
PACKING CLOSED TRAILS INTO DENSE GRAPHS

P.N. BALISTER

Abstract. It has been shown [Balister, 2001] that if n is odd and m1, . . . , mt are integers with
mi ≥ 3 and

∑t
i=1 mi = |E(Kn)| then Kn can be decomposed as an edge-disjoint union of closed

trails of lengths m1, . . . , mt. Here we show that the corresponding result is also true for any
sufficiently large and sufficiently dense even graph G.

1. Introduction

All graphs considered will be finite simple graphs. Write V (G) for the vertex set and E(G) for
the edge set of a graph G. As usual δ(G) will denote the minimum degree of G. We say G is even
if the degree dG(v) of every vertex v ∈ V (G) is even. We shall usually write n = |V (G)| for the
number of vertices of G. If S ⊆ E(G), then we write G\S for the graph with the same vertex set
as G, but edge set E(G) \ S. Sometimes we shall abuse notation by writing, for example, G \H
for G \ E(H) when H is a subgraph of G.

The main result we shall prove is the following.

Theorem 1. There exist absolute constants N and ε > 0 such that for any even graph G on n
vertices with n ≥ N and δ(G) ≥ (1−ε)n and for any collection of integers m1, . . . ,mt with mi ≥ 3
and

∑t
i=1 mi = |E(G)| one can write G as the edge-disjoint union of closed trails C1, . . . , Ct with

Ci of length mi. In addition, given any fixed v ∈ V (G), we can also ensure that C1 meets v.

It is worth noting that the ε given by the proof of Theorem 1 is extremely small due to the use
of a result of Gustavsson [6] which also needs a very small ε.

In [2] this theorem was proved when G = Kn and n odd, and when G = Kn − I and n even,
where I is a 1-factor of Kn. In contrast to Theorem 1, this holds even for small n. These results
are closely related to Alspach’s Conjecture [1] which asks whether G = Kn or Kn − I can be
decomposed into cycles of lengths m1, . . . ,mt. Some results on this problem are given in [3].

The strategy of the proof of Theorem 1 will be to first pack closed trails of arbitrary lengths into
graphs formed by linking octahedra (K2,2,2) together. This is done in Section 2. These linked
octahedra can be formed by taking a trail of linked triangles and doubling up the vertices (see
Figure 1). Section 3 shows that the triangles in any triangle decomposition of a dense graph can
be ordered in such a way to form such a trail of linked triangles. In Section 4 we show how to
use these results to prove Theorem 1 when n is even by reducing to the case when the graph is
obtained by doubling the vertices in a graph formed by such a trail of triangles. The proof is
extended to the case when n is odd in Section 5.
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H O.4 = H[2]

Figure 1. Trails of triangles and octahedra.

2. Packing Octahedra

If G1 and G2 are graphs, define a packing of G1 into G2 as a map f : V (G1) → V (G2) such
that xy ∈ E(G1) implies f(x)f(y) ∈ E(G2) and the induced map on edges xy 7→ f(x)f(y) is
a bijection between E(G1) and E(G2). Note that f is not required to be injective on vertices.
Hence if G1 contains a path or cycle, its image in G2 will be a trail or closed trail. With this
notation, the problem is one of packing a disjoint union of cycles

⋃t
i=1 Cmi into some dense even

graph G.

We shall define for some graphs, initial and final links as (ordered) pairs of vertices, (possibly
the same pair). If these have been defined for G1 and G2, then we write G1 · G2 for the graph
obtained by identifying the final link of G1 with the initial link of G2 (in the same order). The
graph G1 · G2 will be undefined if an edge occurs in both these links. The initial link of the
resultant graph will be that of G1 and the final link will be that of G2. This makes · into an
associative operation on such graphs when defined. Similarly, the initial link of G1 ∪G2 will be
that of G1 and the final link will be that of G2. We shall also write G.n for G ·G · · ·G and G∪n

for G∪ · · · ∪G when there are n copies of G. If H is a graph, denote by H[2] the graph obtained
by replacing each vertex v ∈ V (H) by a pair of vertices v1, v2, and each edge uv ∈ E(H) by four
edges uivj , 1 ≤ i, j ≤ 2.

As in [2], let O = K2,2,2 = C3[2] be the graph of an octahedron. This graph is tripartite with
three vertex classes, each class consisting of two vertices. The first vertex class will be the initial
link of O and the last vertex class will be the final link of O. In fact by symmetry it does not
matter which vertex classes are chosen, or the order of the vertices in either link.

Hence for n ≥ 1, O.n represents a graph on 4n + 2 vertices obtained by taking n octahedra and
identifying a pair of vertices of the ith octahedron with a pair in the (i + 1)th octahedron. Note
that O.n = H[2] where H is the graph obtained by joining n triangles together along a path (see
Figure 1).

For a path Pn of edge length n with endpoints u and v, make (u, v) both the initial and final link
of Pn. The graph Pa1,...,ar = Pa1 · Pa2 · · ·Par will be a graph with specified link vertices (u, v)
consisting of independent paths of length ai from u to v. In the special case when r = 0 we write
P∅ for the empty graph on {u, v}. Write C ′

n = Cn ∪ E1 for a cycle of length n together with an
extra independent vertex. The pair (u, v) will be the initial and final link of C ′

n where v is the
independent vertex and u is any vertex of the cycle.

Definition 1. Define the graphs Ln for n = 0 and n ≥ 3 by

L0 = P∅, L3 = C ′
3, L4 = P2,2, L5 = P2,3, and Ln = P4,n−4 for n ≥ 6,

except that L6 will be defined as either P4,2 or P3,3 and L8 will be defined as either P4,4 or P2,2,2,2.
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L0 = P∅ L3 = C ′
3 L5 = P2,3 O · L5

Figure 2. Examples of Graphs Ln and O · Ln.

Note that we can pack Cn into Ln for all n > 0. Note also that the definition of L8 differs slightly
from that in [2].

We now need some simple packing results from [2] which we summarize here. Special care must
be taken with the graphs L6 and L8. Whenever we say there is a packing of Lm into some other
graph, then this is true with either choice of Lm when m = 6 or 8. On the other hand, if we say
there is a packing into some graph involving Lm, then we mean only that a packing exists for
some choice of Lm. We quote the following result.

Theorem 2 (Theorem 14 of [2]). Suppose that either m +
∑

mi ≥ 15 or m +
∑

mi = 12
with m ≥ 0, m 6= 1, 2, mi ≥ 5, mi 6= 6. Then for some subset S and some m′ we can pack
Lm ∪ (

⋃
i∈S Cmi) into O · Lm′ with the initial link of Lm mapped to the initial link of O · Lm′,

except in the cases when m ∈ {0, 4, 5, 9} and all the mi are equal to 5.

We shall also need:

Lemma 3. The following packings exist.

L3 ∪ C3 ∪ C3 ∪ C3 into O
L3 ∪ C3 ∪ C6 into O
L4 ∪ C3 ∪ C5 into O
L6 ∪ C3 ∪ C3 into O
L6 ∪ C6 into O
L9 ∪ C3 into O
C4 ∪ C4 ∪ C4 into O
C5 ∪ C5 ∪ C5 ∪ C5 into O · L8

L4 ∪ C5 ∪ C5 ∪ C5 ∪ C5 into O ·O
In all relevant cases the initial link of Lm is mapped to the initial link of the resulting graph.

Proof. Each of these packings can be constructed easily by hand, however we shall construct them
using the results of [2]. The graph O can be packed with four triangles, at least one of which
meets the first vertex of the initial link and hence forms an L3. Therefore the first packing listed
above exists. By Lemma 13 of [2] we have packings of Ln∪L12−n (3 ≤ n ≤ 9) and Ln ·C ′

3 ∪L9−n

(4 ≤ n ≤ 6) into O. By symmetry we also have packings of L9−n ∪ C ′
3 · Ln (4 ≤ n ≤ 6) into O.

These packings give the next five packings above (using the fact that Cn can be packed into Ln

or C ′
n and G1 ∪ G2 can be packed into G1 · G2). We can pack two C4s into P2,2,2,2 by pairing

up the paths. Hence we have a packing of three C4s into P2,2,2,2 ∪ P2,2. Once again, this can
be packed into O by Lemma 13 of [2]. This lemma also gives a packing of L0 ∪ P3,3,3,3 into O.
We can pack four C5s into P3,3,3,3 · P2,2,2,2 by joining paths of length 2 with paths of length 3.
Hence we have a packing of four C5s into O ·P2,2,2,2. Finally L4 and four C5s can be packed into
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L4 ∪ P2,2,2,2 · O which can then be packed into O · O using the P2,2 ∪ P2,2,2,2 packing mentioned
above. �

Theorem 4. If
∑t

i=1 mi = 12n and mi ≥ 3 then one can decompose O.n as an edge-disjoint
union of closed trails of lengths m1, . . . ,mt.

Proof. We need to pack
⋃t

i=1 Cmi into O.n. If we have three C4s then we can pack these into the
first O using Lemma 3. The result will then follow by induction on n. Similarly if we have four
C3s or two C6s or C3 ∪C3 ∪C6 then we can pack these into the first O and use induction. Hence
we may assume there are at most two C4s and the C3s and C6s have total length at most 9.

If we have two C4s, pack C4 ∪ C4 as L8 = P2,2,2,2. If we have one C4, pack it as L4. Otherwise
start with L0. If we temporarily discard C3s and C6s, the total length of cycles will still be at
least 12(n− 1) + 3.

Now we pack the other cycles, which are all of length 5 or ≥ 7. We can assume that we have
already packed an O.b · Lm with 0 ≤ b < n − 1. If there are some C5s remaining, we can also
assume m ∈ {0, 4, 6, 8}. We shall pack the remaining cycles inductively into graphs of the same
form with larger values of b, starting with the C5s. If we have enough remaining C5s use the
packings

L0 ∪ C5 ∪ C5 ∪ C5 ∪ C5 into O · L8

L4 ∪ C5 ∪ C5 ∪ C5 ∪ C5 into O ·O
L6 ∪ C5 ∪ C5 into O · L4

L8 ∪ C5 ∪ C5 into O · L6

The first two are from Lemma 3, the last two from Theorem 2. In each case the initial links
match, so we can pack O.b · Lm into O.b+1 · Lm′ , m′ ∈ {4, 6, 8}, or O.b+2 = O.b+2 · L0.

Assume we have enough C5s to reach a total length of at least 12(n − 1) + 3. We shall pack at
least n − 1 of the Os completely, except when we have packings of O.n−2 · Lm with m = 0 or 4
and at least three more C5s. If m = 4 we must have four remaining C5s (24− 4− 5− 5− 5 = 5
edges are left for the remaining cycles), so can use the L4 packing above to finish. If m = 0 the
remaining cycle(s) are of total length 9. We deal with each case separately. Recall that we can
always pack Cmi into Lmi . If there is a C3, use the packing of L3∪C5∪C5∪C5 from Theorem 2.
If there is another C5, pack the four C5s into O · L8 using Lemma 3. If there is no C3 or C5

then there is just one remaining C9, in which case use the L5 ∪C9 ∪C5 packing from Theorem 2.
Hence in all cases we have packed some graph of the form O.n−1 · Lm (or O.n).

Now assume we do not have enough C5s to pack n − 1 octahedra. Hence there is at least one
cycle of length at least 7. After packing as many C5s as possible, we shall have at most one C5

left or three C5s if we have packed O.b · L0 or O.b · L4. Pack L0 ∪ C5 into L5 or L4 ∪ C5 ∪ Cm

into O · Lm−3 (for some m ≥ 7) to ensure we have at most two C5s left. Now continue packing
the remaining cycles using Theorem 2. Whenever we have packed O.b · Lm with b < n − 1, we
have enough extra cycles to pack Lm and some cycles into O · Lm′ with initial link matching
by Theorem 2, and hence we can pack O.b+1 · Lm′ . The only exception is when we try to pack
L9 ∪ C5 ∪ C5 into the (n − 1)st O. (There are at most two C5s and the other combinations not
allowed by Theorem 2 have too few edges). Since the total remaining length is 24 and we have
9 + 5 + 5 left to pack, the final cycle must be of length 5, contradicting the fact that there are at
most two C5s remaining.
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Figure 3. 2-balanced 6-cycle and 1-balanced 5-cycle of triangles.

Hence we can always pack a subset of cycles into a graph of the form O.n−1 · Lm (or O.n). We
now need to show that we can pack Lm and the remaining cycles (including C3s and C6s) into O
when the total length is 12. If m = 0 pack one of the remaining cycles Cmi as Lmi first. Hence
we may assume m > 0. If none of the remaining cycles are C3, C4, or C6, then we are done by
Theorem 2. We used all the C4s at the beginning of the proof, so the only other combinations
are those listed in Lemma 3. Hence in all cases we are done. �

3. Eulerian trails of triangles

Let H be a graph with an edge-decomposition into triangles T , so E(H) =
⋃

T∈T E(T ). Define
a trail of triangles as a trail P (of edges) in H such that the edges of P lie in distinct triangles
of T . (See Figure 1 for an example where the trail is a path.) We shall refer to the triangles of T
that contain an edge of P as the triangles associated with P . We shall call P the underlying trail
when we wish to emphasize the trail rather than this set of triangles. Throughout this section,
whenever we refer to a triangle it will always be assumed that it is a triangle in T . Define a
k-balanced cycle of triangles as a trail of triangles in which the underlying trail is a cycle and for
any v ∈ V (H) there are at most k triangles in T with one edge in the cycle and the opposite
vertex equal to v (see Figure 3). In this section n = |V (H)|.

Lemma 5. If n = |V (H)|, δ(H) ≥ 3
4n+ k + n

2k +3, and H has a triangle decomposition T , then
H has a Hamiltonian k-balanced cycle of triangles (i.e., the underlying cycle is an n-cycle).

Proof. First we show that H has some k-balanced cycle of triangles. Form a subgraph H ′ of
H by taking one edge from each triangle in T . Now |E(H ′)| = 1

3 |E(H)| ≥ n
6 δ(H). By the

arithmetic-geometric mean inequality, k + n
2k ≥

√
2n. Since δ(H) ≤ n−1 it is easily checked that

k ≥ 2 and
√

2n ≤ n
4 . Hence

δ(H) ≥ 3
4
n +

√
2n + 3 ≥ 4

√
2n + 3 > 3(

√
n + 1).

Thus |E(H ′)| > 1
2(n− 1)

√
n + n

2 ≥ ext(C4, n), the extremal number of C4 (see [4, p.310]). Thus
H ′ contains a C4. This C4 is a 2-balanced cycle of triangles in H since each vertex v can be
in triangles opposite at most 2 edges of this C4. We shall now extend this balanced cycle of
triangles.

Let x1 and x2 be adjacent vertices on a k-balanced cycle C = x1 . . . xL of length L. We shall
try to extend the underlying cycle C by replacing x1x2 by x1vx2 for some vertex v. There are
at least dH(x1) + dH(x2) − n ≥ n

2 + 2k + n
k + 6 vertices adjacent to both x1 and x2. Of these,

at most L − 2 lie on C. The third vertex of the triangles of T containing x1v are distinct for
distinct v. Thus at most L/k edges x1v from x1 cannot be used to extend C since the third
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vertex in the triangle on this edge has already been used k times. Similarly at most L/k edges
from x2 cannot be used. Finally, the edges to the third vertices in the triangles on xLx1, x2x3

and x1x2 are excluded, since then x1v or x2v would lie in a triangle that has already been used
(or would lie in the same triangle). Hence, provided n

2 + 2k + n
k + 6 > L + 2L/k + 1 we can find

a vertex v and extend the cycle by replacing the edge x1x2 with x1vx2. However, if L ≤ n
2 + 2k

then L + 2L/k + 1 ≤ n
2 + 2k + n

k + 5. Thus we can extend C at least until L > n
2 + 2k.

Now assume L < n and pick a vertex v /∈ V (C). We shall try to extend the cycle further using
this vertex. There are at least dH(v) + L− n vertices xi in the underlying cycle C adjacent to v.
Of these at most L/k edges vxi cannot be used since the third vertex of the triangle on vxi has
been used k times. At most another 2k edges from v cannot be used, since they lie in triangles
already associated with C. Now if dH(v) + L − n − L/k − 2k > L

2 then v is adjacent to a pair
of adjacent vertices on C by “good” edges. In this case we can extend C as before by replacing
xixi+1 by xivxi+1 where vxi and vxi+1 are adjacent good edges. This inequality holds whenever
L
2 −

L
k > n

4 + k − n
2k − 3. However, if L > n

2 + 2k then L
2 −

L
k > n

4 + k − n
2k − 2. Hence we can

extend C until L = n. Thus a Hamiltonian k-balanced cycle exists. �

Define an Eulerian trail of triangles as a closed trail of triangles which uses an edge from every
triangle of T . We call this trail good if the underlying trail meets every vertex of H.

Lemma 6. If δ(H) ≥ 3
4n+

√
6n+10 and H has a decomposition into triangles, then H contains

a good Eulerian trail of triangles.

Proof. Let k =
⌈√

n/6
⌉
. Then δ(H) ≥ 3

4n + 3k + n
2k + 7. By Lemma 5, H contains a k-balanced

Hamiltonian cycle of triangles C. Removing the triangles associated with C from H and applying
Lemma 5 again we get a second k-balanced Hamiltonian cycle C ′. (The minimum degree after
removing the triangles associated with C is at least δ(H)−4−2k ≥ 3

4n+k+ n
2k +3.) Pick one edge

out of every triangle in T so that for the triangles associated with C no edge of C is selected and
for the triangles associated with C ′ only edges from C ′ are selected. For the remaining triangles
in T pick the edges arbitrarily. Let H ′ be the graph with these edges. It is enough to show that
we can choose the edges above so that H ′ is Eulerian. First assume H ′ has some vertices of odd
degree. Let C = v1v2 . . . vn and look at each vi in turn. If vi has odd degree, change the edge
chosen in the triangle on vivi+1. This triangle is vivi+1x, say, and either edge xvi or xvi+1 has
been chosen. By changing the choice of edge we change the parity of the degree at vi and vi+1

only. Repeating this process for each i in turn, we get a choice of edges which make the degrees
at v1, . . . , vn−1 even. By degree sums, vn must now also be even and we are done since all n
vertices of H ′ are now of even degree. The choices of edges chosen from the triangles associated
with C ′ have not been changed and so H ′ has a Hamiltonian cycle C ′. Hence H ′ is connected
and even, so Eulerian. An Eulerian trail of H ′ gives an Eulerian trail of triangles of H. Since it
contains the edges of a Hamiltonian cycle, the underlying trail meets every vertex of H, and so
the trail is good. �

Corollary 7. If H has a decomposition into triangles and δ(H) ≥ 3
4n+

√
6n+10, then Theorem 1

holds for G = H[2].

Proof. We now need to prove Theorem 1 under the assumption that G = H[2] and H has a
packing with a good Eulerian trail of triangles. Hence G has a packing with a closed trail of
linked octahedra. These can be packed by any combination of closed trails by Theorem 4. Every
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packed cycle meets some link vertex of some octahedron, so since the Eulerian trail of triangles is
good, we can start the packing at an appropriate point on the closed trail so that C1 meets any
particular vertex pair v1, v2. In any octahedron that contains them, v1 and v2 are symmetric.
Thus we can change the packing of closed trails in the octahedra if necessary so that C1 meets
v = v1, say. �

4. Graphs of even order

In this section we extend the result to all graphs of even order. For this it is necessary to assume
that there are many closed trails of large lengths. Hence we shall also need to consider the cases
when almost all the closed trails are short. For this we use a powerful result of Caro and Yuster [5,
Theorem 4.1] on list packings. The following theorem is just a special case of this result.

Theorem 8. For any positive integer L there exist N(L) and ε(L) > 0 such that for any even
graph G on n vertices with n ≥ N(L) and δ(G) ≥ (1− ε(L))n and for any collection of integers
m1, . . . ,mt with 3 ≤ mi ≤ L and

∑t
i=1 mi = |E(G)| one can write G as the edge-disjoint union

of cycles Cm1 , . . . , Cmt.

This result is in turn derived from a result of Gustavsson [6]. It is worth noting that the value
of ε(L) given is extremely small, in particular ε(3) = 10−24. We shall also need the following
lemma.

Lemma 9. Assume x and y are vertices of G (possibly equal) with dG(x) + dG(y) ≥ 4n
3 , and

assume also that |E(G)| ≥ m + (1− ε)n2

2 for some integer m ≥ 2 (m ≥ 3 if x = y) and some ε,
0 < ε < 1

9 . Then one can find a trail P = x0x1 . . . xm of length m with x0 = x, xm = y and such
that dG\P (xi) ≥ (1− 3ε)n for all i with 0 < i < m.

Proof. First assume m = 2. It is sufficient to find a vertex v with dG(v) ≥ (1 − 3ε)n + 2 and
xv, yv ∈ E(G), since then xvy is a suitable trail. There are at least dG(x)+dG(y)−n ≥ n

3 vertices
adjacent to both x and y. If all of these vertices had degree less than (1 − 3ε)n + 2, then these
vertices would all have degree more than 3εn−3 in the complement of G. Hence the complement
of G would contain more than (3εn−3)(n

3 )/2 = (εn−1)n
2 edges. Thus G would contain less than(

n
2

)
− (εn− 1)n

2 = (1− ε)n2

2 edges, a contradiction. Therefore such a v must exist.

Now assume m > 2. As before, there are at least n
3 vertices adjacent to both x and y and at least

one of these, v say, has degree at least (1− 3ε)n + 2 > 2n
3 + 2. Assume without loss of generality

that dG(x) ≥ dG(y). Then dG(x) ≥ 2n
3 and after removing edge vy, dG\{vy}(x) + dG\{vy}(v) ≥ 4n

3
(even if x = y). Now use induction to find a trail between v and x of length m− 1 in G \ {vy}.
Adding the edge vy to this trail gives the required trail in G. The degree condition dG\P (v) ≥
(1 − 3ε)n holds by induction if v occurs in the interior of the trail of length m − 1, otherwise
dG\P (v) = dG(v)− 2 ≥ (1− 3ε)n. �

We shall also use the result that if δ(G) > n
2 then G is pancyclic, i.e., contains cycles of all lengths

from 3 to n (see for example [4, p.150]).

Lemma 10. Theorem 1 holds for all graphs of even order.
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Figure 4. Trail of length 5 from x1 to y1 in P1[2].

Proof. Choose N and ε so that N ≥ max(N(25), 2N(3), 103) and ε′ = 2ε + 7
N ≤ ε(25)/94, where

N(L) and ε(L) are the functions of Theorem 8. We can assume ε(25) ≤ min
(
ε(3), 1

9

)
.

First we find a large subgraph of G of the form H[2] with G\H[2] Eulerian and H decomposable
into triangles. Since δ(G) ≥ (1−ε)n > n

2 , G contains a Hamiltonian cycle C. Pair up the vertices
as V (G) =

⋃n/2
i=1{xi, yi}. Let H ′ be the maximal graph on the n

2 vertices vi = {xi, yi} such that
H ′[2] is a subgraph of G \ C. Each edge not in H ′ corresponds to four edges, at least one of
which is not in G \ C. Hence dH′c(vi) ≤ d(G\C)c(xi) + d(G\C)c(yi). Thus ∆(H ′c) ≤ 2εn + 2, and
so δ(H ′) ≥ (1 − 4ε)n

2 − 3 > (1 − 2ε′)n
2 > n

4 . Now H ′ has a Hamiltonian cycle v1 . . . vn/2. For
each i = 1, . . . , n

2 − 1 in turn, if vi has odd degree, remove the edge vivi+1 from H ′. Thus, by
removing some of the edges of this cycle we can find an even graph H ′′ with E(H ′′) ⊆ E(H ′) and
δ(H ′′) ≥ (1 − 4ε)n

2 − 5. Since δ(H ′′) > (1 − 2ε′)n
2 > n

4 we can also remove a C4 or C5 from H ′′

to get an even graph H0 with E(H0) divisible by 3 and δ(H0) ≥ (1− 4ε)n
2 − 7 ≥ (1− 2ε′)n

2 .

Since G \H0[2] is even and connected (it contains the Hamiltonian cycle C), it is Eulerian. Let
E0 be an Eulerian trail of G \ H0[2] and let T0 be a zero length subtrail of E0 (i.e., a single
vertex). Since δ(H0) ≥ (1− 2ε′)n

2 , ∆(E0) = ∆(G \H0[2]) ≤ 2ε′n. Hence |E0| ≤ ε′n2. Also

|E(H0)| ≥ (1− 2ε′)
n2

8
≥ (1− 26ε′)

n2

8
+ 3|E0|,

δ(H0)− 4∆(E0) ≥ (1− 2ε′)
n

2
− 8ε′n > (1− 94ε′)

n

2
.

Our aim is to pack some closed trails so as to use up all the edges of E0. In doing so, we may
need to use some edges of H0[2], but we shall ensure that whenever we use edges from H0[2],
the remaining graph is still of the form H[2] with H even, of large minimum degree, and |E(H)|
divisible by 3. The purpose of T0 (later Ti) is that it covers the vertices that are in danger of
having their degrees in H[2] reduced too much, and so should be removed when packing the
next Cmi .

Assume by induction that we have an even graph Hi on n
2 vertices with |E(Hi)| divisible by 3

and a closed trail Ei in the complement of Hi[2]. Let Ti be a segment of this trail of length at
most 21. Assume also that

|E(Hi)| ≥ (1− 26ε′)
n2

8
+ 3|Ei|, (1)

and for all v = {v1, v2} ∈ V (H),

dHi(v)− 2dEi\Ti
(v1)− 2dEi\Ti

(v2) ≥ (1− 94ε′)
n

2
. (2)

Pick ji with mji ≥ 26 and |Ei| ≥ mji − 3. Pick a subtrail of Ei of length mj1 − 5 containing Ti.
This is possible since mji − 5 ≥ 21 ≥ |Ti|. Let x1 and y1 be the endvertices of this subtrail.
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Assume x1 lies in the vertex pair {x1, x2} and y1 lies in (possibly the same) vertex pair {y1, y2}.
Join these vertex pairs with two trails P1 and P2 each of length 3 in Hi using Lemma 9. Let
Hi+1 be the graph Hi with these trails deleted. Note that Hi+1 is even and |E(Hi+1)| is divisible
by 3. In G, these trails correspond to two graphs P1[2] and P2[2], each made up of three C4s as
shown in Figure 4. There exists a trail of length 5 inside P1[2] joining x1 and y1. Combining
this trail with the subtrail of length mji − 5 above completes a packing of Cji . The remaining
7 edges of P1[2] form another trail from x1 to y1. The graph P2[2] is Eulerian and meets x1, so
combining these we get a trail of length 19 from x1 to y1 using the remaining edges of P1[2] and
P2[2]. Delete the subtrail of length mji − 5 from Ei and add the trail of length 19 above to form
a new closed trail Ei+1. Define Ti+1 to be the trail of length 19 extended by one edge of Ei+1

on either end (so that x1 and y1 are now interior points of Ti+1). Now |Ti+1| = 21 and since
mi ≥ 26, |Ei+1| ≤ |Ei| − 2. Condition (1) holds for i + 1 since |E(Hi+1)| = |E(Hi)| − 6.

We now check condition (2) with i replaced with i+1. Since 3|Ei| ≥ 6, we can take ε = 26ε′ < 1
9 in

Lemma 9. Thus if v is in the interior of P1 or P2 then dHi+1(v) ≥ (1− 78ε′)n
2 . But Ei+1 \ Ti+1 ⊆

Ei \ Ti ⊆ · · · ⊆ E0 and ∆(E0) ≤ 2ε′n. Hence 2dEi+1\Ti+1
(v1) + 2dEi+1\Ti+1

(v2) ≤ 8ε′n and
condition (2) holds for v. The degree dHi(v) has been reduced by 2 at each endpoint of these
trails (or by 4 if the endpoints are the same). However 2dEi\Ti

(v1) + 2dEi\Ti
(v2) has also been

reduced by at least 2 (or 4) since x1 and y1 lie in the interior of Ti+1. Hence condition (2) holds
here. At all other vertices dHi+1(v) = dHi(v) and Ei+1 \Ti+1 ⊆ Ei \Ti. Therefore (2) holds at all
vertices.

We can now inductively construct Ei, Ti and Hi for i > 0. This process terminates when one of
the following conditions occur

(1) |Ei| < mji − 3; or
(2) no mjs are left with mj ≥ 26.

In the first case, the next closed trail can be split as Ei and another closed trail of length
m = mji − |Ei| > 3 that meets some vertex v of Ei. Pack this closed trail of length m as C1 and
all remaining Cjs into Hi[2] using Corollary 7. We use Theorem 8 to pack Hi with triangles. For
this to succeed, we need

δ(Hi) ≥
3n

8
+
√

3n + 10, δ(Hi) ≥ (1− ε(3))
n

2
,

n

2
≥ N(3). (3)

In the second case, we are left with all the closed trails of length ≤ 25 to be packed into the
graph Hi[2] ∪ Ei. Once again, Theorem 8 will provide this packing provided

δ(Hi[2] ∪ Ei) ≥ 2δ(Hi) ≥ (1− ε(25))n, n ≥ N(25). (4)

Since n ≥ N ≥ 103, 3n
8 +

√
3n + 10 ≤ (1 − 1

9)n
2 . However, δ(Hi) ≥ (1 − 94ε′)n

2 , 94ε′ ≤ ε(25) ≤
min

(
ε(3), 1

9

)
and N ≥ 2N(3), N(25). Hence conditions (3) and (4) hold and we are done. �

5. Graphs of odd order

Lemma 11. Theorem 1 holds for all graphs of odd order.
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Proof. We know Theorem 1 is true for even n with N = N1 and 1
3 > ε = ε1 > 0, say. Assume n

is odd and set δ0 = (1 − ε1)(n − 1). Let G be an even graph of odd order n ≥ max(N1,
60
ε1

) and
δ(G) ≥ (1 − ε1

4 )n. Let X be the neighborhood of v ∈ V (G). Now δ(G[X]) ≥ (1 − ε1
2 )n ≥ |X|/2

so G[X] contains a Hamiltonian cycle. Since |X| = dG(v) is even, by taking every other edge in
this cycle we get a 1-factor I of G[X]. Joining this 1-factor to v we get a set of triangles with
common vertex v. Let G′ = (G − v) \ I and note that δ(G′) ≥ δ(G) − 2 ≥ δ0. Now pack closed
trails Ci of length mi into these triangles starting with C1 (and so ensuring that C1 meets v). If
mi is divisible by 3 then we pack an exact number of triangles. Otherwise we can pack most of
this closed trail and are left with length 4 or 5 still to pack. For this, add back an unused edge
xy of I to G′ and then attach a trail of length 2 or 3 between x and y in G′. This trail together
with xv and yv allows us to pack the remaining part of Ci. We then remove these edges from G′

and repeat with the next Ci until all edges from v have been used. We now show that we can do
this by Lemma 9 while keeping δ(G′) ≥ δ0. We added back the edge xy, so d(x), d(y) > δ0. Also
|E(G′)| ≥ |E(G)| − 5n

2 , since at worst we have removed a C5 for every edge in I. Hence at each
stage

|E(G′)| ≥
(
1− ε1

4

) n2

2
− 5n

2
≥

(
1− ε1

3

) (n− 1)2

2
+ 3

since ε1n ≥ 60 and ε1 < 1
3 . Hence we can apply Lemma 9 as claimed keeping δ(G′) ≥ δ0. If

we repeat until all the edges from v are used, part of the last closed trail Ci to be packed may
be unused. If this is the case, the total length remaining to be packed will be at least 3, so we
include a closed trail of this length as our C1 when applying Theorem 1 to G′ and set v to be
any vertex of G′ that the part of Ci already packed meets. Since we have already packed all the
edges of G \G′, Theorem 1 holds for G. �

Theorem 1 now follows from the previous two lemmas.
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