ∪ L3.C
′
3 7→ O.P1,2.

In the general case we finish by packing the last Ln as P1,2 if n = 3.
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Theorem 19. Suppose L =
∑

mi ≥ 12a + 15m + 11, with mi ≥ 3, m even and
L− 4n4 ≥ 15m + 3. Then we can pack some subset of the cycles exactly into some graph
of the form

O∪a−b ∪ (T.O).m.O.b, O∪a−b ∪ (T.O).m.O.b.Pc,d

or O∪a−b ∪ (T.O).m.O.b−1.P2,2 ∪O.T,

where the non-link vertices of the T ’s in (T.O).m are identified. The last form only occurs
with a ≥ b ≥ 3.

Proof. By discarding C4’s we may assume either n4 = 0 or L ≤ 12a + 15m + 14. In
either case n4 < 3a + 3. We set b = a − bn4/3c ≥ 0 and pack C4’s into the isolated O’s
of O∪a−b using C4 ∪C4 ∪C4 7→ O. Therefore, without loss of generality, we may assume
n4 ≤ 2 and set b = a.

By Corollary 17 we can pack C5∪C5∪C5 7→ T.O. Doing this twice and using induction
on m we can assume either m = 0 or n5 ≤ 5. The case m = 0 follows immediately from
Theorem 18. Since the T ’s in the (T.O).m are all linked via a common vertex, we can
pack these triangles with C6’s, and, if necessary, by C3’s. If we run out of T ’s, then we
must have exactly used them all (m is even). We are then done by Theorem 18, noting
that n5 ≤ 5 so the last form in Theorem 18 will not occur.

If we run out of C3’s and C6’s, drop the assumption that m is even and assume
n3 = n6 = 0. By using C5 ∪ C5 ∪ C5 7→ T.O again we may also assume either m = 0 or
n5 ≤ 2. If m = 0 we are done by Theorem 18 again. Discarding any C4’s (of total length
at most 8) we may now assume

∑
mi ≥ 12a + 15m + 3 with n3 = n4 = n6 = 0, n5 ≤ 2

and without the condition that m is even.
We can pack C5 ∪Cn 7→ P1,2.P4,n−2 = T.Ln+2 for n ≥ 5, so that we now have no C5’s

left (choose n = 5 if n5 = 2 and n ≥ 7 if n5 = 1. There must be at least one cycle of
length at least 7 since

∑
j<7 jnj ≤ 5 + 5 < 15 + 3). Now inductively pack the remaining

cycles Cmi , mi ≥ 7 according to Theorem 16 and Theorem 14 in a manner analogous to
the proof of Theorem 18.

Theorem 20. Assume the Induction Hypothesis with N > 12, N ≡ 2 or 3 mod 4. Then
Theorem 1 holds for N .

Proof.
1. The case N ≡ 2 mod 4, N ≥ 14.

By part 1 of Theorem 12, there are exact packings of O.a, and O ∪ O.a−1 into some
G4n,2r, 4n + 2r = N , 2r ≥ 6, with the final link in R. The isolated O in O ∪ O.a−1

can be required to have its final link in R and disjoint from the final link of O.a−1. Now
L ≥ |E(K ′

N )| − 2 = |E(G4n,2r)| + |E(K ′
2r)| − 2 ≥ 12a + 10. Using Theorem 18 we can

pack some cycles into O.a, O.a.Pc,d or O.T ∪O.a−1.P2,2. These can then be packed into
G4n,2r.(∪Cli) with at most two attached cycles Cli meeting R in two vertices each. The
cycles Cli are just the Pc,d or the T and P2,2 linked to the ends of the trails of octahedra.
If there are two such cycles then one is a triangle (T ) and their intersections with R are
disjoint. Therefore we are done by either part 4 or part 5 of Lemma 3.
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2. The case N ≡ 3 mod 4, N ≥ 15.
The proof is similar, using part 2 of Theorem 12 and Theorem 19. We have 4n+2r+1 = N ,
m = 2n, n ≥ 2, r ≥ 3 and L = |E(G4n,2r+1)|+ |E(K2r+1)| ≥ 12a+15m+21. In the case
N = 15 we also use the fact that a = 2 in Theorem 19 to avoid getting a packing of the
last type. The result follows whenever L−4n4 ≥ 15m+3 = 30n+3. By Lemma 4 we may
assume n4 < 1

2 (N−3), so 4n4 ≤ 2N−10. It can be checked that
(
N
2

)−(2N−10) ≥ 30n+3
for N ≥ 15, so the result follows.

10. Packing Cycles into Linked K5’s.

In this section we prove Theorem 1 for N ≡ 1 mod 4. The idea is the same as in the
previous section, but we also need to be able to pack (almost) arbitrary cycles into linked
K5’s.

Lemma 21. Assume a ≥ 2, mi ≥ 3 and
∑

mi−max(3n3+6n6+9n9, 7n7)−4n4−8n8 ≥
10a + 3. Then we can pack some subset of the cycles exactly into a graph of the form

K .a
5 or K .a

5 .Cm or C5.K
.a
5 .Cm,

where the K5’s are all linked at a common vertex v and the extra cycles are linked to
distinct K5’s at single vertices which may be chosen arbitrarily (either or both possibly
equal to v).

Proof. We first prove the result with the extra cycles linked at v. Since Theorem 1
holds for N = 5, we can pack any collection of cycles of total length 10 into a K5. If we
run out of K5’s we are done. We can pack C3 ∪C7 into K5 so that the C3 meets v. Since
all the K5’s are linked at v, if we remove C7’s from the K5’s we get triangles linked at a
common vertex v. Therefore we can pack C6’s and C9’s with C7’s into K5’s rather than
just C3’s. Since we use C6’s and C9’s to pack the triangles, we may need to link an extra
C3 or C6 to v to pack the last C6 or C9 if we run out of C7’s or K5’s. We may also link
C5 to v to pack any remaining C5 (we can assume there is no more than one C5 since
two C5’s will pack into K5). Assume we have not used all the K5’s but we have packed
a graph of one of the forms K .b

5 , K .b
5 .Cm or C5.K

.b
5 .Cm with 0 ≤ b < a and the cycles

linked at v. Pack cycles Cn with n ≥ 11 inductively as follows:

(A) K .b
5 ∪ Cn 7→ K .b

5 .Cn

(B) K .b
5 .Cm 7→ C5.K

.b
5 .Cm−5 if m ≥ 8,

(C) K .b
5 .Cm ∪ Cn 7→ K .b+1

5 .Cn+m−10 if m ≤ 7,

(D) C5.K
.b
5 .Cm 7→ K .b+1

5 .Cm−5 if m ≥ 8,

(E) C5.K
.b
5 .Cm ∪ Cn 7→ C5.K

.b+1
5 .Cn+m−10 if m ≤ 7.

In each case, we link the cycles at the vertex v. In (B) and (D) we have split Cm as
C5.Cm−5 and packed the two C5’s in (D) into a K5. In (C) and (E) we have split Cn as
C10−m.Cn+m−10 and packed the Cm and C10−m into K5. In each of these cases, we can
ensure both packed cycles meet v. Note that (A) is used at most once at the beginning of
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the process and we can assume that we finish with one of (C), (D) or (E). The operations
above can pack all the K5’s provided the sum of the lengths of the cycles that can be
packed is at least 10a + 3. We now prove that we shall not run out of such cycles. If
n3 + 2n6 + 3n9 ≥ n7, then we can assume that we have run out of C7’s in the first
part of this proof. The only remaining cycles that we can’t pack into K5’s are Cn’s with
n = 3, 6, 9, 4, 8. Similarly if n3 + 2n6 + 3n9 ≤ n7, then we can assume we have run out of
C3’s, C6’s and C9’s. The only cycles that we can’t pack into K5’s are Cn’s with n = 7, 4, 8.
In both cases, the total length of the others is at least 10a + 3 and we are done.

We now deal with the requirement that we may have to link the cycles at different
vertices. If we have just one cycle Cm linked to K .a

5 then it will either be one of the
original cycles (in which case we can link it anywhere), or it is part of one of the original
cycles which is split as Cn.Cm with the Cn packed inside K .a

5 . In this case, we can link
Cm to any of the vertices of the image of Cn in K .a

5 . In particular, Cm can be linked
to some vertex other than v. By permuting the K5’s and the vertices of K5 \ {v} we
can therefore link Cm to any desired vertex. The same arguments apply when we have
two cycles C5 and Cm, except that in addition we have to ensure that if both are part
of larger cycles, then the other parts of these two larger cycles are packed into K .a

5 in
such a way that they meet at least two distinct K5’s at vertices other than v. For this
to fail, we must have finished our packing above with operation (E) in which the C5 on
the left hand side is not part of a cycle partially packed into the K5’s. (Recall that we
never finish with operation (B).) If the C5 was an original cycle Cmi then we can link C5

anywhere and we are done. We may therefore assume that the C5 and Cm of (E) came
from splitting a C5+m which was one of the original cycles Cmi . This means that we used
operation (B) with the Cm on the left hand side equal to an original Cmi . This only
happens if we previously used (A), and so all but one of the K5’s were packed exactly
at the beginning of this proof. We may assume all the remaining cycles are of lengths
11 or 12 (any cycle of length at least 13 could be packed using (A), (B) and (D)) and
there are at least two of them (to get a total length of at least 10a + 3). Hence we may
assume that K .a−1

5 has been packed exactly and there are two remaining cycles Cm1 and
Cm2 with 11 ≤ m1,m2 ≤ 12. Since a ≥ 2, there is at least one K5 that has been packed
already.

If we have packed some K5 with a C10, then we can unpack this K5 and pack the
C10 and Cm1 into C5.K5.Cm1−5 as (C5.C5).(C5.Cm1−5) 7→ C5.K5.Cm1−5. Now proceed
as above and use Cm2 and operation (E) to pack the remaining K5. This time the two
linked cycles are part of larger cycles meeting two K5’s between them and we are done.

If no K5 was packed with a C10, pick one packed K5 and remove all except one of
the original cycles, Cm3 say, that was packed entirely within it. If we choose m3 to be
minimal then we can assume m3 ≤ 5. Pack Cm3 and a length 10 −m3 of Cm1 into this
K5. We have now packed K .a−1

5 .Cm1+m3−10 with 4 ≤ m1 + m3 − 10 ≤ 7, and have Cm2

left to pack. We proceed by packing Cm2 using operation (C). This time we have only
one cycle linked to K .a

5 and we are done.

The reason we need to link the cycles in Lemma 21 to arbitrary vertices is because we
shall pack the linked cycles C5 and Cm into the trail of octahedra and hence may wish



28 Paul Balister

to link them to K .a
5 at vertices in M . We need to do this for two reasons. One is that we

cannot have two cycles linked at the same vertex v of R in Lemma 3. The other is that
we have no control over the size of Cm. Indeed, Cm may be so large that there are not
enough remaining cycles to pack the trail of octahedra completely.

Theorem 22. Assume the Induction Hypothesis with N > 12, N ≡ 1 mod 4. Then
Theorem 1 holds for N .

Proof. We use the construction in Theorem 12 to pack K .n
5 ∪O.a or K .n

5 ∪O ∪O.a−1

into G4n,2r+1 where 4n+2r +1 = N , n ≥ 2 and 2r +1 ≥ 5. By Lemma 4 we can assume
4n4 + 8n8 ≤ 2N − 10 and by Lemma 5 we can assume max(3n3 + 6n6 + 9n9, 7n7) ≤
7
2 (N − 3). It can be checked that

(
N
2

)− 7
2 (N − 3)− (2N − 10) ≥ 10n + 3, so we can use

Lemma 21 to pack some cycles into K .n
5 with at most two extra cycles Cli attached. Since(

N
2

)−10n = |E(G4n,2r+1)|−10n+|E(K2r+1)| ≥ 12a+10, we can use Theorem 18 to pack
some subset of the Cli and the remaining Cmi

into O.a, O.a.Pc,d or O.a−1.P2,2 ∪ O.T .
This last form occurs only when there are at least seven C5’s, so by the algorithm of
Lemma 21 we can assume there are no Cli attached to K .n

5 in this case (we use up all
except at most one of the C5’s before linking any cycles to K .n

5 ). If there are no Cli , we
are done by the same proof as in Theorem 20. Assume now that there is precisely one
cycle Cm = Cl1 linked to K .n

5 . If this cycle was packed in the O.a, it must have at least
one vertex in M when packed into G4n,2r+1. It therefore meets some K5, and so we can
assume that this cycle is linked to the correct vertex by Lemma 21. (Recall from the
proof of Theorem 12 that every vertex of M meets precisely one K5.) If the cycle was
not packed, link it at v. We now have at most one cycle linked at v and possibly one
cycle Pc,d linked at two other vertices of R. The result now follows using part 1 or 4 of
Lemma 3 with k ≤ 2.

Now assume there are two cycles C5 and Cm which must be linked to K .n
5 . If precisely

one of C5 and Cm is not packed into the trail of octahedra, we link it to v and link
the other to a vertex in M as above. If both are packed and the C5 has an edge in M ,
then this C5 must meet two K5’s and so we can link the Cm and C5 to distinct K5’s via
vertices in M . If C5 does not have an edge in M then it must have an even number of
edges in G4n,2r+1 since this graph has no edges in R. Therefore the C5 must be partially
packed with a path of odd length leaving the O-trail. We can assume this path is of
length 3, since the only case where we have a pentagon with one edge in R is when we
are packing three of them as O.T . In this case, permute the C5’s and assume our C5

is entirely within the O. In the case when the C5 has a path of length 3 in R, we can
permute the vertices of R in any final packing so that this path meets v and we are done.
(We can permute all the vertices of R except the two link vertices of the cycle Pc,d that
may be linked to the trail of octahedra.)

Finally we need to deal with the case when neither C5 nor Cm is packed at all in O.a.
If r = 2, then these cycles can be packed together with any remaining cycles exactly
into KR = K5. Hence m = 5 and both C5 and Cm meet v. In all other cases r ≥ 4
and |E(KR)| ≥ |E(K9)| = 36. Therefore when using Theorem 18, we have

∑
mi ≥

12a + 36. Looking at the proof of Theorem 18, we see that, in general, we can discard
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C3’s, C4’s and C6’s so as to make the algorithm pack a C5 as L5 before packing the longer
cycles. This is because the maximum length of discarded cycles will be at most 17 and
12a + 36− 17 ≥ 12a + 9. So if our C5 could not be packed, we must have already packed
all the O’s exactly with combinations of cycles with lengths totaling 12 at the beginning
of the proof of Theorem 18. Pick the last O packed. We can assume it is not packed with
any cycle of length 5, m, 7, 12−m or 7−m, since in these cases we can either swap C5

or Cm with this packed cycle or swap the other cycles packed into this O with C5 and/or
Cm. We can also assume it is not packed with any cycle Cr with r ≥ 8, since we could
replace the Cr with Cr−5 and our C5 and get a packing of O.C ′5 7→ O.L5 with our C5

inside the O. Hence, without loss of generality, this O is packed as C3 ∪ C3 ∪ C3 ∪ C3,
C3∪C3∪C6, C6∪C6 or C4∪C4∪C4 and Cm is of length m ≥ 5 in all except the C6∪C6

case. We now use the following packings in which the C5 is used to pack this last O:

C3 ∪ C3 ∪ C5 ∪ Cm 7→ C ′3 ∪ C ′3.P3,3.P2,m−3 7→ O.P2,m−3,

C6 ∪ C5 ∪ C6 7→ L6 ∪ P3,3.P2,3 7→ O.P2,3,

C4 ∪ C4 ∪ C5 ∪ Cm 7→ P2,2,2,2 ∪ P2,2.P3,m−2 7→ O.P3,m−2.

We can now assume the C5 is packed within the octahedra and so we are done.

11. Packing Cycles into Linked W ’s.

In this section we complete the proof of Theorem 1 by handling the cases N ≡ 0 mod 4.
In this case we shall pack cycles into linked W ’s where W = G4,4 = C4 + E4 and the
vertices of the E4 are both the initial and final links of W (in the same order). Let these
link vertices of W be (a, b, c, d). We shall use notations such as [la1 lb2l

bc
3 . . .] to denote the

vertices {a, b, c, d} and a collection of cycles Cli with with Cl1 meeting a, Cl2 meeting b,
Cl3 meeting both b and c, etc.. The initial and final links of this graph will be (a, b, c, d).
If a cycle meets more than one vertex this notation can be ambiguous, so to be precise,
say that the vertices occur at intervals two apart around the cycle. Define D to be the
family of graphs

[ ], [lu1 ], [lu1 lv2 ] with l2 ≤ 5, [3u3v3w], [4u4v4w] or [4a4b4c4d],

where u, v and w are distinct elements of {a, b, c, d}.

Lemma 23. We can pack any of the following exactly into W with link matching:

[la1 lb2l
c
3l

d
4 ], [la1 lb2l

c
3], [la1 lb2], [la1 ] with

∑
li = 20,

[3a3b3c8d3a], [3a3b3c6d5a], [4a4b4c4d4a] and [4a4b4c5d3a].

Proof. Write the non-link vertices of W = C4 + E4 as C4 = C(1, 2, 3, 4). We have the
following packings into W :
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(A) [3a3a3b3c4bd4cd] C(a, 1, 2), C(a, 3, 4), C(b, 2, 3), C(c, 1, 4), C(b, 1, d, 4), C(c, 2, d, 3)
(B) [3a3a4bd5bc5cd] C(a, 1, 2), C(a, 3, 4), C(b, 3, d, 4), C(b, 1, c, 3, 2), C(c, 2, d, 1, 4)
(C) [5ab5bd5ac5cd] C(a, 3, b, 2, 1), C(b, 1, d, 3, 4), C(a, 4, c, 3, 2), C(c, 2, d, 4, 1)
(D) [3a3b3c5ad6bcd] C(a, 1, 2), C(b, 4, 1), C(c, 3, 4), C(a, 4, d, 2, 3), C(b, 2, c, 1, d, 3)
(E) [4ad4bc4bc5d3a] C(a, 2, d, 3), C(b, 1, c, 3), C(b, 2, c, 4), C(d, 1, 2, 3, 4), C(a, 1, 4)
(F) [4a4b4cd4cd4ab] C(a, 1, 2, 3), C(b, 3, 4, 1), C(c, 1, d, 2), C(c, 3, d, 4), C(a, 2, b, 4)

In each of these packings every cycle meets every other, except in (A), (B) and (D)
where the two underlined cycles do not meet. We now combine cycles to give some of
the packings in the statement of the lemma. In each case we indicate one of the above
packings that can be used.

[3a3b3c11d] (A) [3a3b7c7d] (A) [3a5b5c7d] (B) [4c4d6a6b] (A)
[3a3b4c10d] (A) [3b4c4d9a] (A) [3b5a6c6d] (D) [4d5b5c6a] (B)
[3b3c5d9a] (D) [3a4b5d8c] (E) [4a4b4c8d] (E) [5a5b5c5d] (C)
[3a3b6c8d] (A) [3a4b6c7d] (A) [4a4b5d7c] (E) [3a3b3c8d3a] (A)

In all the cases in the table above, every cycle meets every other one in the packing
except for the underlined ones in the first and last cases. Together with (D), (E) and (F),
these give all the cases in the statement of the lemma with at least four cycles. (We can
clearly permute the link vertices by symmetry.) If we have fewer than four cycles, one
of these cycles must have length at least 6, and we can split it into two smaller cycles.
These cases therefore follow by combining cycles in the above table that are connected.
We can always avoid combining underlined cycles by using different triangles.

Theorem 24. If
∑

mi ≥ 20n + 29 and n3 = n6 = 0 then there is an exact packing of
some subset of the cycles into a graph W .n.D for some D ∈ D.

Proof. By packing four C5’s into a W (using the [5a5b5c5d] packing of Lemma 23), we
can assume by induction on n that n5 ≤ 3. If n5 ≥ 2 and n7 ≥ 2 we can pack two C7’s
and two C5’s as [7a5b5c7d] 7→ [3a5b5c7d].[4a] 7→ W.[4a]. Pack C4’s by adding them to each
link vertex in turn to get [4a], [4a4b], [4a4b4c] and [4a4b4c4d]. If we have an extra C4 we
can pack this into a W using [4a4b4c4d4a] 7→ W . Continue until we run out of C4’s. We
can now assume we have packed W .r.D with r < n and D = [], [4a], [4a4b], [4a4b4c] or
[4a4b4c4d]. Now pack C7’s inductively using the following packings:

[].[7a7b7c7d] 7→ [3a3b7c7d].[4a4b] 7→ W.[4a4b]
[4a].[7a7b7c7d] 7→ [3b3c7a7d].[4a4b4c] 7→ W.[4a4b4c]
[4a4b].[7a7c7d] 7→ [4a4b4c4d4a].[3a3c3d] 7→ W.[3a3c3d]
[4a4b4c].[7a7d] 7→ [4a4b4c4d4a].[3a3d] 7→ W.[3a3d]
[4a4b4c4d].[7a] 7→ [4a4b4c4d4a].[3a] 7→ W.[3a]
[3a].[7b7c7d] 7→ [3a3b7c7d].[4b] 7→ W.[4b]
[3a3d].[7b7c] 7→ [3a3d7b7c] 7→ W

[3a3c3d].[7a7b] 7→ [3c3d7a7b].[3a] 7→ W.[3a]

(We may need to permute the link vertices at some points.) Now discard any remaining
C5’s and C7’s. The maximum length of discarded cycles is max(5+3×7, 3×5+7) = 26.
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Hence, we can assume that the total length of cycles is at least 20n+3, all the remaining
cycles are of length at least eight and we have already packed some W .r.D with r < n

and D ∈ D. We now proceed inductively in a manner similar to before using Lemma 23.
At each stage add cycles to any unused link vertices until the total length to be packed
is at least 23 or all four link vertices have been used.

Suppose first that we have cycles of total length s ≥ 23 linked to the link vertices. If
the longest cycle is l1 and s − l1 ≤ 17, then we can split Cl1 as Cl1+20−s.Cs−20 (both
linked to the same link vertex v as Cl1). Now pack the Cl1+20−s and the remaining cycles
into W using Lemma 23. We now have a packing of W .r+1.[(s−20)v] = W .r+1.D′, where
D′ ∈ D. If s− l1 ≥ 18 then there must be another linked cycle, Cl2 say, with l2 ≥ 6 (since
there are at most three remaining linked cycles). Also l1 ≥ 8 (since it must be one of the
original Cmi). If s − l1 ≤ 20 split Cl2 as Cl2−3.C3 and split Cl1 as as Cl1+23−s.Cs−23.
This time use Lemma 23 to obtain a packing into W .r+1.[(s − 23)v3u] = W .r+1.D′. If
s− l1 = 21 then we may assume l2 ≥ 7 and if s− l2 = 22 we may assume l2 ≥ 8. We can
treat these similarly and get packings into W .r+1.[(s− 24)v4u] and W .r+1.[(s− 25)v5u]
respectively. Hence in all cases we get a packing into W .r+1.D′ for some D′ ∈ D.

The remaining cases are when we run out of link vertices. For this to happen, we must
have cycles attached as [3a3b8c8d], [3a3b3cld] with 8 ≤ l ≤ 13 or [4a4b4cld] with l = 4, 9
or 10. We must also have another cycle Cm1 , say, with m1 ≥ 8. Now use the following
packings:

[3a3b8c8d].[ma
1 ] 7→ [3a3b3c8d3a].[(m1 − 3)a5c]

[3a3b3cld].[ma
1 ] 7→ [3a3b3c8d3a].[(m1 − 3)a(l − 8)d] l = 8, 12, 13

[3a3b3cld].[ma
1 ] 7→ [3a3b3c6d5a].[(m1 − 5)a(l − 6)d] l = 9, 10, 11

[4a4b4c4d].[ma
1 ] 7→ [4a4b4c4d4a].[(m1 − 4)a]

[4a4b4cld].[ma
1 ] 7→ [4a4b4c5d3a].[(m1 − 3)a(l − 5)d] l = 9, 10

In each case we obtain a packing into some graph of the form W .r+1.D′, D′ ∈ D, using
one of the packings (A)-(F ) from the proof of Lemma 23.

Hence by induction we can pack W .n.D for some D ∈ D.

Theorem 25. Assume the Induction Hypothesis with N > 12, N ≡ 0 mod 4. Then
Theorem 1 holds whenever n3 + 2n6 ≤ TW . Here TW = b((N

2

)− N
2 − 20n− 31)/3c and

n is given in part 4 of Theorem 12.

Proof. We use the construction in Theorem 12 to pack W .n∪O∪a−b∪O.b into G4n,2r+4

where 4n + 2r + 4 = N , 2r + 4 ≥ 8 and r = r( 1
2 (N − 4)). Since L ≥ (

N
2

) − N
2 − 2 and

n3 + 2n6 ≤ TW , we have L − 3n3 − 6n6 ≥ 20n + 29. Hence we can use Theorem 24
to pack some cycles into W .n with at most four extra cycles Cli attached (in the form
of some D ∈ D). Let the largest such cycle be Cl1 (if such cycles exists). From the
definition of D we see that the remaining extra cycles have total length at most 12. Since
L− 20n− 12 ≥ 12a + |E(K ′

2r+4)| − 14 ≥ 12a + 10, we can use Theorem 18 to pack some
subset of Cl1 and the remaining Cmi into O.a, O.a.Pc,d or O.a−1.P2,2 ∪ O.T . From the
algorithm of Theorem 24 we can assume this last form occurs only when there are no Cli

(since all the W ’s would be packed with C5’s).
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If there are no extra cycles Cli then we are done by the proof of Theorem 20. If Cl1 is
not packed into the trail of octahedra then we are done by part 1 or part 4 of Lemma 3
(depending on whether we have packed O.a or O.a.Pc,d). Now assume that Cl1 has been
packed into the octahedra. When this trail is packed into G4n,2r+4 the cycle Cl1 will
meet M (since there are no edges in R). If the Cl1 was part of the larger original cycle
Cm1 , say, then the other part, Ck say, meets some non-link vertex of some W when Cm1

is packed in W .n.(∪Cli). Every vertex of M meets some W when W .n is packed into
G4n,2r+4. Hence, by permuting the W ’s and cyclically permuting the non-link vertices of
some W , we can assume that the image of Cl1 in the trail of octahedra meets the image
of Ck in W .n when everything is packed into G4n,2r+4. Hence we have a packing of some
subset of cycles into G4n,2r+4.(∪Cl′i) satisfying one of the conditions of Lemma 3. The
result now follows.

We have now proved Theorem 1 for N ≡ 0 mod 4 when there are not too many cycles
of lengths 3 or 6. However if we have many cycles of lengths 3 or 6 we will need to use
other packings. For large N , the packings of Section 6 are sufficient. However, there are
a number of smaller N for which this is not sufficient. For these cases we need to give
special packings. These special packings are given by the next two lemmas.

Lemma 26. For all n ≥ 1 there exists exact packings

K ′
4n ∪K ′

4n ∪O.4n2 7→ G8n,4n

G4n,4.G4n,4 ∪O.4n2 7→ G8n,4n+4

K ′
4n+4 ∪K ′

4n+4 ∪O∪2n+1 ∪O.2n(2n+1) 7→ G8n+4,4n+4

In each case, the initial and final links of the trail of O’s are disjoint pairs of vertices of R

(of the image). Also the R’s of the G4n,4’s of the second packing are linked together and
their image is a subset of the R of G8n,4n+4 which is disjoint from the image of any O.

Proof. We shall first prove that triangles can be packed into G = Kn,n,n with a suitably
long trail. Write G = EA + EB + EC , where A = {ai : i ∈ Z/nZ}, B = {bi : i ∈ Z/nZ}
and C = {ci : i ∈ Z/nZ}. The existence of a packing of G with triangles follows from the
existence of n×n latin squares. If the cells (i, j) contain entries kij then the corresponding
triangles are given by (ai, bj , ckij ). Alternatively, a packing can be constructed from first
principles as follows.

If n is odd and for i, j ∈ Z/nZ, let Tij be the triangle C(ai, bi+j , ci+2j). It is an
easy exercise to show that the Tij pack G exactly. If n is even, use induction to pack
Kn/2,n/2,n/2 with triangles and double up the vertices. The result is a packing of Kn,n,n

with octahedra. Since each octahedron can be packed with four triangles, we have exact
packings of Kn,n,n with triangles for all n.

We now find a long trail of triangles. Let G[A, B] = Kn,n be the subgraph induced by
the vertices of A ∪ B. Each edge in this subgraph is contained in a unique triangle in
the packing of G. There exists an Eulerian circuit of Kn,n when n even, and one of Kn,n

with a 1-factor removed when n is odd, n ≥ 1. Hence we have a circuit of length n2 (n
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Table 3. Packings of K′
N used in Theorem 28.

N TW TS TX Isolated Components O-trail

16 13 36 − G4,4.G4,4 = W .2 O.4

20 29 56 28 K′
8 ∪K′

8 ∪O∪3 O.6

24 57 80 16 K′
8 ∪K′

8 O.16

28 77 108 − G8,4.G8,4 O.16

32 123 140 60 K′
12 ∪K′

12 ∪O∪5 O.20

36 153 176 40 K′
12 ∪K′

12 O.36

40 209 216 72 G12,4.G12,4 O.36

44 251 260 248 G24,20 −

even) or n(n− 1) (n odd, n > 1) in this subgraph. By replacing the edges with triangles
we get a circuit of triangles in G. By breaking this circuit at some vertex v ∈ A, say, we
get a trail from some vertex of C to another vertex of C. (Each triangle contains one
vertex from each of A, B and C and if two triangles both meet v then they must meet
distinct vertices in C.)

Doubling up vertices, we get a packing of O.n2
or O∪n ∪O.n(n−1) into K2n,2n,2n with

the trail of linked O’s starting and ending at disjoint pairs of vertices in C.
Now let A, B and C have 2n vertices, and let S have 0, 2 or 4 vertices. We can

decompose GA∪B,S∪C = K ′
A∪B + ES∪C as an edge disjoint union of KA,B,C , GA,S =

K ′
A + ES and GB,S = K ′

B + ES . The result follows in the first two cases by replacing n

by 2n and setting |S| = 0 or |S| = 4. For |S| = 0 note that G4n,0 = K ′
4n. The last case

follows by replacing n with 2n + 1 and setting |S| = 2, noting that G4n+2,2 = K ′
4n+4.

Lemma 27. We can pack G24,20 exactly with 124 pairs of linked triangles.

Proof. Write M = A ∪ B ∪ C where A = {ai : 0 ≤ i ≤ 7}, B = {bi : 0 ≤ i ≤ 7} and
C = {ci : 0 ≤ i ≤ 7} are disjoint sets of vertices of size 8. Decompose KA into seven
1-factors and combine each 1-factor with a set of edges Ij = {bici+j : 0 ≤ i ≤ 7} with
1 ≤ j ≤ 7 to get seven 1-factors of KA∪B∪C = KM . Cyclically permuting A, B and
C now gives a total of 21 such 1-factors. The remaining edges of KM form 8 triangles
Ti = C(ai, bi, ci). Discard one of the 1-factors and join the others, one to each of the 20
vertices of R. This gives a decomposition of G24,20 = K ′

M +ER into 20 sets of 12 triangles
linked at a vertex of R and 8 disjoint triangles Ti. Form 8 pairs of linked triangles by
taking Ti and pairing it with the triangle containing the edge bici+1. All these triangles
meet the same vertex v ∈ R. There are four remaining triangles meeting v which we can
pair up to form two pairs of linked triangles. For each of the other vertices in R, we have
12 linked triangles which can be paired up to form six pairs of linked triangles. We have
now paired up all the triangles into 124 pairs which pack the whole of G24,20 exactly.

Finally, we give the proof of Theorem 1 for N ≡ 0 mod 4.

Theorem 28. Assume the Induction Hypothesis with N > 12, N ≡ 0 mod 4. Then
Theorem 1 holds for N .
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Proof. If n3+2n6 ≥ TS where TS = 1
3 |E(G2n,r)|, r = r(N) = 1

2 (N−8) and 2n+r = N ,
then we can pack the C3’s and C6’s into the trail of TS triangles in G2n,r given by
Theorem 10. This trail ends at a vertex of R so by linking a C3 if necessary at this vertex
we can pack a set of C3’s and C6’s exactly. The result will then follow from part 1 of
Lemma 3 with k ≤ 1.

Also, if n3 + 2n6 ≤ TW where TW is given by Theorem 25 then we are done by
Theorem 25. Since TW ≥ TS for all N ≥ 48, the proof of the theorem is practically
complete; all we have to do is to check the cases N < 48.

In most of these remaining cases we use the packings of Lemma 26. Pack C3’s and
C6’s into the “isolated components” in Lemma 26. These isolated components are listed
in Table 3. Isolated components O = G4,2, K ′

8 = G6,2, K ′
12 = G10,2 and G12,4 can all be

packed with trails of triangles by Theorem 10 with N = 6, 8, 12 and 14 respectively. In all
these cases the number of triangles is even, so we can pack any C6’s exactly (pack all the
C6’s before packing the C3’s). For N = 44, pack G24,20 with pairs of linked triangles using
Lemma 27. These can also pack both C3’s and C6’s, and if we have enough we are done
by induction from N = 20 (G24,20.K20 ⊆ K44). The total number of triangles TX needed
to pack the isolated components is listed in Table 3. By Theorem 25 we can assume that
n3 + 2n6 > TW . In all cases where we can pack the isolated components exactly with
triangles, n3 + 2n6 > TW ≥ TX so we have enough C3’s and C6’s to pack these exactly.
Now pack the trails of octahedra with the remaining cycles and use Lemma 3 as in part 1
of the proof of Theorem 20. Note that the O-trails in Lemma 26 have initial and final
links packed into disjoint pairs of vertices in R, so packing O.T ∪ O.a−1.P2,2 does not
cause problems if we use the first O from the trail O.a for the O.T .

The only remaining cases now are N = 16 and N = 28.

1. The case N = 16.
Writing the cycle lengths as sums of 3’s, 4’s and 5’s as described before Lemma 8, we
can assume 2sT + pT ≥ 8 by Lemma 8. Pick a minimal set of cycles which involve s 4’s
and p 5’s with 2s + p ≥ 8. From the above table we can assume n3 + 2n6 > TW = 13.
Consider the following cases separately.

(a) The case 0 ≤ s ≤ 2.
We use the W .2 ∪ O.4 7→ G8,8 packing of Lemma 26. Pack s of the W ’s with the
[3a3a4bd5bc5cd] packing (B) from the proof of Lemma 23. Pack the other 2 − s W ’s
with the [5a5b5c5d] packing of Lemma 23. All the squares in this packing are connected
via b and all the triangles are connected via a. Also, each square is connected to a pen-
tagon and a connected sequence of two triangles within its own W . Since each cycle
is written with at most one 5 or two 3’s, we can pack every cycle of our subset that
is written with at least one 4 entirely into the triangles, squares and pentagons of this
packing. Since 2s+p ≥ 8, there are enough remaining cycles written with 5’s to cover the
remaining pentagons in the packing. However each of these cycles is precisely a pentagon
(since a 5 cannot be written together with a 3 or another 5) so they pack entirely too.
Since n3 + 2n6 > 13 there are enough C3’s and C6’s to pack any remaining triangles of
the packing. At worst we may need to link a single C3 to vertex a to pack some C6. We
therefore have an exact packing of some of our original cycles into W .2 or W .2.C3.
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(b) The case s ≥ 3 and p ≥ 2.
First assume s = 3 and p = 2. Pack one W using the [3a3a4bd5bc5cd] packing (B) and
the other W using the [3a3a3b3c4bd4cd] packing (A) from the proof of Lemma 23. Every
square and pentagon is connected to every other square and pentagon in this packing.
The triangles can be paired up into connected sequences of length 2 with one end meeting
a and the other meeting a square. Hence we can pack our subset of cycles entirely into
this packing with any remaining triangles all linked to a in disjoint connected sequences,
each of length at most two. Packing the remaining triangles with C3’s and C6’s as in (a)
allows us to exactly pack the whole of W .2 or W .2.C3 with some of our original cycles.

Now assume that either s > 3 or p > 2. No cycle in the minimal subset can be a
pentagon since we could remove it and still have 2s + p ≥ 8. Hence each cycle written
with a 5 contributes at least three to the sum 2s + p. By minimality there cannot be
more than three such cycles, so p ≤ 3. If we remove one of the cycles written with a 5
then s ≤ 3 and p ≤ 2 for the remaining cycles. Hence we can split a cycle written with
a 5 into two parts so that one part and the remaining cycles of the subset have s = 3
and p = 2. We can pack these as above and attach the other part to a suitable vertex in
{b, c, d} so as to connect it with the part that was packed. In this case we have packed
W .2.(Cr) or W .2.(Cr ∪C3) with the Cr linked at one of {b, c, d} and the C3 linked at a.

(c) The case p ≤ 1.
Hence s ≥ 4. First assume s = 4 and p = 0. Pack both W ’s using [3a3a3b3c4bd4cd]. All
the squares are connected via d, so we can pack the cycles of our subset into this and
pack C3’s and C6’s into any remaining triangles as before. If s > 4 or p > 0 then we
can split one of the cycles as in (b). At worst we will need to attach one cycle to one of
{b, c, d}, and possibly a C3 to a to pack the original cycles fully.

In all cases we have an exact packing of some of the original cycles into W .2.(∪Cli)
where there are at most two cycles linked to distinct link vertices of W .2 and if there are
two such cycles then one of them is a C3. Pack the longer one of these and the remaining
cycles into the O-trail using Theorem 18. The total length of these cycles is at least
|E(K ′

16)| − 2 − 40 − 3 = 12a + 17 with a = 4, so this succeeds. Now continue with the
argument used in the proof of Theorem 25 to get the desired packing.

2. The case N = 28.
From the table above we may assume 77 = TW < n3 + 2n6 < TS = 108. First assume
n5 ≥ 2. We can pack G8,4 with a C5 and a circular connected sequence of triangles by
Lemma 7. Hence we can pack G8,4.G8,4 with two C5’s and a connected sequence of 34
triangles, which in turn can be packed exactly with C3’s and C6’s. We are now done
as before by packing the O-trail and using Lemma 3 as in Theorem 20. Assume now
that n5 ≤ 1. From Lemma 7, we can pack G8,4.G8,4 with four squares and a trail of
32 triangles. We can make the four squares form a connected sequence meeting three
link vertices, or two connected pairs meeting all four link vertices (by suitable choice
of which link vertices the pair of squares in each G8,4 meet). Pack the trail of triangles
with C3’s and C6’s as above. Write the cycles of length 4 or ≥ 7 as sums of 3’s, 4’s
and 5’s as described before Lemma 8. Since each 4 can be written together with at
most one 5 or two 3’s, the total length of such cycles is at most 10sT . However, since



36 Paul Balister

n3 + 2n6 < TS , the total length of cycles of lengths four or at least seven is at least
|E(K ′

28)| − 2− 5n5− 3(TS − 1) ≥ 36. Hence sT ≥ 4. Pack a minimal set of cycles written
with at least four 4’s into the packing G8,4.G8,4 described above. To do this we may
need to attach up to four additional cycles Cli to the link R of G8,4.G8,4. By considering
separately the cases when each of the packed cycles is written with one 4, or one is
written with more than one 4, we can ensure that the linked cycles Cli meet distinct link
vertices. At most one of these cycles Cli need contain a 4, so removing the longest of
these gives a total length of additional cycles of at most 3 × 6 = 18. Pack the longest
Cli and all remaining cycles into the O-trail using Theorem 18. This succeeds since these
cycles have total length at least 12a + |E(K ′

12)| − 2 − 18 = 12a + 30. Since there are
at most two C5’s, the last form in Theorem 18 does not occur and we will only need to
attach at most one cycle Pc,d to the final link of this trail. We are now done by the same
argument as in Theorem 25.

Theorem 1 now follows by induction of N using Lemmas 6 and 8 for the cases N ≤ 12
and Theorems 20, 22 and 28 for the cases N > 12.
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