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Abstract

Let P be a Poisson process of intensity one in a square Sn of area n. We construct a
random geometric graph Gn,k by joining each point of P to its k nearest neighbours. For many
applications it is desirable that Gn,k is highly connected, that is, it remains connected even
after the removal of a small number of its vertices. In this paper we relate the study of the
s-connectivity of Gn,k to our previous work on the connectivity of Gn,k. Roughly speaking, we
show that for s = o(log n), the threshold (in k) for s-connectivity is asymptotically the same as
that for connectivity, so that, as we increase k, Gn,k becomes s-connected very shortly after it
becomes connected.

1 Introduction

The following model was motivated by the study of wireless ad-hoc networks. Consider a Poisson
process P of intensity one in a square Sn of area n (all our results will also apply for the case of n
points uniformly distributed in a square). We define the random geometric graph Gn,k by joining
each point of P to its k nearest neighbours. Here, and throughout this paper, distance is measured
using the Euclidean l2 norm.

One can now ask various questions, for instance, how large should k be to guarantee the existence
of a giant component in Gn,k, that is, one containing a positive proportion of the vertices as n → ∞?
Another area of interest is connectivity: how large should k be to guarantee the connectivity of Gn,k?
This problem has been extensively studied in the context of wireless ad-hoc networks [5, 6, 7, 8, 9, 10].
Of course, the word “guarantee” is used probabilistically: a typical result will state that for some
k = f(n) the probability that Gn,k is connected tends to one as n → ∞. From now on, we shall use
the phrase “with high probability” (whp) to mean “with probability tending to one as n → ∞”.
Also, all logarithms in this paper are to the base e.

In [1] we prove that if k ≤ 0.3043 logn then Gn,k is not connected whp, while if k ≥ 0.5139 logn
then Gn,k is connected whp. This greatly improved the earlier bounds due to Xue and Kumar [11]
and Gonzáles-Barrios and Quiroz [4]. More recently, we proved [2] that there is a critical value
c, such that for c1 < c and k ≤ c1 log n, Gn,k is not connected whp, and that for c2 > c and
k ≥ c2 log n, Gn,k is connected whp. However, the value of this constant c remains unknown.
Numerical results [1] indicate that it is close to the above lower bound, namely 0.3043.
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In the original context of wireless ad-hoc networks, each point of P is a radio transceiver, and
we suppose that each such radio is able to establish a direct two-way connection with the k radios
nearest to it. In addition, messages can be routed via intermediate radios, so that a message can be
sent indirectly from radio S to radio T through a series of radios S = S1, S2, . . . , Sn = T , each one
having a direct connection to its predecessor. The above results show that if k ≥ 0.5139 logn then,
with high probability, any two radios can communicate with each other, either directly or indirectly.

In this paper we investigate the fault tolerance of these networks, in the following sense. Suppose
that, once the network has been constructed, some of the radios are destroyed or develop faults, so
that they can no longer transmit or receive messages. Is it still possible for every pair of remaining
radios to communicate with each other, or were the removed radios essential for such communication?
Ideally, we would like the network to remain connected, in this sense, for any choice of s removed
radios, where s is small compared to n. This does not happen, for instance, if the network contains a
few “hubs”, through which an unusually high proportion of messages are routed, for then removing
the hubs would disconnect the network.

To make this question precise, we introduce the standard graph theoretic notion of s-connectivity.
A graph G is said to be s-connected if it contains at least s+1 vertices, and the removal of any s−1
of its vertices does not disconnect it. In this paper we show that for s = o(log n), Gn,k becomes s-
connected “just after” it becomes connected. Specifically, if s = o(log n) and c is such that Gn,⌊c log n⌋
is connected whp, then, for all ε > 0, Gn,⌊(c+ε) log n⌋ is s-connected whp. In particular, if c is the
critical constant for connectivity described above, then c is also critical in the same sense for s-
connectivity, for any s = o(log n). Broadly speaking, our results show that a connected wireless
ad-hoc network, constructed as above, can be made very fault tolerant by increasing the number of
connections only very slightly, a feature which is perhaps even more relevant in practice than mere
connectivity.

Wireless ad-hoc networks are only one type of network: another is given by a network of television
transmitters broadcasting over a certain region. Here, it is important that every point in the region
falls within the range of some transmitter. In [1] we investigated the question of whether a network
of n tranmitters in a square, each choosing its range so as to reach at least k other transmitters,
would in fact cover the entire region in the above sense. More precisely, with Gn,k as above, surround
each vertex by the smallest disc containing its k nearest neighbours: we studied the values of k for
which these discs cover the square Sn whp.

Once again, for practical applications, fault tolerance of such a transmitter network is frequently
more of an issue than simply coverage: one can imagine that some transmitters are destroyed by
enemy action, disabled by bad weather or simply need replacing. In this case, we would like the
remaining transmitters to still cover the region in the sense described above. In this paper, we show
that for s = o(log n), if c is such that for k = ⌊c log n⌋ the discs cover Sn whp, then, for all ε > 0,
the discs obtained by taking k′ = ⌊(c + ε) log n⌋ form an s-cover of Sn whp, that is, one in which
each point of Sn lies in at least s of the discs. Thus, as before, one can make the network very fault
tolerant by increasing the parameter k only very slightly.

All our results will apply not only for Poisson processes, but also for n points placed in a square
of area n with the uniform distribution. Indeed, one can view our Poisson process as simply the
result of placing X points in the square, where X ∼ Po(n).

2 Results

Our main results concern s-connectivity. Theorem 1 deals with the case where s is a constant.

Theorem 1. Fix s ∈ N. Suppose k = k(n) is such that Gn,k is connected whp. Then, for any

ε > 0, the graph Gn,⌊k(1+ε)⌋ is s-connected whp.
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Our second main result, Theorem 2, deals with the case s = o(log n).

Theorem 2. Let s = s(n) = o(log n). Suppose c is such that Gn,⌊c log n⌋ is connected whp. Then,

for any ε > 0, Gn,⌊(c+ε) log n⌋ is s-connected whp.

Since this paper was written, we proved the existence of a critical constant c for connectivity in
the k-nearest neighbour model [2], so that Gn,⌊c′ log n⌋ is connected whp if c′ > c and not connected
whp if c′ < c. Thus Theorem 2 implies that for any c′ > c and s = o(log n), Gn,⌊c′ log n⌋ is s-
connected whp. It also implies Theorem 1, although we include the proof of Theorem 1 in this
paper since it is easier than that of Theorem 2 and makes a good warm up exercise.

Our sharpest result is Theorem 10, which we do not state here owing to its somewhat complicated
hypothesis.

The plan of the paper is as follows. Section 3 contains our results on connectivity. We need the
main theorem of [1] and three technical lemmas before we can begin. These are followed by Lemma 7,
which embodies the main idea relating s-connectivity to connectivity, and it together with Lemma 8
enables us to establish Theorem 1. For Theorem 2, we require a strengthened version of a sharpness
result (“sharpness in n”) from [1], and for Theorem 10 we need to prove a new sharpness result
(“sharpness in k”) which we believe is of considerable interest in its own right. Section 4 contains
analogous results for coverage, and we conclude with some open problems in Section 5.

3 s-Connectivity

We will require some slightly strengthened versions of theorems and lemmas from our earlier pa-
per [1]. In each case the proof is an easy modification of the proof of the weaker counterpart in [1].
Throughout the paper, “diameter” will always mean Euclidean, and not graph, diameter.

Theorem 3 (Theorem 1 of [1]). If c ≤ 0.3043 then P(Gn,⌊c log n⌋ is connected) → 0 as n → ∞. If

c > 1/ log 7 ≈ 0.5139 then P(Gn,⌊c log n⌋ is connected) → 1 as n → ∞.

Lemma 4. For fixed c > 0 and K, there exists c′ = c′(c, K) > 0 such that, for any k ≥ c log n,

the probability that Gn,k contains two components each of diameter at least c′
√

log n, or any edge

of length at least c′
√

log n is O(n−K).

Proof. Immediate from the proofs of Lemmas 6 and 2 of [1].

Lemma 5. For fixed c′ > 0 and any k ≥ 0.3 logn, the probability that there exists a component of

Gn,k with diameter less than 2c′
√

log n, any of whose points lie closer than distance c′
√

log n from

two sides of Sn, is o(n−1/4).

Proof. In the proof of Theorem 7 in [1] we show that the probability of the existence of such a
component is no(1)3−k ≤ no(1)e−0.3 log 3 log n = o(n−1/4) as required.

Lemma 6. For any k = k(n) ≥ 0.7 logn the probability that Gn,k is not connected is o(n−1/4).

Proof. Again by the proof of Theorem 7 in [1] we see that the probability of a small component (one
of diameter at most c′

√
log n) near to no side of Sn is n1+o(1)7−k ≤ n1+o(1)e−0.7 log 7 log n = o(n−1/4),

and that the probability of a small component near to exactly one side of Sn is n1/2+o(1)5−k ≤
n1/2+o(1)e−0.7 log 5 log n = o(n−1/4). Combining this with Lemma 4 and Lemma 5, the result follows.
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The following crucial lemma allows us to relate s-connectivity to connectivity at slightly smaller
values of n and k. It is the main tool which enables us to prove Theorem 1, Theorem 2 and
Theorem 10. Recall that n need not be an integer, since it is only the expected number of points in
the square.

Lemma 7. For any s, d, k, n ∈ N and δ = δ(n) ∈ (0, 1) with 0 < d ≤ k and

P(Gn,k is not s-connected) ≥ θ,

we have

P(Gn(1−δ),k−d+1 is not connected) ≥ θδs−1(1 − δ)2 − n(ekδ/d)d.

Proof. Write k′ = k − d + 1 and n′ = (1 − δ)n. Let Pn be a Poisson process of intensity one in a
square Sn of area n. We may consider Pn as the union Pn = Pn′ ∪ Pδn, where Pn′ and Pδn are
independent Poisson processes in Sn of intensities 1 − δ and δ respectively.

Let G = Gn,k be the graph obtained from Pn by joining each point of Pn to its k nearest
neighbours. Let G′ be the graph obtained from Pn′ by joining each point of Pn′ to its k′ nearest
neighbours. We wish to give a lower bound on the probability that G′ is not connected. We do this
in two stages. First we bound (from below) the probability that G′′ = G \ Pδn is not connected,
and second we bound (from above) the probability that G′ is not a subgraph of G′′. Note that
V (G′) = V (G′′) = Pn′ and that we are simply interested in the probability that E(G′) ⊂ E(G′′) –
we do not require that G′ is an induced subgraph of G′′.

Suppose that G is not s-connected: we know that this happens with probability at least θ. Then
there is a set S of (at most) s−1 vertices whose removal disconnects G. Let x and y be two vertices
not joined by a path in G \ S. Now if S ⊂ Pδn and {x, y} ⊂ Pn′ , then G′′ will not be connected.
This is because G′′ will contain none of the vertices of S, so that x and y, both of which will lie in
V (G′′) = Pn′ , will not be connected by a path. The first event occurs with probability δs−1, and
the second with probability (1 − δ)2. Thus

P(G′′ is not connected | G is not s-connected) ≥ δs−1(1 − δ)2.

(Strictly speaking, G might not be s-connected because Pn contains fewer than s + 1 points, but
then |V (G′′)| = |Pn′ | ≤ 1 with probability at least δs−1, so the above inequality still holds if we
regard both the empty graph and an isolated vertex as not being connected.) Consequently,

P(G′′ is not connected) ≥ θδs−1(1 − δ)2.

A vertex v ∈ Pn′ = V (G′′) was originally joined to its k nearest neighbours in G. However, some
of these neighbours might have belonged to Pδn, so that v will not necessarily be joined to its k′

nearest neighbours in G′′. Nevertheless, if for each v, fewer than d of the k nearest neighbours of v
in Pn = V (G) lie in Pδn, then each vertex of G′′ will be joined to at least its k′ nearest neighbours
in G′′, which says precisely that G′ is a subgraph of G′′.

The probability that a specified subset of size d of the neighbours of a vertex v ∈ V (G) all lie
in Pδn is δd. Since there are

(

k
d

)

such subsets, the probability that v is joined to at least d vertices

of Pδn is at most
(

k
d

)

δd ≤ (ekδ/d)d. The expected number of vertices that are joined to at least d
vertices of Pδn is therefore at most n(ekδ/d)d. This is an upper bound on the probability that there
is such a vertex, and so it is an upper bound on the probability that G′ is not a subgraph of G′′.

Putting the pieces together, we see that

P(G′ is not connected) ≥ P(G′′ is not connected) − P(G′ is not a subgraph of G′′)

≥ θδs−1(1 − δ)2 − n(ekδ/d)d

as required.
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Sn \ S

Figure 1: The squares S and Sn′ in the proof of Lemma 8.

The next lemma says that the probability that Gn,k is connected is almost monotonically de-
creasing in n.

Lemma 8. Suppose that n and k(n) ≥ 0.3 logn are such that for all n

P(Gn,k(n) is not connected) > p(n)

for some function p(n) = Ω(n−1/4). Then, for any n′ > n and any K,

P(Gn′,k(n) is not connected) > p(n)/4 − O(n−K).

Proof. Fix n′ and write k = k(n). Consider the square S ⊂ Sn′ of area n in the bottom left hand
corner of Sn′ . Let G be the k nearest neighbour graph formed by the points in S. The induced
subgraph H of Gn′,k formed by the vertices in S is a subgraph of G. By hypothesis, with probability
at least p = p(n) the graph G is not connected. By Lemma 4 and the hypothesis of the theorem the
probability that G has a component of diameter at most c′

√
log n is at least p−O(n−K). Also, with

probability at least p/4−O(n−K) it contains a small component (one of diameter at most c′
√

log n)
with a vertex in the bottom left hand quarter of S (by symmetry), and thus with probability at
least p/4 − O(n−K) a component F with no vertex within

√
n/2 − c′

√
log n > 0.4

√
n of Sn′ \ S.

Divide the square S into 25 small squares. By Lemma 6 we may assume k ≤ 0.7 logn. The ex-
pected number of points in each of the small squares is n/25, and the probability that one such square
has exactly ℓ ≤ k points is e−n/25(n/25)ℓ/ℓ!. Therefore with probability 1−O(e−n/25(n/25)log n) ≥
1−O(n−K), the top 10 and right 10 squares (a total of 16 squares) each contain at least k points. In
this case, there will be no edge from any point in the bottom left 9 squares to Sn′ \S. The probability
that this happens and that a small component F as above occurs is at least p/4−O(n−K)−O(n−K ),
and, in this case, since H is a subgraph of G, F is a component in the original graph.

Theorem 1, stated in Section 2, is the first of our results showing that s-connectivity occurs
“shortly” after connectivity.

Proof of Theorem 1. Fix ε > 0 and let k′ = ⌊k(1 + ε)⌋. Suppose that it is not true that Gn,k′ is
s-connected whp. Then there exists θ > 0 such that

P(Gn,k′ is not s-connected) ≥ θ

for infinitely many n, say for n ∈ N . The hypothesis implies that k ≥ 0.3 logn, and since d =
k′ − k + 1 > kε, we have

n

(

ek′δ

d

)d

< n

(

ek′δ

kε

)kε

≤ n

(

eδ(1 + ε)

ε

)kε

= n · ekε log(eδ(1+ε)/ε) ≤ n1+0.3ε log(eδ(1+ε)/ε),
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which is o(1) for some sufficiently small constant δ > 0, depending on ε but not on n. It follows
from Lemma 7 that for n ∈ N

P(Gn(1−δ),k is not connected) ≥ θδs−1(1 − δ)2 − o(1).

Finally, by Lemma 8 (monotonicity)

P(Gn,k is not connected) ≥ θ
4δs−1(1 − δ)2 − o(1) = Ω(1),

for n ∈ N , which is a contradiction.
We now extend Theorem 1 to the case s = o(log n). We need a strengthened version of Theorem 9

from [1]. It says that, for a fixed k, the probability of connectedness decays very sharply for n around
its critical value.

Lemma 9. Suppose that k = k(n) and p = p(n) are such that

P(Gn,k is not connected) > p = Ω(n−1/4). (1)

Then

P(Gn′,k is not connected) > 1 − 1/e − o(1)

where n′ = (⌈2/p⌉ + 1)2n.

Proof. First note that if k < 0.3 logn then k < 0.3 logn′ and, thus, by Theorem 3 Gn′,k is not
connected whp, and the lemma is trivially true. Thus we may assume k ≥ 0.3 logn. Let c′ be the
constant from Lemma 4 corresponding to c = 0.3 and some K > 1/4.

We say that a point x ∈ V (Gn,k) is close to a side s of Sn if the distance from x to s is less
than c′

√
log n′, and call a component G′ of Gn,k close to s if it contains points which are close to s.

Further, we say that x ∈ V (Gn,k) is central if it is not close to any side s of Sn, and call a component
G′ of Gn,k central if it consists entirely of central points. Finally, we call a component G′ of Gn,k

small if it has diameter at most c′
√

log n′, and large otherwise. Note that c′
√

log n′ < 2c′
√

log n for
large n.

By (1) and Lemma 4, provided n is large enough, with probability more than 3
4p, Gn,k contains

a small component, which can be close to at most two sides of Sn. Write α for the probability
that we have a small central component of Gn,k. Write β for the probability that we have a small
component of Gn,k which is close to exactly one side of Sn, and γ for the probability that we have a
component of Gn,k close to two sides of Sn (so that it lies at a corner of Sn). We have α+β+γ > 3

4p,

and, by Lemma 5, γ = o(n−1/4) so we may assume that either α > p
8 or β > p

2 provided that n is
large enough. If we specify one side s of Sn, the probability that we obtain either a small central
component or one which is close only to s is thus at least p

8 .
Let M = ⌈2/p⌉ + 1. We consider the larger square SM2n = Sn′ , and tessellate it with copies

of Sn. We only consider the small squares of the tessellation incident with the boundary of SM2n.
Considering sides of these copies of Sn lying on the boundary of SM2n, we see that we have 4(M −1)
independent opportunities to obtain a small component G′ in one of the small squares S, in such
a way that G′ can only be close to the boundary of S where that boundary is also part of the
boundary of SM2n. Such a component will also be isolated in GM2n,k, since, by Lemma 4, whp no
edge of GM2n,k has length greater than c′

√
log n′. Therefore, if p′ is the probability that GM2n,k is

not connected, we have

p′ ≥ 1 −
(

1 − p
8

)4(M−1) − o(1) > 1 − e−
p
2
(M−1) − o(1) ≥ 1 − 1/e − o(1).
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We can now prove Theorem 2, a version of Theorem 1 with a slightly stronger hypothesis and a
much stronger conclusion.

Proof of Theorem 2. Fix ε > 0, let c be as in the statement of the theorem, and let c′ = c + ε.
Further, let c′′ = c + ε/2, δ = ε

2e−4/ε−1, n′ = (1 − δ)n, k = ⌊c log n⌋, k′ = ⌊c′ log n⌋ and k′′ =
⌊c′′ log n⌋.

The bounds given by Theorem 3 show that the hypothesis of the theorem is not satisfied if c ≤ 0.3
and is satisfied if c ≥ 0.6. Since the conclusion of the theorem for c and ε implies the conclusion for
all larger c and ε it is sufficient to prove the theorem for 0.3 < c < c′ < 1.

Suppose the theorem is false. Then there is some θ > 0 for which

P(Gn,k′ is not s-connected) ≥ θ

for infinitely many n. Setting d = k′ − k′′ + 1 and noting that k′ < log n and d ≥ ε
2 log n, we have

ek′δ

d
<

e(log n) ε
2e−4/ε−1

ε
2 log n

= e−4/ε,

so

n(ek′δ/d)d < ne−4d/ε ≤ ne−2 log n = 1/n.

Thus by Lemma 7,

P(Gn′,k′′ is not connected) ≥ θδs−1(1 − δ)2 − 1/n = p(n).

Since δ < 1 and θ > 0 are constant and s = o(log n),

p(n) = θ(1 − δ)2n((s−1)/ log n) log δ − 1/n = n−o(1),

so that

log(1/p(n)) = o(log n). (2)

Let M = ⌈2/p⌉+ 1. Now by Lemma 9, for large n,

P(GM2n′,k′′ is not connected) ≥ 1/2.

Furthermore,

c log(M2n′) < c log(M2n) = c(1 + o(1)) log n < ⌊(c + ε/2) logn⌋ = k′′,

for sufficiently large n, since log M = o(log n) by (2). This contradicts the hypothesis.

Our next aim is to investigate more closely the increase in k necessary to boost connectivity to
s-connectivity. For simplicity consider the case s = 2. Since we know that we need k = Θ(log n) for
connectivity, Theorem 1 only shows that this increase is at most ε log n. However, our main result
is the following, which shows in particular that 6

√
log n is sufficient.

Theorem 10. Fix an increasing positive integer sequence s = s(n) = o(log n), with s(n2) ≤ 2s(n)−
1. Let k = k(n) be a function such that Gn,k is connected whp. Then

lim sup
n→∞

P(G
n,k+⌊6

√
(s−1) log n⌋ is s-connected) = 1.
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Remark. The conditions on s(n) hold in particular for constant s ≥ 1, as well as any increasing
s = s(n) with (s − 1)/ log n decreasing monotonically to 0.

This is essentially our sharpest result, and shows that, for instance, if k = k(n) is a function such
that Gn,k is connected whp, then for all ε > 0

P(Gn,k+⌊6(log n)3/4⌋ is
√

log n-connected) > 1 − ε

for infinitely many values of n.
Let us attempt to prove Theorem 10 for s = 2, using Lemma 7. We start by assuming that Gn,k

is not 2-connected with probability 1/2, say, and apply the lemma to show that Gn(1−δ),k−d+1 is not

connected with probability at least p = δ(1− δ)2/2− n(ekδ/d)d. To obtain a contradiction we need
p to be constant. With the tools developed so far, we can either use “sharpness in n” (Lemma 9)
to increase p by increasing n (as in the proof Theorem 2), or we must take δ to be constant, which
necessitates making dd at least n, so that we need d to be at least about log n/ log log n. What we
really need is “sharpness in k”, so that we could increase p to a constant by decreasing k still further.
We could then optimize the choices of δ and d. The trouble is that proving sharpness in k does not
seem to be easy. However, the following lemma tells us that we “often” have sharpness in k.

Lemma 11. Suppose that K = K(n) and a decreasing function p = p(n) are such that

P(Gn,K(n) is not connected) > p = Ω(n−1/4).

Then, if K ′(n) = K(n) − ⌈4 log(4/p(n2))⌉ + 1 we have, for an increasing sequence of values of n,

P(Gn,K′(n) is not connected) > 1/8. (3)

Remark. For most applications, log(4/p(n2)) is within a constant factor of log(4/p(n)).

Proof. We use the sharpness in n and an averaging argument. Suppose that (3) does not hold for
any n > n0, i.e.,

P(Gn,K′(n) is not connected) ≤ 1/8, (4)

for all n > n0. Note that this implies that p(n) < 1/8 for all n > n0.
We will choose n1 > n0 and n2 = n2

1 (the exact choice of n1 will be given later). Let X be the
set of pairs (n, k) with n1 ≤ n ≤ n2 such that

p(n) < P(Gn,k is not connected) ≤ 1/8.

Before giving the formal proof we outline the main idea. For any n with n1 ≤ n ≤ n2 we
are assuming that there are “many” values of k with the pair (n, k) contained in X . However, by
sharpness in n, we know that for any fixed k there are only a “small” number of values of n such
that the pair (n, k) is in X . Thus, by calculating the size of X in these two ways, we obtain a
contradiction.

For technical reasons, we measure the size of X under a non-uniform weighting, rather than just
using the cardinality of X . This is essentially due to the fact that log n and k are linearly related,
so we aim to estimate the area X as represented in Figure 2. The proof is slightly more complicated
than one would hope since we do not know that various functions are “well behaved”. For instance,
we do not know that P(Gn,k is not connected) is monotonic in n.

Now we return to the formal proof. First we define the weighted sum of the points of X : let

T =
∑

(n,k)∈X

log(n+1
n )

=
∑

n1≤n≤n2

∑

k

log(n+1
n ) 1(p(n) < P(Gn,k is not connected) ≤ 1/8).
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log n1 log n2 log n

k

k = 0.3log n

k = log n

n = θ2(k)

n = θ1(k)

X

Figure 2: The region X and functions θ1(k) and θ2(k) in the proof of Lemma 10.

We will bound T in two different ways and obtain a contradiction.
First we bound T from below, using (4). Since (4) holds for any n with n1 ≤ n ≤ n2 there are

at least K(n) − K ′(n) + 1 = ⌈4 log(4/p(n2))⌉ values of k with (n, k) ∈ X . Thus

T ≥
n2
∑

n=n1

log(n+1
n ) 4 log(4/p(n2)). (5)

Next we bound T from above by using the sharpness in n. We split T up into many parts and
bound each of these individually: let

Tk =
∑

n:(n,k)∈X

log(n+1
n )

=
∑

n1≤n≤n2

log(n+1
n ) 1(p(n) < P(Gn,k is not connected) ≤ 1/8),

so that
T =

∑

k

Tk. (6)

(Note that, for all but finitely many k, Tk will be zero.) Let

θ1(k) = min{n : P(Gn,k is not connected) > p(n) }
θ2(k) = max{n : P(Gn,k is not connected) ≤ 1/8 }.

Note that θ1 and θ2 exist since for any fixed k

lim
n→∞

P(Gn,k is not connected) = 1.

9



These are useful quantities since
Xk ⊂ [θ1(k), θ2(k)]

where Xk = {n : (n, k) ∈ X}. Also, both θ1 and θ2 are monotonically increasing in k, since
P(Gn,k is not connected) is decreasing in k for fixed n.

Next we bound θ1. By Lemma 6 we know that

P(Gn,⌈log n⌉ is not connected) = o(n−1/4).

Since p(n) = Ω(n−1/4) we can choose M so that

P(Gn,⌈log n⌉ is not connected) ≤ p(n) (7)

for all n ≥ M . This implies that, for all n ≥ eM ,

θ1(⌈log n⌉) > n, (8)

since otherwise there exists an n′ ≤ n and k = ⌈log n⌉ ≥ M with

P(Gn′,k is not connected) > p(n′).

But clearly n′ > k ≥ M and k ≥ log n′, contradicting (7) and monotonicity in k.
From the definition of θ1(k) we have

P(Gθ1(k),k is not connected) > p(θ1(k)).

Applying Lemma 9 (sharpness in n) we have

P(GN0(k),k is not connected) > 1 − 1/e − o(1),

where N0(k) = (⌈2/p(θ1(k))⌉ + 1)2 θ1(k). Lemma 8 (monotonicity) then implies that, for any
N(k) ≥ N0(k),

P(GN(k),k is not connected) > 1
4 (1 − 1/e)− o(1), (9)

as long as k > 0.3 logN0(k). If k ≤ 0.3 logN0(k), the last assertion follows from Theorem 3. Since
1
4 (1 − 1/e) > 1/8 there is a k0 such that for all k > k0 and N(k) ≥ N0(k)

P(GN(k),k is not connected) > 1/8.

It follows that, for k > k0,

θ2(k) + 1 ≤ N0(k) =
(⌈

2
p(θ1(k))

⌉

+ 1
)2

θ1(k) ≤
(

4
p(θ1(k))

)2

θ1(k). (10)

Let θ̂1(k) = max{θ1(k), n1} and θ̂2(k) = min{θ2(k), n2}. For any fixed k we have {n : (n, k) ∈ X} ⊂
[θ̂1(k), θ̂2(k)] and thus that for any k > k0

Tk ≤
θ̂2(k)
∑

θ̂1(k)

log(n+1
n ) = log(θ̂2(k) + 1) − log(θ̂1(k)) ≤ 2 log(4/p(θ̂1(k))). (11)

Now we are ready to choose n1. There exists an n3 = n3(k0) so that

θ2(k) < n3 for all k ≤ k0, (12)
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and thus that, as long as n1 ≥ n3, Tk = 0 for all k ≤ k0, implying that (11) holds for all k. We

choose n1 = max{n0, n3(k0), e
M}. Also, if θ̂1(k) > n2 then θ̂1(k) > θ̂2(k) and the above sum (11) is

zero. Since p(n) is decreasing, we have

Tk ≤ 2 log(4/p(n2))

for all k. Hence, Tk = 0 for all k > log n2 (since θ1(⌈log n2⌉) > n2 and θ1 is increasing), and summing
over k, we have

T ≤ 2 logn2 log(4/p(n2)). (13)

To complete the proof we choose n2 = n2
1 and compare the two bounds (13) and (5). By (5)

T ≥
n2
∑

n=n1

log(n+1
n ) 4 log(4/p(n2)) ≥ 4 log(n2+1

n1

) log(4/p(n2)) > 2 log n2 log(4/p(n2))

which contradicts Equation (13).

Theorem 10 is an immediate application of Lemma 11.
Proof of Theorem 10. The proof is similar to that of Theorem 1. Indeed our approach is exactly

that described after the proof of Theorem 2, and it only remains to choose δ = δ(n) and d = d(n). Let
d = d(n) = ⌈3

√

(s − 1) log n⌉, δ = δ(n) = n−1.1/d = e−1.1(log n)/d, k′ = k +d−1 and k′′ = k′ +d−1.

As usual, we may assume k′′ ≤ k + 6
√

(s − 1) log n < log n.
Suppose that lim sup P(Gn,k′′ is s-connected) < 1. Then there exists θ > 0 and n0 such that

P(Gn,k′′ is not s-connected) ≥ θ

for all n ≥ n0. By Lemma 7, the probability that Gn(1−δ),k′ is not connected is at least

θδs−1(1 − δ)2 − n(ek′′δ/d)d.

Now d/ logn → 0, so (ek′′/d)d ≤ (d/e logn)−d = n−(d/ log n) log(d/e log n) = no(1). Thus n(ek′′δ/d)d =
nδdno(1) = n−0.1+o(1). Hence, by Lemma 8 (monotonicity) the probability that Gn,k′ is not con-
nected is at least

θ
4δs−1(1 − δ)2 − n−0.1+o(1) = e−1.1(s−1)(log n)/d+O(1) − n−0.1+o(1) = ω(e−d/8).

If we set
p(n) = 4e−d(n)/8,

then for sufficiently large n, Gn,k′ is not connected with probability at least p(n). By assumption

d(n2) = ⌈3
√

(s(n2) − 1) log n2⌉ ≤ ⌈3
√

2(s(n) − 1)2 log n⌉ ≤ 2d(n),

so that
d(n) ≥ d(n2)/2 ≥ 4 log(4/p(n2)),

and, since d(n) is an integer,

k = k′ − d(n) + 1 ≤ k′ − ⌈4 log(4/p(n2))⌉ + 1.

Since s(n) is increasing, d(n) is increasing and p(n) is decreasing in n. Applying Lemma 11 (sharpness
in k) gives P(Gn,k is not connected) > 1/8 for infinitely many n, which is a contradiction.

11



We expect that if Gn,k is connected and s is constant, then one only needs to increase k by about
c(s − 1) log log n to obtain s-connectivity. The following is a heuristic argument that supports this
conjecture.

It seems likely (see [1]) that the obstructions to connectivity are small components, approximately
circular in shape, containing around k + 1 points, and surrounded by an annulus A of area about
C log n containing no points, where C is some absolute constant. Call these type 1 configurations. It
also seems likely that the obstructions to s-connectivity are identical, except that A now contains s−1
points: call these type s configurations. A fixed type s configuration is f(s) = (C log n)s−1/(s − 1)!
times as likely to occur as its corresponding type 1 configuration, so that if we expect approximately
one type 1 configuration in Snf(s), we also expect around f(s) type s configurations in Snf(s) and
hence one type s configuration in Sn. This suggests that Gn,k becomes s-connected at about the same
k that makes Gnf(s),k connected. Suppose the critical k for connectivity is given approximately by
c log n. One would then expect that the k needed to make Gnf(s),k connected is about c log(nf(s))−
c log n = c log f(s) larger than the k needed to make Gn,k connected. Thus if Gn,k is connected, one
would expect that increasing k by about c log f(s) ∼ c(s − 1) log log n would give s-connectivity.

4 s-Coverage

Let Pn be a Poisson process of intensity one in the square Sn. For any x ∈ Pn, let r(x, k) be the
distance from x to its kth nearest neighbour (infinite if this does not exist), and let Bk(x) = {y ∈
Sn : d(y, x) ≤ r(x, k)}. We say that Pn is a (k, s)-cover if each point of Sn lies in at least s of the
regions Bk(x).

The following theorem is the analogue of Theorem 10 from [1], and has an essentially identical

proof. The graph ~Gn,k is defined exactly as Gn,k, except that we place directed edges pointing

away from each point towards its k nearest neighbours. For a directed graph ~G, δin(~G) denotes the

minimum in-degree of ~G.

Theorem 12. Suppose that k = ⌊c log n⌋ is such that whp δin(~Gn,k) ≥ s = s(n). Then, for any

ε > 0, letting k′ = ⌊(c + ε) log n⌋ we have that whp Pn is a (k′, s)-cover. Conversely, suppose that

whp Pn is a (k, s)-cover for k = ⌊c log n⌋. Then, for any ε > 0, letting k′ = ⌊(c + ε) logn⌋ we have

that whp δin(~Gn,k′) ≥ s.

This result will enable us to deduce results about s-coverage from the corresponding results on
the minimum in-degree. We can prove exact analogues of the s-connectivity results for the minimum
in-degree, which will be enough to deduce a version of Theorem 2 for s-coverage.

The following is immediate from the proof of Theorem 3 of [1].

Theorem 13. If c ≤ 0.7209 then P(δin(~Gn,⌊c log n⌋) = 0) → 1, and hence P(~Gn,⌊c log n⌋ is con-

nected) → 0, as n → ∞. If c ≥ 0.9967 then P(~Gn,⌊c log n⌋ is connected) → 1, and hence

lim
n→∞

P(δin(~Gn,⌊c log n⌋) = 0) = 0.

We first show that, as long as s = o(log n), δin(~Gn,k) ≥ s occurs “just after” δin(~Gn,k) ≥ 1 as k
increases. First, we establish the result for constant s. To do this, we need a lemma which is exactly
analogous to Lemma 7.

Lemma 14. For any s, d, k, n ∈ N and 0 < δ < 1 with 0 < d ≤ k and

P(δin(~Gn,k) < s) ≥ θ,
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we have

P(δin(~Gn(1−δ),k−d+1) = 0) ≥ θδs−1(1 − δ) − n(ekδ/d)d.

Proof. If δin(~Gn,k) < s then we have a set S of (at most) s−1 elements in Pn whose removal creates
a vertex v of in-degree zero in Gn,k. We follow the proof and notation of Lemma 7, noting that
v ∈ P(1−δ)n and S ⊂ Pδn occurs with probability at least δs−1(1 − δ). Thus

P(δin(~G′′) = 0 | δin(~G) < s) ≥ δs−1(1 − δ).

Consequently,

P(δin(~G′′) = 0) ≥ θδs−1(1 − δ).

The proof that ~G′ is a subgraph of ~G′′ with probability at least 1 − n(ekδ/d)d is exactly as in the
proof of Lemma 7. As in that proof, we obtain

P(δin(~G′) = 0) ≥ θδs−1(1 − δ) − n(ekδ/d)d.

The next lemma is analogous to Lemma 8.

Lemma 15. Suppose that n and k ≥ 0.7 logn are such that P(δin(~Gn,k) = 0) > p for some p = p(n).
Then, for any n′ > n and any K,

P(δin(~Gn′,k) = 0) > p/4 − O(n−K).

Proof. Fix n′. Consider the square S ⊂ Sn′ of area n in the bottom left hand corner of Sn′ . Let
~G be the directed k nearest neighbour graph formed by the points in S. The induced subgraph ~H
of ~Gn′,k formed by the vertices in S is a subgraph of ~G. By hypothesis, with probability at least

p, δin(~G) = 0. Hence, with probability at least p/4, ~G contains a vertex v of in-degree zero in the
bottom left hand quarter of S (by symmetry).

Divide the square S into 25 small squares. By Theorem 13 we may assume k ≤ log n and so, as
in the proof of Lemma 8, with probability 1 − O(n−K), the top 10 and right 10 squares (a total of
16 squares) each contain at least k points. In this case there will be no directed edge from Sn′ \ S
to any point in the bottom left 9 squares and thus v is a vertex of in-degree zero in the original
graph.

Next we have the promised result for minimum in-degree s, for constant s.

Theorem 16. Fix s ∈ N. Suppose k = k(n) is such that whp δin(~Gn,k) ≥ 1. Then, for any ε > 0,

whp δin(~Gn,⌊k(1+ε)⌋) ≥ s.

Proof. As for Theorem 1, using Lemmas 14 and 15 and the bounds in Theorem 13 in place of
Lemmas 7 and 8 and the bounds in Theorem 3.

We now extend Theorem 16 to the case s = o(log n). First we need a lemma, which is analogous
to Lemma 5.

Lemma 17. Assume c′ > 0 is independent of n and k = k(n) ≥ 0.7 logn. The probability that there

exists a vertex of in-degree zero in ~Gn,k within distance c′
√

log n of two sides of Sn is o(n−1/20).
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Proof. Suppose that we have a vertex v of in-degree zero within distance c′
√

log n of two sides of Sn.
Let w be the closest point of V (~Gn,k) \ {v} to v and write ρ = d(v, w) for the distance between
them. One of the right angled isosceles triangles with hypotenuse vw lies inside Sn: call it T . T
has area ρ2/4 and can contain no vertices of ~G. On the other hand, there are at least k points in
A = {x ∈ Sn : d(x, w) ≤ ρ, d(x, v) ≥ ρ}, since otherwise w would send an edge to v. Therefore, there
must be at least k points in A∪ T , which must all lie in A \ T . The probability of this happening is
at most

( |A \ T |
|A ∪ T |

)k

≤
( |A|
|A| + |T |

)k

≤
(

πρ2

πρ2 + ρ2/4

)k

≤
(

1 +
1

4π

)−k

.

The number of choices for v is O(log n) and, given v, there are O(log n) choices for w, making
o((log n)2) choices for both, so that the probability that we have such a configuration is at most
O((log n)2(1 + 1

4π )−k) ≤ o(n−1/20), since k ≥ 0.7 logn.

We will need the following lemma in the proof of our sharpness result.

Lemma 18. For any k > 1.1 logn the probability that δin(~Gn,k) = 0 is o(n−1/20).

Proof. We refer to the proof of Theorem 8 in [1]. Set γ = (4π
3 +

√
3

2 )(π
3 +

√
3

2 )−1 and γ′ = (5π
6 +√

3
2 )(π

3 +
√

3
2 )−1. We see that the probability of a vertex of in-degree zero near to no side of Sn is

n1+o(1)γ−k = o(n−1/20), and that the probability of a small component near to exactly one side of
Sn is n1/2+o(1)γ′−k = o(n−1/20). Combining this with Lemma 17 the result follows.

Now we prove the analogue of Lemma 9.

Lemma 19. Suppose that k = k(n) and p = p(n) are such that

P(δin(~Gn,k) = 0) > p = Ω(n−1/20).

Then

P(δin(~Gn′,k) = 0) > 1 − 1/e − o(1)

where n′ = (⌈2/p⌉ + 1)2n.

Proof. First note that if k < 0.7209 logn then k < 0.7209 logn′ and, thus, by Theorem 3 δin(~Gn′,k) =
0 whp, and the lemma is trivially true. Thus we can assume k ≥ 0.7209 logn.

As before, we say that a point x ∈ V (~Gn,k) is close to a side s of Sn if x is less than distance
c′
√

log n from s, where c′ = c′(0.7, 1) is as in Lemma 4. We call x central if it is not close to any

side s of Sn. We know that with probability at least p, ~Gn,k contains a vertex v of in-degree zero,
which can be close to at most two sides of Sn. Write α for the probability that v is central, β for
the probability that v is close to exactly one side of Sn, and γ for the probability that v is close to
two sides of Sn (so that it lies at a corner of Sn). We have α + β + γ ≥ p, and, by Lemma 17, we
may assume that either α > p

8 or β > p
2 . If we specify one side s of Sn, the probability that v is

either central or only close to s is thus at least p
8 .

Let M = ⌈2/p⌉+ 1. We consider the larger square SM2n, and tessellate it with copies of Sn. We
only consider the small squares of the tessellation incident with the boundary of SM2n. Considering
sides of these copies of Sn lying on the boundary of SM2n, we see that we have 4(M −1) independent
opportunities to obtain a vertex v of in-degree zero in one of the small squares S, in such a way that
v can only be close to the boundary of S if it is close to the boundary of SM2n. Such a vertex will
also have in-degree zero in ~GM2n,k, since, by Lemma 4, whp no edge of ~GM2n,k has length greater

than c′
√

log n′. Therefore, if p′ is the probability that δin(~GM2n,k) = 0, we have

p′ ≥ 1 −
(

1 − p
8

)4(M−1) − o(1) > 1 − e−
p
2
(M−1) − o(1) ≥ 1 − 1/e − o(1).
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Theorem 20. Let s = s(n) = o(log n). Suppose c is such that whp δin(~Gn,⌊c log n⌋) ≥ 1. Then, for

any ε > 0, whp δin(~Gn,⌊(c+ε) log n⌋) ≥ s.

Proof. As for Theorem 2, using Lemmas 14 and 19 in place of Lemmas 7 and 9.

We may now deduce the following result on s-coverage.

Theorem 21. Let s = s(n) = o(log n). Suppose c > 0 is such that whp Pn is a (⌊c log n⌋, 1)-cover.
Then, for any ε > 0, whp Pn is a (⌊(c + ε) log n⌋, s)-cover.

Proof. Apply Theorem 12 and Theorem 20.

The proofs of the following results are almost identical to those of their counterparts for connec-
tivity, so we omit them.

Lemma 22. Suppose that k = k(n) and a decreasing function p = p(n) are such that

P(δin(~Gn,k) = 0) > p = Ω(n−1/20).

Then, setting k′ = k − ⌈4 log(4/p(n2))⌉ + 1 we have, for infinitely many n,

P(δin(~Gn,k′ ) = 0) > 1/8.

Theorem 23. Fix a non-decreasing positive sequence s = s(n) = o(log n), with s(n2) ≤ 2s(n) − 1.

Let k = k(n) be a function such that δin(~Gn,k(n)) ≥ 1 whp. Then

lim sup
n→∞

P

(

δin(~G
n,k+⌊6

√
(s−1) log n⌋) ≥ s

)

= 1.

5 Open problems

Many open problems remain in this area. The one most relevant to this paper is to improve the
bound in Theorem 10. Specifically, suppose that for some k(n) we know that Gn,k(n) is connected
whp. We would like to know the “smallest” function f(n, s) such that Gn,k(n)+f(n,s) is s-connected
whp. As we mentioned following the proof of Theorem 10, we suspect that f(n, s) = c(s−1) log log n
is enough, where c is the critical constant for the k-nearest neighbour model from [2]. More precisely,
we make the following conjecture.

Conjecture 1. Let c be the critical constant for the k-nearest neighbour model, and let c′ > c. Is

it true, for any s ∈ N and k(n) such that Gn,k(n) is connected whp, that Gn,k(n)+⌊c′(s−1) log log n⌋ is

s-connected whp?

Perhaps a sharper version of Lemma 11 might help in this direction. Also open is the determi-
nation of the critical constant c for both connectivity and coverage.

15



References

[1] P. Balister, B. Bollobás, A. Sarkar and M. Walters, Connectivity of random k-nearest neighbour

graphs, Advances in Applied Probability 37 (2005), 1–24.

[2] P. Balister, B. Bollobás, A. Sarkar and M. Walters, A critical constant for the k-nearest neigh-

bour model, submitted.

[3] B. Bollobás, Random Graphs, second edition, Cambridge University Press, 2001.
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