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Abstract

An oriented graph dominates pairs if for every pair of vertices u, v, there exists a vertex
w such that the edges ~wu and ~wv both lie in G. We construct regular oriented triangle free
graphs with this property, and thereby we disprove a conjecture of Myers. We also construct
oriented graphs for which each pair of vertices is dominated by a unique vertex.

1 Introduction

Let G be a digraph. We say that G is 2-dominating or that it dominates pairs if for every pair
v1, v2 ∈ V (G) there exists u ∈ V (G) such that ~uv1, ~uv2 ∈ E(G). More generally, we say G is
r-dominating or that it dominates r-tuples if for every r-tuple v1, . . . , vr ∈ V (G) there exists
u ∈ V (G) such that ~uv1, . . . , ~uvr ∈ E(G). We say G dominates pairs (or r-tuples) uniquely if the
vertex u is unique.

Let g be the (directed) girth of G. If g ≥ 3 then G is an oriented graph, i.e., for each u, v ∈ V (G),
at most one of the edges ~uv, ~vu lies in E(G). We will be mostly interested in the case when G
is an oriented graph. For any vertex v ∈ V (G), write Γ+(v) = {w : ~vw ∈ E(G)} for the vertices
dominated by v.

Myers [10] conjectured that every 2-dominating oriented graph contains a triangle. One of our
aims is to give an infinite family of counterexamples to this conjecture. Myers was led to his
conjecture by trying to prove a conjecture of Seymour (quoted by Dean and Latka [5]) saying
that every oriented graph contains a vertex v such that |Γ++(v)| ≥ 2|Γ+(v)|, where w ∈ Γ++(v)
iff w is dominated by some vertex in Γ+(v) ∪ {v}.
The special case of Seymour’s conjecture for tournaments, Dean’s conjecture (see [5]), was proved
by Fisher [6], and then a simpler proof was given by Havet and Thomassé [9]. Also, the special
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case of Seymour’s conjecture for circulant oriented graphs follows from the Cauchy-Davenport
theorem (see [3], [4], [7], [8]) that for S ⊆ Zn we have |S + S| ≥ min{n, 2|S| − 1}. A circulant
oriented graph has vertex set Zn and its edges are given by a set S ⊆ Zn \ {0}: a vertex a
dominates a vertex b iff b − a ∈ S. Our counterexamples to the conjecture of Myers are also
circulant oriented graphs, i.e., we shall find sets S ⊆ Zn \ {0} such that S − S = Zn, 0 /∈ S + S,
and 0 /∈ S+S+S. We leave open the question whether S−S = Zn implies that S+S+S+S = Zn,
and we do not even know whether there is a k such that if S − S = Zn then the k-fold sum of S
with itself is the entire Zn.

Another of our aims in this paper is to show that there are infinitely many uniquely 2-dominating
graphs. As we shall see, these are oriented graphs G such that the collection of out-sets Γ+(v),
v ∈ V (G), is the set of lines of a projective plane with point set V (G), and so is the collection of
in-sets Γ−(v). Another of the problems we leave open is whether there are triangle-free uniquely
2-dominating graphs. We shall show that the examples we construct all have oriented triangles.

2 Sum sets and difference sets

As stated above, we shall consider circulant digraphs obtained by taking V (G) = ZN , the integers
mod N , and letting ~uv ∈ E(G) iff v − u ∈ S for some suitably chosen set S ⊆ ZN \ {0}. For the
graph to be an oriented graph dominating pairs we need

S1. S − S = ZN ,

S2. 0 /∈ S + S,

where S ± S = {a ± b : a, b ∈ S}. In general, for the (directed) girth to be > k we need the
r-fold sums S + S + · · · + S not to contain 0 for all r ≤ k. If S is a set and n ∈ Z, write
nS = {nx : x ∈ S}.

Lemma 1 minS−S=ZN
|S + S + S| = o(N) as N →∞.

Proof. Let T = {2, 3, 11, 14, 17, 19, 21}. Then T − T = {−19, . . . , 19} \ {±13} and T + T + T ⊆
{6, . . . , 9}∪{15, . . . , 63}\{29, 58}. Pick m minimal so that N ≤ 24(29)m and let Sm = T +29T +
(29)2T+· · ·+(29)mT . First we prove by induction on m that Sm−Sm ⊇ {−12(29)m, . . . , 12(29)m}.
This is clearly true for m = 0, so assume m > 0. Now Sm = 29Sm−1 + T , so Sm − Sm =
29(Sm−1−Sm−1)+(T −T ). Pick x with |x| ≤ 12(29)m. For all such x, we can write x = 29x′+x′′

with |x′′| ∈ {0, . . . , 12}∪{14, 16} and |x′| ≤ 12(29)m−1. But x′ ∈ Sm−1−Sm−1 and x′′ ∈ T−T . As
a consequence, Sm−Sm contains every residue class mod N . Now consider the set Sm +Sm +Sm.
Let x ∈ Sm + Sm + Sm and write x in base 29, x =

∑
ai(29)i, ai ∈ {0, . . . , 28}. We shall show

that it is impossible that ai = 12 and ai+1 = 1. Since x ∈ Sm + Sm + Sm, x =
∑

bi(29)i, with
bi ∈ T + T + T . Since bi ≤ 63,

∑i−1
j=0 bj(29)j < 3(29)i. Hence bi must be 12, 11, or 10 mod 29.

The only such bi are 41, 40, and 39. But then bi+1 ≡ 0 mod 29, a contradiction. Since no pair
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(ai, ai+1) can be (12, 1) for any i, the number of elements in Sm+Sm+Sm is o(3(29)m+1) = o(N).
Hence if we let S be the set of reductions of elements of Sm mod N , then the number of elements
in S + S + S is also o(N).

Corollary 2 For all sufficiently large N there is an oriented graph on N vertices which dominates
pairs and is (oriented) triangle-free.

Proof. Take N large enough so that the S given by the previous lemma satisfies |S+S+S| < N
12 .

Clearly |S + S| ≤ |S + S + S|, so |2(S + S + S) ∪ 3(S + S)| < N
6 , where for a set T and

n ∈ Z, nT = {nx : x ∈ T}. Hence there are 6 consecutive elements mod N that do not lie in
2(S+S+S)∪3(S+S). At least one of these will be divisible by 6 in ZN , say 6c, and by replacing
S by S − c we can ensure that 0 /∈ 2(S + S + S) ∪ 3(S + S). Then 0 /∈ S + S and 0 /∈ S + S + S.
This then gives an oriented graph as above which has no oriented triangles.

For N = 29 we can take S to be the T defined in Lemma 1. This is the smallest example we know
of an oriented triangle-free graph that dominates pairs. There are several other constructions of
such graphs. We list three such constructions.

Blowing up vertices.

Take any example of an oriented triangle free graph that dominates pairs (such as the above
example on 29 vertices) and replacing one or more vertices by independent sets of vertices to give
an example for larger N . This shows that examples exist for all N ≥ 29. In general the graph
constructed will not be a circulant graph.

A simple explicit construction.

Let n ≥ 8 be an integer and let S = {1, 2, . . . , n−2}∪{n, 2n, 2n+1, 1−2n}. If 5n+3 ≤ N ≤ 6n−5
then this gives an example on ZN . Note that such examples exist for all N ≥ 63.

Base b expansion method.

Choose b, k > 1 and let N = bk − 1. For a ∈ ZN , considered a as an integer in the range
0, . . . , N − 1 and write a in base b, a =

∑k−1
i=0 aib

i, ai ∈ {0, . . . , b − 1}. Let S be the set of a for
which 0 <

∑k−1
i=0 ai < k(b− 1)/3. If b and k are sufficiently large then this also gives an example.

Although these constructions are simpler than that given by Lemma 1, we consider Lemma 1 to
be of independent interest and pose the following.

Question 1 Does there exist an N and a set S ⊆ ZN such that S−S = ZN , but S +S +S +S 6=
ZN?

In case the answer to this question is in the affirmative, is it true that for every k ≥ 3 there exist
an N and a set S ⊆ ZN such that S − S = ZN , but the k-fold sum of S with itself is not the
whole of ZN?

3



3 Unique domination of pairs

Lemma 3 Suppose we are given a set of points P = {p1, . . . , pn} and lines {l1, . . . , lm}, li ⊆ P ,
with m ≤ n such that every pair of points lie in a unique line. Then either

(a) there is a line containing all the points and all other lines have cardinality ≤ 1; or

(b) there is a line containing n− 1 points and all other lines consist of one point from this line
and the nth point; or

(c) n = d2 + d + 1, the points and lines form a projective plane of order d ≥ 2.

Proof. If two lines intersect in at least two points then these two points would not lie in a unique
line. Hence the intersection of two lines contains at most one point. Assume l1 is the line with
the largest number of points, and let |l1| = a + 1. If a + 1 = n then all the other lines can have
at most 1 point and we are in case (a). Now assume a + 1 < n so there are some points not
in l1. Then there must be lines that contain a point of l1 and a point not in l1. Let b + 1 be the
maximum size of such a line, say l2, and assume l2 intersects l1 at p. We shall bound the number
of lines m. Each pair of points, not equal to p, one from l1 and one from l2, specify a unique line,
and all these lines are distinct. There are ab such lines none of which contain p. The number of
lines containing p is at least n−a−1

b + 1 since these partition the n− 1 points not equal to p, and
apart from l1 they all contain at most b points not equal to p. Hence

ab + 1 + n−a−1
b ≤ m ≤ n. (1)

Rearranging gives a(b2 − 1) ≤ (n− 1)(b− 1). Assume now that b > 1. Then

n− 1 ≥ a(b + 1). (2)

The number of lines other than l1 going through each point of l1 is at least n−a−1
b , and these

lines are all distinct. Hence
n−a−1

b (a + 1) + 1 ≤ m ≤ n. (3)

Thus
(n− 1)(a + 1− b) ≤ a(a + 1). (4)

Substituting inequality (2) into (4) gives

(n− 1)(a + 2)a− (n− 1)2 ≤ a2(a + 1) (5)

or, rearranging,
(n− 1− a)(n− 1− a− a2) ≥ 0. (6)

The case n−1−a ≤ 0 implies that l1 contains all the points. Hence we may assume n−1−a > 0.
Thus

n− 1 ≥ a(a + 1). (7)
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This together with equation (4) gives b = a and n = 1 + a + a2. In fact, there are at most a
lines other than l1 through p, so all lines through p must have a + 1 points. Since every point in
now on a line with a + 1 points, we see that every line has a + 1 (or 0) points. If we had two
non-intersecting lines with a + 1 points, then by considering lines meeting one point of the first
and one point of the second, we would have a total of at least (a + 1)2 > n lines, a contradiction.
Hence every two lines intersect in a single point, and the set of lines and points form a projective
plane.

The only remaining case is when b ≤ 1, so every line intersecting l1 has at most 2 points. Hence
for each pair of points, one in l1 and one outside l1, there is a unique line through the pair, and all
such lines are distinct. This gives a total of (a+1)(n−a−1)+1 lines. Thus (a+1)(n−a−1) ≤ n−1,
so

a(n− 1) ≤ a(a + 1). (8)

Hence n ≤ a + 2 and we are in case (b).

Corollary 4 If G is an oriented graph that dominates pairs uniquely and |V (G)| > 1 then the
sets Γ+(v) form the lines of a projective plane on V (G).

Proof. Every pair of points is uniquely dominated, so lies in a unique line Γ+(v). The number
of lines is the same as the number of points. Hence by Lemma 3 we either have a projective
plane, or one of the two special cases listed in that lemma. It is easy to see that the two special
cases cannot give rise to an oriented graph.

It remains to show that such oriented graphs exist. For this we consider the known projective
planes, given by the lines in a three-dimensional vector space over a finite field.

Theorem 5 For all q = pn, p prime, n ≥ 1, there exists an oriented graph of order q2 + q + 1
that dominates pairs uniquely.

Proof. Let Fq be the field with q elements. Let Fq3 be the (unique) cubic extension of Fq. Then
we can regard Fq3 as a 3-dimensional vector space over Fq, and we can therefore regard the
projective plane over Fq as F×

q3/F×q , where F×
q3 and F×q are the set of non-zero elements of Fq3 and

Fq respectively. The lines of this projective plane correspond to 2-dimensional Fq-subspaces of
Fq3 . Recall that the trace map Tr: Fq3 → Fq is a surjective Fq-linear map. For α ∈ F×

q3 (to be
determined) let Gα be the following graph.

G1. V (Gα) = F×
q3/F×q ,

G2. E(Gα) = { ~uv : Tr(αv/u) = 0},

where the condition Tr(αv/u) = 0 is independent of the choice of representatives of u, v in F×
q3 .

The set Γ+(u) corresponds to a 2-dimensional subspace of Fq3 , so is a line in the projective space.
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If the lines given by u1 and u2 are the same, then the linear maps v → Tr(αv/ui) have the same
kernel. But this implies the maps are proportional, Tr(αv/u2) = λTr(αv/u1) = Tr(λαv/u1) for
all v. By letting v run over a basis for Fq3 , we see that α/u2 = λα/u1, so u1 = λu2, and u1

and u2 give the same vertex of Gα. The only remaining conditions concern the girth. These are
implied by the following condition

C1. If Tr(x) = Tr(y) = 0 then xy 6= α2.

To see this, take x = y = α. Then Tr(αv/v) 6= 0 so Gα contains no loops. If u, v ∈ V (Gα), take
x = αu/v, y = αv/u. Then the condition shows that we cannot have both ~uv and ~vu in E(G).
The result now follows from the following lemma.

Lemma 6 For every q = pn, p prime, n ≥ 1, there exists α ∈ Fq3 such that condition C1 above
holds.

Proof. The kernel of the trace map is a 2-dimensional Fq-subspace of Fq3 . Let {η, η′} be a basis
for this subspace and let γ = η′/η. Now γ /∈ Fq, so Fq(γ) = Fq3 and {1, γ, γ2} is a basis for Fq3

over Fq.

The map F×q → Fq; k 7→ k + 1/k is not surjective since |F×q | < |Fq|. Hence there is an element
c ∈ Fq not of the form k+1/k. Let β = η2+cηη′+η′2. Then β is not the product of two trace-free
numbers. Indeed, if (a1η+a2η

′)(b1η+b2η
′) = β then 1+cγ+γ2 = (a1b1)+(a1b2+a2b1)γ+(a2b2)γ2.

But since {1, γ, γ2} is a basis over Fq, we get

a1b1 = 1, a2b2 = 1, a1b2 + a2b1 = c. (9)

This implies c = k + 1/k where k = a1/a2 ∈ Fq, a contradiction.

If λ is not a square in Fq then it is not a square in Fq3 (otherwise Fq(
√

λ) would be a quadratic
extension of Fq lying in Fq3). Hence some element of the form λβ, λ ∈ F×q , will be a perfect
square in Fq3 , since if β is not a perfect square, we can take λ to be a non-square in Fq. Now
choose α so that α2 = λβ.

If q ≡ 2 mod 3 we can take α = 1 in the lemma. To see this, we note that the trace is the
sum of the conjugates, Tr(x) = x + xq + xq2

. If Tr(x) = Tr(1/x) = 0 then x + xq + xq2
=

xq2
+ xq2−q+1 + x = 0. Thus xq2−2q+1 = 1. Thus the order of x in the group F×

q3 divides
gcd(q2 − 2q + 1, q3 − 1) = (q − 1) gcd(q − 1, q2 + q + 1) = q − 1. But then xq = x, so x ∈ Fq. But
then Tr(x) = 3x 6= 0, a contradiction.

It is worth noting that the graphs obtained above have a cyclic automorphism. Indeed, F×
q3 is a

cyclic group under multiplication of order q3 − 1, so F×
q3/F×q has the structure of a cyclic group

of order q2 + q + 1. The condition Tr(αu/v) = 0 is just the condition that the difference in this
cyclic group lies in a certain set S, so the graph can be described as a circulant graph on ZN

where N = q2 + q + 1 and |S| = q + 1
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4 Unique domination of n-tuples

Lemma 7 Suppose we are given a set of points P = {p1, . . . , pn} and lines {l1, . . . , lm}, li ⊆ P ,
with m ≤ n, n ≥ r ≥ 3, such that every r-tuple of points lie in a unique line. Then either

(a) there is a line containing all the points and all other lines have cardinality < r; or

(b) m = n = r + 1 and the lines consist of all subsets of P of size n− 1.

Proof. If there is a line containing every point then we are in case (a), and this must occur if
r = n, so assume r < n and some point, pn say, does not lie in every line. Let l1, . . . , lk be the
lines containing pn and lk+1, . . . , lm the lines not containing pn. Each (r − 1)-tuple of points in
{p1, . . . , pn−1} lies in an li with i ≤ k since adding pn to this (r− 1)-tuple gives an r-tuple which
lies in a line li, and i ≤ k since this line contains pn. If the (r − 1)-tuple lies in two such lines,
we would have two lines containing this (r − 1)-tuple and pn. Thus every (r − 1)-tuple lies in a
unique line l1, . . . , lk. Since k ≤ n − 1 we can apply induction on r. If one of the lines li, i ≤ k
contains all the points of P \ {pn} then it contains all of P and we are in case (a). In all other
cases in Lemma 3 or by induction on r from Lemma 7, k = n − 1. Hence there is only one line
ln not containing pn. Pick any point pi 6= pn and some (r − 1)-tuple of points containing pi but
not pn. This (r− 1)-tuple must lie in some unique line lj , j ≤ k. Pick a point ph not in lj . Then
the r-tuple obtained by adding ph can only lie in ln and so ln contains pi. Thus ln = P \ {pn}
and every other line can contain at most r − 1 points from P \ {pn}. There are

(
n−1
r−1

)
r-tuples

containing pn, but each line l1, . . . , ln−1 can only contain one of these. Thus
(
n−1
r−1

) ≤ n−1. Since
3 ≤ r < n we have r = n− 1 and the lines consist of all (n− 1)-tuples of points.

Theorem 8 For r ≥ 3, the only directed graph with |V (G)| ≥ r that dominates r-tuples uniquely
is the complete digraph on r + 1 vertices.

Proof. The lines Γ+(v) satisfy the conditions of Lemma 7. However, v /∈ Γ+(v) so we cannot be
in case (a). Thus we are in case (b) with |V (G)| = r + 1 and |Γ+(v)| = r for all r. Hence there
is a directed edge from v to every other vertex, and the graph is the complete digraph on r + 1
vertices.
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