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ENTROPY ALONG CONVEX SHAPES, RANDOM TILINGS
AND SHIFTS OF FINITE TYPE

PAUL BALISTER, BÉLA BOLLOBÁS, AND ANTHONY QUAS

Abstract. A well-known formula for the topological entropy of a sym-
bolic system is htop(X) = limn→∞ logN(Λn)/|Λn|, where Λn is the

box of side n in Zd and N(Λ) is the number of configurations of the
system on the finite subset Λ of Zd. We investigate the convergence
of the above limit for sequences of regions other than Λn and show in
particular that if Ξn is any sequence of finite ‘convex’ sets in Zd whose
inradii tend to infinity, then the sequence logN(Ξn)/|Ξn| converges to
htop(X).

We apply this to give a concrete proof of a ‘strong Variational Prin-
ciple’, that is, the result that for certain higher dimensional systems

the topological entropy of the system is the supremum of the measure-
theoretic entropies taken over the set of all invariant measures with the
Bernoulli property.

1. Introduction

To define a d-dimensional subshift, one starts with a finite alphabet A and
considers AZd , the collection of all d-dimensional square lattice configurations
of the symbols from A. We endow this space with the product topology,
making it a compact metrizable space. If ξ is a configuration from AZd and
u ∈ Zd, we write ξu for the symbol occurring in position u. For v ∈ Zd, the
shift map through v, σv : AZd → AZd , is defined by (σv(ξ))u = ξu+v.

A subshift is a non-empty closed shift-invariant subset of AZd . A shift of
finite type is a subshift in which configurations are required to satisfy local
rules. Given a finite set Λ ⊂ Zd and a collection R ⊂ AΛ, we define a subset
X of AZd by X = XΛ,R = {ξ ∈ AZd : σv(ξ)|Λ ∈ R, for all v ∈ Zd}, where ξ|Λ
is the restriction of the configuration ξ to the coordinate set Λ. If the set X
is non-empty, then it is known as a shift of finite type. We note that such a
set is necessarily closed and shift-invariant.

Received October 30, 2001; received in final form February 7, 2002.

2000 Mathematics Subject Classification. 28D20, 52C07.
The research of the second author was supported by NSF grant DMS-9971788 and

DARPA grant F33615-01-C-1900.

c©2002 University of Illinois

781
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In the case d = 1, much is known about the structure of shifts of finite type
and many questions can be answered using elementary properties of matrices.
In the case d ≥ 2, it has been shown to be undecidable whether the set
XΛ,R is even non-empty and little is known about the general structure of
d-dimensional shifts of finite type. There is interest in finding broad classes
of shifts of finite type in which questions are tractable.

A d-dimensional shift of finite type X is said to be mixing if given any two
non-empty open subsets U and V of X, it is the case that for all but finitely
many u ∈ Zd, σu(U) ∩ V is non-empty. A d-dimensional shift of finite type
X is said to be strongly irreducible if there exists an r > 0 such that for any
two subsets A and B of Zd satisfying d(A,B) = min({‖a − b‖∞ : a ∈ A, b ∈
B}) > r and any two points ξ and ζ of X, there exists a point η ∈ X such
that η|A = ξ|A and η|B = ζ|B . The number r is called the filling length of
X. The shift X is said to have a safe symbol if there is a symbol such that
given subsets of Zd satisfying d(A,B) > 1 and points ξ and ζ as above, then
the configuration defined to be equal to ξ on A, ζ on B and the safe symbol
elsewhere belongs to X. In particular, if X has a safe symbol, it is strongly
irreducible. Since any non-empty open set contains a cylinder set (a set of the
form [η]Λ = {ξ : ξ|Λ = ηΛ}), one sees that strong irreducibility implies mixing.
In one dimension, the converse holds also: mixing implies strong irreducibility.
It is well-known that this fails in two dimensions.

Let Λn be the finite grid of nd points in Z
d whose coordinates satisfy

0 ≤ ui < n. It is a standard result that if N(Λ) denotes the number of
distinct restrictions to Λ of points of a d-dimensional subshift X, then the
sequence (logN(Λn))/nd is convergent. The limit is called the topological
entropy of X and is denoted by htop(X). Clearly, the quantity N(Λ) can
be defined for any finite subset Λ of Zd. The second section of the paper
considers more general sequences Ξn of regions than Λn with the property that
logN(Ξn)/|Ξn| converges to htop(X). The following theorem is a corollary of
Theorem 2.1, which addresses averages of subadditive functionals on Zd. In
particular, Theorem 2.1 applies equally to measure-theoretic entropy or to
the calculation of topological entropy with respect to an open cover. After
writing the paper, we discovered that a special case of the following theorem
appears in [5].

Theorem A. Let X be a d-dimensional symbolic dynamical system. Given
ε > 0, there exists an R > 0 such that if C is any bounded convex set in Rd

containing a ball of radius R, then∣∣∣∣ logN(C ∩ Zd)
|C ∩ Zd|

− htop(X)
∣∣∣∣ ≤ ε.

This implies that in order for a sequence of ‘convex’ subsets Ξn of Zd to
have the property that logN(Ξn)/|Ξn| → htop(X), it is sufficient that the
inradii of the Ξn converge to infinity.
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In the next section, we apply this theorem to construct some measures with
high entropy on an arbitrary strongly irreducible shift of finite type.

We shall need to consider invariant probability measures on X (that is,
those satisfying µ(B) = µ(σv(B)) for any Borel subset B of X and v ∈ Zd).
If µ is an invariant measure, one can associate to it an entropy hµ(X). Given
a finite subset A ⊂ Zd, we shall denote by PA the partition of X according to
the configuration on A: PA = {{x ∈ X : x|A = y} : y ∈ AA}. The entropy of a
partition with respect to a measure µ is given by Hµ(PA) =

∑
B∈PA φ(µ(B)),

where φ is the concave function φ(t) = −t log t. The measure-theoretic entropy
of X with respect to µ is given by hµ(X) = limN→∞Hµ(PΛN )/|ΛN |, where
convergence is guaranteed by a standard argument using the concavity of φ
to show subadditivity of Hµ.

The Variational Principle [6] states that for any continuous action of Zd on a
compact metric space, the topological entropy, htop(X), is equal to suphµ(X),
where the supremum is taken over the set of all invariant probability measures
µ on X. It is well-known that in the case of a shift space, the supremum is
attained on a non-empty set of measures of maximal entropy.

A measure µ on a shift space X is said to be Bernoulli if it is the image
under a shift-commuting mapping of an independent identically distributed
measure on some space Y = BZ

d

, that is, if there exists a product measure ν
on Y and a mapping Φ: Y → X such that Φ ◦ σu = σu ◦Φ for all u ∈ Zd and
µ = ν ◦ Φ−1. It can be shown that such a measure is measure-theoretically
isomorphic to a product measure (i.e., that the measure is the image of a
product measure under a shift-commuting bijection), and thus up to measure-
theoretic isomorphism, a Bernoulli measure is ‘as random as possible’. There
is a hierarchy of ergodic properties of which the Bernoulli property is the
strongest. Some weaker properties in order are the K property, the strong-
mixing property, the weak-mixing property and ergodicity.

In the one-dimensional case, a strongly irreducible shift of finite type has
a unique measure of maximal entropy that is necessarily Bernoulli. In the
case of shifts of finite type in higher dimensions, Burton and Steif [1][2] gave
examples of strongly irreducible shifts of finite type for which there is more
than one measure of maximal entropy and for which the unique measure of
maximal entropy fails to be weak-mixing respectively.

In [9], Robinson and Şahin showed that the Variational Principle holds for
uniformly filling shifts of finite type even if the supremum is taken over the
set of shift-invariant measures with the K-property. This is achieved by using
the machinery of Kakutani equivalences. As a corollary of a result in a second
paper [10], they show that, provided that the shift of finite type has dense
periodic orbits, the Variational Principle holds if one takes the supremum over
measures with the Bernoulli property. Uniform filling is a priori a weaker
property than strong irreducibility although no example is known of a system
that has one property but not the other.
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In the second part of the paper we give an alternative proof of the fact
that given a strongly irreducible shift of finite type, it supports Bernoulli
measures with entropy arbitrarily close to the topological entropy. The main
advantage of the method presented here is that it is much more direct and
so it gives a clear description of the measures involved. A simple technique
is introduced for establishing existence of Bernoulli measures or alternatively
for establishing that a given measure is Bernoulli; we hope this technique will
find applications elsewhere. The method also has the property that it shows
how to exhibit explicitly the measures in question as factors of an independent
identically distributed process.

The theorem that we prove is the following.

Theorem B. Let X be a strongly irreducible shift of finite type. Then, for
all ε > 0, there is a Bernoulli measure µ on X such that hµ(X) ≥ htop(X)−ε.

The application above is described in the third section. For the proof,
we tile the plane randomly with Voronoi cells and fill in their interiors with
randomly chosen configurations. The results from the second section are used
to guarantee that there is sufficient entropy in the configurations arising from
this process. The proof proceeds by repeatedly ‘grouting’ together a number
of tiles to form larger tiles and ensuring that the resulting process remains
Bernoulli.

2. Subadditive functionals

Let d ≥ 1 and let F denote the collection of finite subsets of Zd. Let
a : F → R be a monotonic translation-invariant subadditive functional, where
a functional a : F → R is said to be monotonic if Λ ⊂ Λ′ implies a(Λ) ≤ a(Λ′);
subadditive if for disjoint subsets Λ and Λ′ of Zd, a(Λ ∪ Λ′) ≤ a(Λ) + a(Λ′);
and translation-invariant if a(Λ + v) = a(Λ) for all v ∈ Zd. We note that
these properties force a(Λ) to be non-negative for all Λ ∈ F . We write |Λ| for
the cardinality of Λ. A set Λ ∈ F is said to tessellate Zd if there is a sequence
v1, v2, . . . in Zd such that {Λ + vi : i ∈ N} is a partition of Zd.

The subadditivity and translation-invariance of a implies that

(2.1) lim
n→∞

a(Λn)
|Λn|

= inf
n

a(Λn)
|Λn|

.

We shall denote this limit by α. The main result of this section is the following
generalization of the above to convex sets.

Theorem 2.1. Let a : F → R be a monotonic translation-invariant sub-
additive functional. Given ε > 0, there exists an R such that if C is any
bounded convex set in Rd containing a ball of radius R, then∣∣∣∣a(C ∩ Zd)

|C ∩ Zd|
− α

∣∣∣∣ ≤ ε.



ENTROPY ALONG CONVEX SHAPES 785

We note that a proof of this theorem immediately gives a proof of Theorem
A since a(Λ) = logN(Λ) satisfies the hypotheses.

To prove the theorem, we first show that if a subset Λ of Zd tessellates Zd,
then a(Λ)/|Λ| ≥ α. We then approximate the convex set as the difference of
a parallelepiped and a union of finite boxes. Since there is a bounded ratio
between the volumes of the parallelepiped and the original convex set (by a
theorem of Chakerian and Stein [3]), this allows us to estimate the value of
a(C ∩ Zd)/|C ∩ Zd|. Throughout this section, we shall assume that a is as in
the statement of the theorem.

Lemma 2.2. If Λ ∈ F tessellates Zd, then a(Λ) ≥ |Λ|α.

Proof. By (2.1), we see a(Λn) ≥ |Λn|α = ndα for all n. Write ` for the
‖ · ‖∞-diameter of Λ. Let {Λ + vi : i ∈ N} be a tessellation of Zd. For a
given N > 0, set S = {i : (Λ + vi) ∩ ΛN 6= ∅}. Then ΛN ⊂

⋃
i∈S(Λ + vi) ⊂

ΛN+2` − `(1, . . . , 1).
We see that |S|a(Λ) ≥ Ndα. However, we also have |S| · |Λ| ≤ |ΛN+2`| =

(N + 2`)d. Dividing, we see

a(Λ)
|Λ|

≥ α
(

N

N + 2`

)d
.

Letting N tend to infinity, the conclusion follows. �

For a convex set C in Rd, we shall writeBr(C) for the closed r-neighborhood
of C (with respect to the Euclidean distance) and Ir(C) for {x ∈ C : Br(x) ⊂
C}, the r-interior of C.

Lemma 2.3. Let v ∈ Rd be a vector satisfying ‖v‖∞ ≤ 1/2, and let C be
a convex set in Rd. Then(

C ∩ Zd
)
4
(
(C + v) ∩ Zd

)
⊂
(
B√d/2(C) \ I√d/2(C)

)
∩ Zd.

Proof. We first note that for such a v, ‖v‖2 ≤
√
d/2. It is sufficient to show

that

I√d/2(C) ∩ Zd ⊂ (C + v) ∩ Zd ⊂ B√d/2(C) ∩ Zd.

This is clear since I√d/2(C) ⊂ C + v ⊂ B√d/2(C). �

In stating the next lemma, we shall assume that C is a convex set in Rd

containing an open ball of radius r0 centered at x0. We shall use non-standard
notation, writing kC for the set obtained by scaling C about x0 by the factor
k (i.e., kC = {kx+ (1− k)x0 : x ∈ C}).
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Lemma 2.4. Suppose C is a convex set in Rd containing a ball of radius
r0 centered at x0. Then(

1− r

r0

)
C ⊂ Ir(C) for r ≤ r0

and

Br(C) ⊂
(

1 +
r

r0

)
C.

Proof. To prove the first assertion, let x ∈ (1 − r
r0

)C and let y ∈ Br(x).
Then write x = (1 − r

r0
)u + r

r0
x0 and y − x = r

r0
v for some u ∈ C and

v ∈ Br0(0). Now y = (1− r
r0

)u+ r
r0

(x0 + v) ∈ C, so we see Br(x) ⊂ C. This
establishes that (1− r

r0
)C ⊂ Ir(C) as required.

To demonstrate the second assertion, let x ∈ Br(C). Then x = u + r
r0
v,

where u ∈ C and v ∈ Br0(0). Now x = u + r
r0

(v + x0) − r
r0
x0. Since

(u+ r
r0

(v + x0))/(1 + r
r0

) ∈ C, we see that x ∈ (1 + r
r0

)C as required. �

Lemma 2.5. If C ⊂ Rd is a convex set, then

Vol(I√d/2(C)) ≤ |C ∩ Zd| ≤ Vol(B√d/2(C)).

Proof. Note first that I√d/2(C) ⊂ (C∩Zd)+[− 1
2 ,

1
2 )d ⊂ B√d/2(C). Indeed,

if x ∈ I√d/2(C) then x + (− 1
2 ,

1
2 ]d ⊂ C. Since the set on the left contains a

unique point in Zd, the required containment follows. Since (C∩Zd)+[− 1
2 ,

1
2 )d

is a disjoint union of |C ∩ Zd| cubes of volume 1, the inequalities follow by
taking the volume of the three sets. �

The following theorem appears in [3] and the reader is referred to that
paper for a proof.

Theorem 2.6. Let C be a bounded convex set in Rd. Then there exists a
parallelepiped P ⊃ C such that Vol(P )/Vol(C) ≤ dd.

One can ensure that the parallelepiped P has rational vertices by making
an arbitrarily small change to the constant dd.

Proof of Theorem 2.1. We shall first prove a lower bound: given ε > 0, if
R is sufficiently large, then any convex set in Rd containing a ball of radius
R satisfies a(C ∩ Zd)/|C ∩ Zd| ≥ α− ε.

To prove this, we shall fix ε > 0 and assume that C is a convex set in Rd

containing a ball of radius r0.
Combining Lemmas 2.3, 2.4 and 2.5, we see that for ‖v‖∞ ≤ 1/2,
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|(C ∩ Zd)4 ((C + v) ∩ Zd)| ≤ |B√d/2(C) ∩ Zd| − |I√d/2(C) ∩ Zd|
≤ Vol(B√d(C))−Vol(I√d(C))

≤

(1 +

√
d

r0

)d
−

(
1−
√
d

r0

)dVol(C)

= O

(
Vol(C)
r0

)
.

(2.2)

It then follows (using the monotonicity and sub-additivity of a) that∣∣a (C ∩ Zd)− a ((C + v) ∩ Zd
)∣∣ ≤ ∣∣(C ∩ Zd)4 ((C + v) ∩ Zd)

∣∣ · a({0})

= O

(
Vol(C)
r0

)
for all vectors v satisfying ‖v‖∞ ≤ 1/2, where the implicit constant in the
error term is independent of v, C and r0. By the translation invariance of
a(·), we see that

(2.3)
∣∣a (C ∩ Zd)− a ((C + v) ∩ Zd

)∣∣ = O

(
Vol(C)
r0

)
for all v ∈ Rd.

By Theorem 2.6, C is contained in a rational parallelepiped P with the
property that Vol(C)/Vol(P ) ≥ 1/(2dd). The edges of P generate a lattice
that gives a tessellation of Rd by translates of P . Let the translates of P be
given by P + v1, P + v2, . . . and define

K =
⋃
i

(C + vi) ∩ Zd.

This is the intersection of an approximate tessellation of Rd by copies of C
with Zd. We then want to study the intersection with a square lattice. For
r < r0, we consider translates of the set Λr through vectors in rZd. We then
define two further subsets G (for good) and B (for bad) of Zd :

G =
⋃
{Λr + rv : v ∈ Zd, Λr + rv ⊂ Rd \K},

B = Z
d \ (G ∪K).

Thus we have divided Zd into 3 parts: K, G and B.
Set Bi = (Br√d(C + vi) \ (C + vi)) ∩ Zd. If x ∈ B, then since x 6∈ K, we

see that x does not belong to one of the translates of C; and since x 6∈ G, we
see that there exists a y in the same Λr-translate as x such that y ∈ K so
x ∈ Br√d(C + vi) for some i. In particular, we see that x ∈

⋃
iBi.



788 PAUL BALISTER, BÉLA BOLLOBÁS, AND ANTHONY QUAS

Using Lemmas 2.5 and 2.4, we see that

|Bi| ≤ Vol(B(r+1)
√
d(C))−Vol(I√d(C))

≤

(1 +
(r + 1)

√
d

r0

)d
−

(
1−
√
d

r0

)dVol(C)

= O

(
Vol(C)r
r0

)
.

Since the fundamental parallelepiped for the lattice is rational, there exists
a multiple of it, P̃ , for which the edge displacements are integer vectors. The
partition of the points inside this part of the lattice into points of K, B and
G is then repeated periodically throughout Zd. Letting T be the intersection
of Zd with P̃ , we have a(T ) ≥ |T |α by Lemma 2.2.

Now let C1, C2, . . . , Cs be the intersection of Zd with the translates of
C inside the large parallelepiped P̃ , where C1 = C ∩ Zd. Similarly, let
G1, G2, . . . , Gt be the translates of Λr that are contained in T \(C1∪ . . .∪Cs).
The remainder BT = T \ (C1 ∪ . . .∪Cs ∪G1 ∪ . . .∪Gt) consists of points that
belong to the Bi corresponding to C1, . . . , Cs and other points within an `∞
distance r of the boundary of T . Hence

|BT | ≤ s ·O
(

Vol(C)r
r0

)
+ Vol(B√d(P̃ ) \ I(r+1)

√
d(P̃ ))

≤ s ·O
(

Vol(C)r
r0

)
+

(1 +

√
d

r0

)d
−

(
1− (r + 1)

√
d

r0

)dVol(P̃ )

= O

(
Vol(P̃ )r
r0

)
.

We now have by the subadditivity of a(·) and Lemma 2.2,

a(C1) + . . .+ a(Cs) + a(G1) + . . .+ a(Gt) + |BT |a({0}) ≥ |T |α.
By (2.3), a(Ci) = a(C1) +O (Vol(C)/r0). So we see that

s · a(C1) ≥ |T |α− t · a(Λr) +O

(
Vol(P̃ )r
r0

)

= (|T | − trd)α− trd
(
a(Λr)
rd

− α
)

+O

(
Vol(P̃ )r
r0

)
.

Since by (2.2),

|T | − trd ≥ |C1|+ . . .+ |Cs| = s|C1|+O

(
sVol(C)

r0

)
= s|C1|+O

(
Vol(P̃ )
r0

)
,
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we have

s · a(C1) ≥ s|C1|α− trd
(
a(Λr)
|Λr|

− α
)

+O

(
Vol(P̃ )r
r0

)
.

Dividing through by s|C1|, and making use of the facts Vol(P )/Vol(C) ≤ 2dd,
Vol(C)/|C1| ≤ (1 +

√
d/r0)d and |T |/Vol(P̃ ) ≤ (1−

√
d/r0)−d, we see that

a(C1)
|C1|

≥ α− |T |
s|C1|

(
a(Λr)
|Λr|

− α
)

+O

(
r

r0

)
≥ α− |T |

Vol(P̃ )
Vol(P̃ )
sVol(C)

Vol(C)
|C1|

(
a(Λr)
|Λr|

− α
)

+O

(
r

r0

)
≥ α− 2dd

(
a(Λr)
|Λr|

− α
)

+O

(
r

r0

)
.

Choose r such that
a(Λr)
rd

− α ≤ ε

4dd
.

Next, for any r0 > r such that the error term is less than ε/2, one sees that
a(C ∩ Zd)/|C ∩ Zd| ≥ α− ε. This establishes the existence of a suitable R.

To establish an upper bound, we consider the translates A1, A2, . . . , An
of Λr through vectors in rZd that intersect C ∩ Zd. We have a(C ∩ Zd) ≤
n · a(Λr). Letting H be the union of the translates A1, . . . , An, we observe
that H ⊂ Br√d(C) ∩ Zd. Dividing the above inequality by |C ∩ Zd|, we see

a(C ∩ Zd)
|C ∩ Zd|

≤ |H|
|C ∩ Zd|

a(Λr)
|Λr|

≤
|Br√d(C) ∩ Zd|
|C ∩ Zd|

a(Λr)
|Λr|

.

Since |Br√d(C) ∩ Zd| − |C ∩ Zd| = O
(
Vol(C) rr0

)
, we see

a(C ∩ Zd)
|C ∩ Zd|

≤ a(Λr)
|Λr|

+O

(
r

r0

)
,

where the implicit constant is independent of C, r and r0. Choosing r large
enough so that a(Λr)/|Λr| ≤ α+ ε/2, we then see that for all sufficiently large
r0,

a(C ∩ Zd)
|C ∩ Zd|

≤ α+ ε.

This completes the proof of Theorem 2.1. �

3. High entropy Bernoulli measures

We begin with the following basic lemma.
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Lemma 3.1. Let X be a strongly irreducible shift of finite type with fill-
ing length r. Suppose that A1, A2, . . . are non-empty subsets of Zd such that
d(Ai, Aj) > r for all i 6= j. If ξ1, ξ2, . . . are points of X, then there exists
ξ ∈ X such that ξ|Ai = ξi|Ai for all i.

Proof. We start by proving inductively that for each n there exists a point
ηn ∈ X such that ηn|Ai = ξi|Ai for all i ≤ n. Clearly for n = 1, we may take
η1 = ξ1. Supposing that such an ηn exists, the existence of ηn+1 follows from
the definition of strong irreducibility applied to ηn|A1∪...∪An and ξn+1|An+1 .
Since the space X is compact (hence sequentially compact), we may take a
subsequence of (ηn) convergent to a point ξ ∈ X. Since the alphabet was
topologized with the discrete topology, we see that the restriction of any
convergent sequence to a finite part of Zd is eventually constant and therefore
ξ|Ai = ξi|Ai for all i. �

We now apply the above results on entropy to give an explicit construction
of a factor mapping from an independent identically distributed process to a
measure on our strongly irreducible shift of finite type X.

Proof of Theorem B. We may assume that X does not consist of a single
fixed point, as otherwise the conclusion is trivial. Let l be the filling length of
X and ε > 0. Given Λ ∈ F , define H(Λ) to be the logarithm of the number
of configurations on Λ that extend to points of X. We see that H(Λ) is a
monotonic, subadditive, translation-invariant functional. We shall write h for
htop(X). Since X is not the trivial shift, we have h > 0. By Theorem 2.1,
there exists an R1 such that if C is a convex set in Rd containing a ball of
radius R1, then H(C ∩ Zd)/|C ∩ Zd| ≥ h− ε/2. From the lemmas above, we
further see that there exists an R2 ≥ R1 + 2l

√
d such that if C is a convex set

containing a ball of radius R2, then

(3.1)
|Il√d(C) ∩ Zd|
|C ∩ Zd|

(h− ε/2) ≥ h− ε.

Our strategy is then to construct explicitly a product measure on a space
Ω̄ and define a measurable factor map from Ω̄ into X. We shall then estimate
the entropy of the resulting push-forward measure.

Write S for the space {0, 1}Zd , Ω for [0, 1)Z
d

and take Ω̄ to be the product
Ω×

∏∞
i=1 S

(i), where each S(i) is a copy of S. We then define a measure µ̄ on
Ω̄ by taking a product of measures (actually a product of product measures)
on the factors. The measure on Ω is the product of copies of the Lebesgue
measure on the interval [0, 1), indexed by Zd. The measure on the factor S(i)

is a product measure µ(i), where the probability of a 1 at any site is given by
%(i) and the probability of a 0 is 1 − %(i), where the %(i) satisfy 0 < %(i) < 1
and are to be specified below. Clearly Ω̄ could equally be regarded as the
space ([0, 1)×

∏∞
n=1{0, 1})

Z
d

and the measure defined above is just a product
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of identical measures on each of the factors indexed by Zd. It is now clear
that the group Zd acts naturally on Ω̄ by translating all the data through
the same displacement. The image of the measure µ̄ by any shift-commuting
measurable mapping will necessarily be a Bernoulli measure.

Define F : S(1) → S by

F (ξ)v =

{
1 if ξv = 1 and ξu = 0 for all 0 < ‖u− v‖∞ ≤ 2R2,

0 otherwise.

Thus after applying the measurable shift-commuting mapping F , the point
F (ξ) has no two 1’s separated by an `∞ distance of less than 2R2. Clearly,
for µ(1)-almost every ξ, F (ξ) contains infinitely many 1’s.

We then use F (ξ) to define a set of Voronoi tiles: Let v(1)
1 , v

(1)
2 , . . . be the

points at which F (ξ) takes the value 1. Fix a vector δ whose components
together with 1 form a set that is linearly independent over Q and which
satisfies in addition ‖δ‖∞ ≤ 1/(2

√
d), and set

T
(1)
i = {x ∈ Rd : d(x, v(1)

i ) ≤ d(x, v(1)
j ), for all j}+ δ.

The vector δ ensures that no point of Zd is contained in more than one tile.
By the definition of F , T (1)

i necessarily contains a ball of radius R2 about
vi + δ. Now letting Ci be the region Il

√
d(T

(1)
i ) ∩ Zd, we see that Il√d(T

(1)
i )

is convex and contains a ball of radius R1. By the choice of R1, we have
H(Ci) ≥ (h−ε/2)|Ci|. By the choice of R2, we have H(Ci) ≥ (h−ε)|T (1)

i ∩Zd|.
We now describe a way of filling in each Ci with a random set, chosen

uniformly from the expH(Ci) choices, and then extending it to a configuration
on the whole of Zd. Note that by Lemma 3.1, the existence of configurations
on Zd extending the configurations on the regions Ci is assured. We do the
extension in stages: having filled in the Ci, we repeatedly amalgamate finite
sets of tiles to form larger tiles. The limit of this process is the required
configuration on Zd.

For the first stage, we start by listing all the shapes (up to translation)
Λ(r) ∈ F that can arise as Ci. On each Λ(r), we list all the configurations
ζ

(r)
j , 1 ≤ j ≤ n(r) = expH(Λ(r)), that arise as the restriction of points in X.

If A is the alphabet of X, we write A∗ for the alphabet A adjoined by a
‘gap’ symbol. We then write X∗ for the set of points of A∗Z

d

that are obtained
by taking a point ξ ∈ X and replacing the symbols on an arbitrary subset
A ⊂ Zd by the gap symbol.

We shall write a point ω̄ ∈ Ω̄ as (β, ξ(1), ξ(2), . . .), where β ∈ Ω and ξ(i) ∈
S(i). We then define a map Φ1 : Ω̄ → X∗. To specify Φ1(ω̄), one finds the
Voronoi tiles T (1)

1 , T
(1)
2 , . . . as above from F (ξ(1)). The points v(1)

i are referred
to as the centers of the tiles T (1)

i . For each i, one finds the ri such that Ci
is a translate of Λ(ri). The number βvi is then used to fill in Ci as follows:
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there exists a unique j such that j/n(ri) ≤ βvi < (j + 1)/n(ri). The region Ci
is then filled in with a translated copy of ζ(ri)

j . The remainder of Zd is filled
with the gap symbol. This mapping is clearly measurable and by Lemma 3.1,
the image lies in X∗. It also commutes with the shift:

Φ1(σu(ω̄)) = σu(Φ1(ω̄))

for all u ∈ Zd. This completes the first stage of the tiling.
Suppose that the (n − 1)st stage tiling is complete, giving a sequence of

mappings Φ1, . . . ,Φn−1 from Ω̄ to X∗, that is a sequence of extensions in the
sense that for m < n, Φm(ω̄) is obtained from Φm−1(ω̄) by replacing some of
the gap symbols by symbols from A.

We now show how to define the nth stage tiling by specifying the map Φn.
Let the tiles in Φn−1(ω̄) be T (n−1)

1 , T
(n−1)
2 , . . ., with centers v(n−1)

1 , v
(n−1)
2 , . . ..

We now use the point ξ(n) of S(n) as follows: Let v(n)
i be the points at which

ξ(n) takes the value 1. Then define nth stage tiles to be the union of the tiles
T

(n−1)
j whose central points v(n−1)

j are closer to v
(n)
i + δ than to any other

such point. These tiles are denoted by T
(n)
i . By removing empty tiles from

the list, we can assume that all of these tiles are non-empty. We complete this
stage by filling in the gap symbols of Φn−1(ω̄) in the sets Il√d(T

(n)
i )∩Zd. To

ensure that this is done in a shift-commuting way, we introduce an ordering on
A and do the filling in the (unique) smallest way in the lexicographic ordering
that extends to a configuration in X. We note that by Lemma 3.1, the point
after this filling in of gap symbols is completed belongs to X∗.

Let pn denote the probability that the origin (or any arbitrary point of Zd)
is contained in the l

√
d-interior of one of the nth stage tiles defined above.

We claim that if the density %(n) is chosen sufficiently small, then pn can be
made as close to 1 as desired. Let τ > 0 and let rn be chosen so that with
probability at least 1− τ/2, the origin is contained in the l

√
d-interior of the

union of the T (n−1)
i whose central points (defined in the (n − 1)st stage) are

within rn of the origin.
To calculate pn, we estimate the probability qn that the nearest v(n)

i and
second nearest v(n)

j to the origin have the property that d(v(n)
j , 0) ≤ d(v(n)

i , 0)+
2rn and show that this probability converges to 0 as %(n) → 0. We see that
we may bound qn by

∑
k qn,k where qn,k is the probability that the ball of

radius 2krn about the origin does not contain any 1’s in ξ(n) while the ball of
radius 2(k + 2)rn contains at least two 1’s. Let Nk be the number of points
of Zd contained in a ball of radius 2krn about the origin. We then see that

qn,k = (1− %(n))Nk
Nk+2−Nk∑

i=2

(
Nk+2 −Nk

i

)
%(n)i(1− %(n))Nk+2−Nk−i.
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For convenience, we set %(n) = M−d+1/4, where M is to be determined. We
shall make use of the following estimates: Nk ≥ Ckd, Nk+1 − Nk ≥ C ′kd−1

and Nk+2 −Nk ≤ C ′′kd−1.
For k ≥M , we estimate

qn,k ≤ exp(−%(n)Nk) ≤ exp(−M−d+1/4(CMd + (k −M)C ′Md−1)).

We then see that∑
k≥M

qn,k ≤
exp(−CM1/4)

1− exp(C ′M−3/4)
= O(M3/4 exp(−CM1/4)) = o(1).

For k ≤M and M sufficiently large, we have (Nk+2−Nk)%(n)/(1−%(n)) <
1/2, and hence comparing the binomial sum to a geometric series, we estimate
qn,k ≤ (%(n))2(Nk+2 −Nk)2. It follows that∑

k≤M

qn,k ≤M ·M−2d+1/2C ′′
2
M2d−2 = C ′′

2
M−1/2 = o(1).

By choosing M large, we see that qn can be made arbitrarily small.
Supposing that the origin is contained in the l

√
d-interior of the union of

the level (n− 1) tiles with centers of distance at most rn from the origin (an
event of probability 1−τ/2), if the difference between the first and second radii
of neighbors of the origin in ξ(n) is more than 2rn (an event of probability
1 − qn), then it follows that all of the above tiles are amalgamated into a
single tile containing the origin in its l

√
d-interior. Hence choosing qn < τ/2,

we see that pn > 1 − τ . This establishes that the probability that the origin
is contained in the l

√
d-interior of a level n tile can be made arbitrarily close

to 1. This completes the inductive step.
Since the process is stationary, the above estimates apply to all points of

Z
d, so by ensuring that the pn converge to 1, it will follow that almost surely

each point of Zd is contained in the l
√
d-interior of a tile at level n for some

n, and hence a symbol is assigned to Φn(ω). Since these values are never
subsequently altered, we may take the limit of the points Φn(ω) to get a point
of X. Since ω is chosen according to a product measure and the mapping
Φ(ω) = limn→∞Φn(ω) is shift-commuting, it follows that the image measure
is Bernoulli. The measurability of Φ is clear since Φ is the limit of measurable
mappings.

To check the entropy of this measure, consider the first stage tile interiors
Ci that are completely contained in ΛN . Let η > 0. We claim that for
sufficiently large N , with probability at least 1 − η, the proportion of ΛN
occupied by these tiles is at least 1− η. To see this, consider the probability
that a given point of Zd has no stage 1 center within a Euclidean distance

√
N .

Without loss of generality, we can take the point to be the origin. We now
demonstrate that this probability is O

(
exp(−CNd/2)

)
. A point v is a stage

1 center if ξ(1)
v = 1 and all points within a Euclidean distance 2R2 are 0’s of
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ξ(1). Clearly, for the lattice 4R2Z
d the events that the lattice points are stage

1 centers are independent and equiprobable. The probability that the origin
has no stage 1 center within a Euclidean distance

√
N is dominated by the

probability that the origin has no such stage 1 center belonging to the lattice,
but this latter probability can clearly be shown to be O

(
exp(−CNd/2)

)
. It

follows that the probability that there is a point of ΛN with no stage 1 center
within a Euclidean distance

√
N is O(Nd exp(−CNd/2)). Choose N such that

this probability is less that η and such that (N − 4
√
N)d/Nd > 1 − η. We

then see that with probability at least 1 − η, points inside the box B of side
N − 4

√
N centered at (N/2, . . . , N/2) belong to tiles with centers inside the

box B′ of side N − 2
√
N centered at the same point, whereas points outside

ΛN belong to tiles with centers outside B′. Accordingly, with probability at
least 1− η, B is entirely covered with stage 1 tiles that lie entirely within ΛN
as required.

We then estimate the entropy of the partition as follows: for each arrange-
ment of the tiles intersecting ΛN , we get a measure, νi, on AΛN . Each of these
measures has an associated probability pi that is given by the probability that
the corresponding arrangement of tiles occurs. The measure ν on the config-
urations on ΛN is then given by ν =

∑
i piνi. By a convexity calculation, we

have Hν(PΛN ) ≥
∑
i piHνi(PΛN ). Notice that Hνi(PΛN ) ≥ Hνi(PA) where

A is the subset of ΛN consisting of the Ci completely contained in ΛN . If the
tiles completely contained in ΛN occupy at least a proportion 1 − η of ΛN ,
we see using (3.1) that

Hνi(PA) =
∑

Ci⊂ΛN

H(Ci) ≥ (h− ε

2
)|A| ≥ (h− ε)(1− η)|ΛN |.

Considering the measures νi whose corresponding sets A occupy at least a
proportion 1 − η of ΛN , since their probabilities pi sum to at least 1 − η, it
follows that Hµ(PΛN ) = Hν(PΛN ) ≥ (1−η)2(h− ε)|ΛN |. Since η is arbitrary,
we see that hµ(X) ≥ h− ε, completing the proof. �

The above theorem provides a constructive proof of the Variational Princi-
ple for strongly irreducible shifts of finite type. In [8], an example of a mixing
shift of finite type is presented in which this theorem fails badly. A shift
of finite type is constructed that is mixing, but has the property that even
the weak-mixing measures (a large class containing the Bernoulli measures)
have measure-theoretic entropies that are bounded away from the topological
entropy.
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