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Abstract

Let P be a Poisson process of intensity one in R?. For a fixed integer k,
join every point of P to its k nearest neighbors, creating a directed random
geometric graph ék (R%). We prove bounds on the values of k that, almost
surely, result in an infinite connected component in ék(RQ) for various
definitions of “component”. We also give high confidence results for the
exact values of k needed. In particular, for percolation on the underlying
(undirected) graph of ék(RQ), we prove that k = 11 is sufficient, and show
with high confidence that k = 3 is the actual threshold for percolation.

1 Introduction

Let P be a Poisson process of intensity one in R?, d > 2. For a fixed integer k,
we join every point of P to its k nearest neighbors, creating a directed random
geometric graph ék(Rd) in which every vertex has out-degree exactly k. In this
paper we shall mainly consider the case d = 2. The connectivity of these graphs
restricted to a finite region in R? was studied in [13, 2, 3]. Here we shall study
percolation in the infinite region R?, i.e., the existence or otherwise of infinite
connected graph components. Since we are dealing with directed graphs, there

are several possible definitions we can use for percolation.

*The work of both authors was partially supported by the NSF grant CCF-0728928. The
work of the second author was also partially supported by NSF grant CNS-0721983 and ARO
grant W911NF-06-1-0076.



U: The underlying undirected graph has an infinite component.
O: The directed graph has an infinite directed out-component.
I: The directed graph has an infinite directed in-component.
S: The directed graph has an infinite strongly connected component.

B: The directed graph has an infinite component consisting of bidirectional
edges.

Here an out-component is a subgraph with a spanning subtree whose edges are
all directed away from a root vertex, while an in-component is a subgraph with a
spanning subtree whose edges are all directed towards a root vertex. As all degrees
are almost surely finite in this model, conditions O and I are equivalent to the
existence of infinite paths directed away, respectively towards, a root vertex. A
strongly connected subgraph is one where there are directed paths from u to v
for any choice of vertices u and v in the component. An edge uv is bidirectional
if both ub and vt lie in G(R?). Clearly we have the following implications

B =S = (Iand O), (Ior O) = U.

From now on, let X denote any of U, O, I, S, or B. Let 0x(k,d) denote the
probability that G(R?) contains an infinite connected component according to
definition X.

Lemma 1. For all values of k, d, and X, 6x(k,d) € {0,1}.

Proof. Let E be the event that Gj,(R%) has an infinite X-component. By Kol-
mogorov’s 0-1 law, it is enough to show that E' is a tail event, i.e., it depends only
on the vertices at distance > K from the origin for any value of K. Fix K > 0.
Then for any € > 0 there is a K. > K such that the probability that there exists a
vertex at distance at least K. from the origin that is joined to some vertex within
K of the origin is less than €. Indeed, one can estimate the expected number of
vertices v at distance at least L from 0 whose kth nearest neighbor is at distance
more that d(v,0) — K as
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where S; and Vj; are the surface area and volume respectively of a unit d di-
mensional ball. The sum in the integral above is a polynomial times a (super-)
exponentially decreasing function, so the integral converges. Hence the integral
can be made arbitrarily small by suitable choice of L.

Now there are almost surely only finitely many vertices within distance K. of
the origin, so up to probability zero events, E is also the event that there is an
infinite component in G(R¢) \ B(0, K.). (For each choice of X, X-percolation is
unaffected by the removal of a finite number of vertices.) But with probability
1 —e¢ this does not depend on the choice of points within distance K of the origin.
Since this holds for all € > 0, E is, up to a set of probability zero, equal to an
event that does not depend on points within distance K of the origin. Since this

is true for all K € N, say, E is, up to a probability zero event, a tail event. Thus
Ox(k,d) =P(E) € {0,1}. m

It is clear that #x (k,d) is non-decreasing in k. Define kx 4 to be the critical out-
degree, i.e., the smallest k such that 0x (k, d) > 0 (equivalently 0x(k,d) = 1). Our
aim in this paper is to present rigorous bounds on the critical out-degrees kx 2
for each choice of X described above (Section 2, Theorem 2), as well as providing

high confidence results for their exact values (Section 3).

2 Bounds

It has been shown by Haggstrom and Meester [7] that ky g4 > 1 for all d (see also
[12]) and that kygq = 2 for sufficiently large d. (Actually, the proof in [7] shows
that ko4 = 2 for sufficiently large d.) Also, Teng and Yao [12] have shown that
ku2 < 213. We improve and generalize this last bound as follows.

Theorem 2. kU,Q S 11, k)og, ]{3172, ]{35’2 S 13, and kB’Q S 15.

To prove this result we shall compare the process to various bond percolation
models on Z2. In these models, the states of the edges will not be independent,
however they will satisfy the following property.

Definition 1. A bond percolation model is 1-indepenedent if whenever E; and
Es are sets of edges at graph distance at least 1 from each another (i.e., if no edge
of Ey is incident to an edge of Es) then the state of the edges in E; is independent
of the state of the edges in Ej.
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Figure 1: The regions defining £x s, s,, £x s,.5,» and the rolling ball D, (dotted
circle).

We shall use the following result, which is Theorem 2 of [4] (together with the
remarks following its proof).

Theorem 3. If every edge in a 1-independent bond percolation model on Z? is
open with probability at least 0.8639, then almost surely there is an infinite open
component. Moreover, for any bounded region, there is almost surely an cycle of
open edges surrounding this region. [

Proof of Theorem 2. Let us first consider the case of U-percolation. Write u ~~y
v (or just u ~» v) if either Wb € G(R2) or vt € Gi(R?), i.c., if uv is an edge
of the underlying undirected graph. (Of course, this definition is symmetric, so
that u ~» v iff v ~» u. However, when we generalize this argument to the other

types of percolation this may no longer hold.)

For percolation we need to find an infinite ~»-path, i.e., a sequence uy, uo, . .. with
u; ~ u;yq1 for all . Consider the rectangular region consisting of two adjacent
squares Sp, S9 shown in Figure 1. Both S; and S5 have side length 2r +2s, where
r and s are to be chosen later. Also, S, may be to the right, left, above or below
S1, in which case Figure 1 should be rotated accordingly. We define the basic
good event Ey s, s, to be the event that every vertex u; in the central disk C of
S is joined to at least one vertex v in the central disk C5 of Sy by a ~»-path,
regardless of the state of the Poisson process outside of S; U .Sy, and moreover
that C'| contains at least one vertex.

Now consider the following percolation model on Z2?. Each vertex (i,7) € Z?
corresponds to a square [Ri, R(i + 1)] x [Rj, R(j + 1)] in R?, where R = 2r + 2s,
and an edge is open between adjacent vertices (corresponding to squares S; and
Sy) if both the corresponding basic good events £y g, 5, and Eu.g, s, hold. Note



that this is indeed a 1-independent model on Z? since the event Ey g, 5, depends
only on the Poisson process within the region S; U S;, and thus sets of edges at
distance at least one apart in Z? depend on the Poisson process in disjoint regions
of R%. Any open path pi, ps, p3, ... in Z2, corresponds to a sequence of basic good
events &g, s,,Es,.55, - - - that occur, where .S; is the square associated to p;. Every
vertex u; of the original Poisson process that lies in the central disk C; of S7 now
has an infinite ~~»-path leading away from it, since one can find points u; in the
central disk of S; and ~»-paths from w;_; to u; inductively for every ¢+ > 1. In
particular, each such wu; lies in an infinite U-component. Moreover, such vertices
exist in C7, so there is an infinite U-component. From the bounds in Table 1
(which will be proved in Lemma 4 below), we see that for £ = 11 one can choose
r and s so that

P(Eu.s,.s, fails) < 0.0653 < 0.06805 = (1 — 0.8639)/2,

so in particular
P(Eu.s,.5, and Eu.,.s, hold) > 0.8639.

The result now follows from Theorem 3.

For kg o we follow the same proof as above, except that we define u ~»g v to
hold if both b € Gy(R?) and vii € G,(R?). The event &g, is now defined as
for £y, s except that we use ~p in place of ~»y, and the result follows from the
bound (for k& = 15) given in Table 1, since 0.0676 < 0.06805.

Similarly, the bounds in Table 1 give kg2 < 13, where we follow the same proof
as above using u ~»o v, which is defined to hold if 1t € G, (R?). In this case ~ is
not symmetric, however the above proof still gives an infinite outwards directed

path from some vertex.

At first sight it seems from Table 1 that the bound for krs (using u ~»1 v, which
holds iff v € Gj,(R2)) will not be as good. Moreover, we do not have an analogous
proof for kgo. However, it turns out that our bound on ko applies to kg2 as
well. To see this, note that the above argument shows that (for k£ = 13, suitable
r, s, and ~) we have an infinite path p;ps ... in Z? corresponding to a sequence
of squares 51,9, ..., with each edge p;p;+1 corresponding to basic good events
£0,5,,5:1» €0,5:,1,5, in both directions. Let Z; be the set of vertices in ék(R2)
that are in the central disk of S;. Then Z; is almost surely finite. Fix N > 0.
Each v;, € Z; is joined to some u;, € Zy by a directed path in Cjk(]RQ). But
similarly w;, is joined by a directed path to some element v;, € Z;. Iterating this
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Table 1: Upper bounds on min, s P(Ex s fails). (All numbers rounded up.)

X\k 9 10 11 12 13 14 15
U |.1786 .1090 .0653 .0386 .0225 .0130 .0075
O |.3424 2215 .1402 .0871 .0533 .0322 .0192
1 4906 3511 .2476 1725 .1189 .0812 .0551
B | .6217 4472 .3151 .2183 .1492 .1009 .0676
process starting at v;,, v;,, ... in turn we must eventually repeat some vertex of

Zy. Hence some vertex of Z; lies on a directed closed trail meeting at least N
vertices (at least one from each of Z;, Z5, ..., Zx, which are disjoint sets). Since
this holds for every N, and Z; is finite, there exists a single v € Z; which lies
on arbitrarily large directed closed trails. Thus in particular v lies in an infinite
strong component. Thus kg < 13. Finally S-percolation implies I-percolation,
so kra < 13 also holds. O

We note that in the above proof we declared an edge in Z? to be open if both
Eus,.s, and Eus, s, held. It would seem that (at least in the U and B cases)
that we would need only one, say £y g, s, With Sy either to the right or above .S;.
However, in this case one needs an oriented open path in Z2, which at each step
goes either to the right or up, to obtain an infinite ~»y-path. This is because
Eus,.s, and €y g, s, do not force a path from S; to Ss;. Unfortunately no good
bounds appear to have been proved for 1-independent oriented bond percolation
in Z?, and in any case such bounds are unlikely to improve much on the method
used above.

To complete the proof of Theorem 2, we need to show the following.

Lemma 4. The probabilities that the Ex s fail can be bounded (for suitable
choices of r and s) by the values given in Table 1.

Proof. To bound the probability that a basic good event fails, we shall use the
following “rolling ball” method. Let C}, Cy, and L be as in Figure 1. (L is the
region between the two disks C; and Cy.) For X € {U, O, I, B}, define & g, g,
to be the event that for every point v € C U L, there is a u such that

(a) v ~x U



(b) flu =v[} < s; and

(¢) u € D,, where D, is the disk of radius r inside C; U L U C with v on its
C-side boundary (the dotted disk in Figure 1).

Note in particular that (b) implies that the condition u ~~ v in (a) is independent
of the Poisson process outside of S; U S5. This is because both v and v are at
distance at least s from the exterior of S; U Sy, so the event that u is among the
k nearest neighbors of v, or that v is among the k nearest neighbors of u, only
depends on the points within S; U Sy. If g g, holds, then every vertex v in C}
must be joined by a ~»-path to a vertex in (5, since each vertex in C; UL is joined
to a vertex whose disk D, is further along in Cy U L U Cy. Thus if we let Fg, be
the event that there is at least one vertex in C7, we have 55(7 51,5, Fs; C Ex 51,9,
The probability that Fg, fails is simply the probability that there is no vertex in
S1, which is e, The probability that 5&7 s,.5, lails is bounded by the expected
number of points u for which the above conditions (a)—(c) fail. The expected
number of points in Cy U L is |Cy U L| = 2r(2r 4+ 2s). Thus

P(Ex .5, fails) < 2r(2r 4 25)px s (1)

where px , s is the probability that (a)-(c) fail for some fixed v. Note that this
probability is independent of the location of v in Cy U L.

To bound px . s we consider the probability that the vertex u closest to v inside D,
fails (a)—(c) (or does not exist). Let us consider the X = U case first. Condition
on the existence of a vertex u € P N D,, and define the regions A, B, and C
as in Figure 2. Let py(u) be the probability that w is the closest point to v
inside D,, but that v ~»y w fails. Then there are at least k points of the Poisson
process in A = B(v,«a) \ D,, at least k points in C' = B(u, «), but no points in
B = B(v,a) N D,. Thus

pu(w)=) > PB(Po(|ANC|) =i)P(Po(|A\C|) = j)

i=0 j,1>max{0,k—i}
x P(Po(|C'\ (AU B)|) = 1) P(Po(|B|) = 0)

:i 3 [ANCIIANCPIC\ (AUB)I' _jaupuc @)
R ’

1=0 j,I>max{0,k—i}

since if there are 7 points in A N C then there are at least £k — i in A\ C and
C'\ (AU B), and none in B. Now the probability that there is no u satisfying
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conditions (a)—(c) above is bounded by

PU e < € IPOBES | / pu(u) du. (3)
w€DyNB(v,s)

The first term being the probability that there is no u satisfying (b) and (c), and

the integral gives the probability that such a u exists, but that the closest one to

v fails (a). Explicit calculation of this upper bound to py s is rather unpleasant

due to the calculation of the areas above. However, numerical bounds can be

computed (see Appendix A and [1]). Finally,

P(fu.s, s, fails) < P(Fg, faﬂs)—|—]P’(¢S’{LSLS2 fails) < e +2r(2r+2s)pu,s, (4)

and this bound can be minimized over various values of r and s. The minimum

values obtained are listed in Table 1 (row U) for various values of k.

The calculation for the other cases is exactly analogous. For B we replace (2) by

N [ANCTIANCPICN (AUB)I' _aupucy
pa(n) =2 2 il ‘
1=0 max{j,l}>max{0,k—i}
since now we require either at least k points in A or at least k points in C for
v ~ u to fail. For O, failure occurs when there are at least k points in A, so (2)

becomes
o0

AP jaus
pO(U) = ZTG | 4u I
j=k
For completeness we also consider the case I, where at least k points in C' is

required for v ~» u to fail. In this case (2) becomes

= |C\ BI' _
pI(U) _ Z‘ >' ‘ e |BUC|.
1=k ’

In each case the bounds (3) and (4) generalize to

]P)(EX,S1,S2 faﬂs) < eian + 27’(27’ + 25) <67‘DUﬂB(U75)\ +/
u€DyNB(v,s)

px(u)du), (5)
and the minimum value (over r and s) found is listed in Table 1. O

Let us remark, that we proved the weaker bound ky 2 < 13 already in 2003, and
mentioned it in several conferences.



Figure 2: Areas A = B(v,«) \ D,, B = B(v,a) N D,,, and C = B(u, «).

3 High confidence results

In this section, we evaluate the critical out-degrees kx o with high confidence.
Here, high confidence means that we reduce to showing hat if a certain high
dimensional integral exceeds a given value, then percolation occurs (respectively
does not occur). Unfortunately, the integral is impractical to evaluate exactly, so
it is estimated using a Monte-Carlo approach. The value obtained then gives a
proof of the result, subject to the proviso that the random numbers used in the
Monte-Carlo calculation did not lie in the very small region of the sample space
that gives a misleading value for this integral. (See [6, 4] for examples of this

approach being applied to other percolation questions.)
Results. With high confidence, kus =3, koo =kio=Fks2 =4, ka2 =05.

To show percolation in the cases X € {U,O,B} (with k£ = 3,4, 5 respectively),
we choose r and s as above. We then generate a random instance of the process

inside S U Sy and test for the following conditions:

UB; For more than half of the vertices v € (' there are ~»-paths from v to more
than half the vertices of (Y, regardless of the state of the process outside of

S1 U Ss.

UBy Similarly, more than half of the vertices of C; have paths to more than half
the vertices of C, regardless of the state of the process outside of S U 9s.

As before, it is clear that if we have a sequence of distinct squares S, Ss, ... with
the above holding in S; U.S;1; for all i, then there will be an infinite ~»-path from
some vertex in C;. (The conditions UB; and UB, were chosen in place of Ex g, s,
and £x s, 5, since in general they have a higher probability of success. Note that
requiring strictly more than half the vertices of C; to have a property implies that



at least one vertex must exist in C;.) Also, UB; and UBy depend only on the
Poisson process within S; U Sy. Hence by Theorem 3 we only need to show that
these conditions hold with probability at least 0.8639. The condition that the
path should be independent of the process outside of S; U S5 is simply obtained
by ignoring any edges b of G(Sy U Sy) where d(u,v) > d(u, d(S; U S,)), since
only edges 1 with d(u,v) < d(u,d(S; U S,)) are guaranteed to exist in Gj,(R?).

Using a computer program we generated many instances, and counted the pro-
portion of times these conditions held. The results are listed in the top half of
Table 2. Using a similar argument as in the proof of Theorem 2, the infinite
path in Z? in the X = O case actually gives us an infinite strong component,
so in fact gives a bound for ks. From these we calculate the confidence level,
i.e., the probability p that these results (or better) could be obtained if the true

probability of success was < 0.8639. In all cases considered p is ludicrously small.

To show lack of percolation in the cases X € {U,I,O0,B} (with & = 2,3,3,4
respectively), we generate, for suitable r, s, instances of the process in S; U Sy
and check the following condition holds:

LB; Regardless of the state outside S; U .S,, there is no ~-path from outside of
S1 U S5 that crosses the line segment that joins the center point of Sy to
the center point of Sy (see Figure 3).

Once again we define a percolation model of Z? by declaring an edge open if
LB; holds in the corresponding rectangle S; U Ss. This model is also clearly
l-independent. Suppose the probability that LB; occurs is at least 0.8639. Then
by Theorem 3 there are open cycles in the corresponding Z? process surrounding
any bounded region. If an infinite ~~-path existed starting in some such region,
then it would have to cross this cycle, and in particular cross the central line
segment in one of rectangles S; U Sy corresponding to an open edge in this cycle.

However, this would contradict condition LB; for this edge.

Note that we could have demanded in LB; only that there is no path from one
boundary point to another boundary point that crosses the center line. However,
the condition given is easier to test for, and is sufficient for our purposes.

To test whether an edge of a ~»-path could come from outside of S; U S5 to a
vertex v € S; U Sy is somewhat harder. In the X = I case, one can just test
whether or not the k nearest neighbors of v are all closer to v than the boundary.
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Figure 3: Condition LB; requires that there is no path from outside S; U S,

crossing the line segment joining the centers of S; and S5.

Table 2: Results of Monte-Carlo simulation

Test (r,s)  Successes Trials Confidence
kv <3 (18,2) 9984 10000 p < 107797
ks(ko) <4 (18,2) 0564 10000 p < 107208
kg <5 (18,2) 9960 10000 p < 107555
ky > 2 (0,60) 9861 10000 p < 107439
ko > 3 (0,60) 9667 10000 p < 1072%9
ky >3 (0,60) 9710 10000 p < 10729
kg >4 (0,600) 9460 10000 p < 107157

If not, we assume an edge (of Gj,(R2)) could leave S; U S, and so u ~ v for some
u outside of S; U S,.

For the O and U cases, however, one must find the & nearest neighbors in S; U .S,
of every possible point outside of S; U Sy. It is easy to see that it is enough to
check points that lie on the boundary of S;U.S,, however there are still an infinite
number of these. Instead we use the following algorithm. Pick a point w on the
boundary of S; U Sy and find its k + 2 nearest neighbors in S; U Sy. Mark the
k + 1 nearest neighbors of w as possibly having an edge from outside S; U Ss. Let
d; be the distance from w to its ¢th nearest neighbor in S; U S5. Now advance
by a distance (dgi2 — di)/2 along the boundary from w and then check this new
point. Repeat this process until the entire boundary has been traversed. To see
that this is sufficient, note that if d(w',w) < (dg42 — di)/2, then the points that
are not among the k + 1 nearest neighbors of w will all be further away from w’
than the k nearest neighbors of w. Thus the k nearest neighbors (in S; U Sy) of
w’ will be a subset of the k& + 1 nearest neighbors of w.

Finally, for the case B we could use the above algorithm and also check edges
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leaving S;U.S, as in the I case. However, the above boundary searching algorithm
is rather slow, and the size of the rectangle S; U S5 needed was rather large in
this case. Thus we have just checked edges leaving S; U Sy as in the I case and
assumed any u € S; U .S, with an edge leaving S; U Sy also had an edge in from
the exterior of S; U S;. This makes the test LB slightly more pessimistic, but in
practice the difference in success rate was minimal, while the program ran much

faster.

The results of these computer simulations are listed in the bottom half of Ta-
ble 2. Once again, in all cases considered the result is shown with extremely high
confidence. All our simulations used the alleged RC4 algorithm [11] for pseudo-
random number generation. More details, including the C source code, can be
found in [1].

A Calculation of the integral

To calculate the areas in Figure 2, write a = d(u,v) for the distance between u
and v, and @ for the angle Ovu, where O is the center of D, (see Figure 2). The
following is a useful formula for the area L(a, b, ¢) of a lune D, \ D, consisting of
the area inside a disk D, of radius a and outside a disk D, of radius b, and which

makes an angle of ¢ € (0,7) at each end (see Figure 4).

L(a,b, ¢) = %(2(1& + ¢) —sin2(y) + 925)) — %(21/) — sin2@/))

where ¢ = cos™! (¥2572%) € [0,7] and ¢® = a® + b* — 2abcos ¢. (The first term

is the area above the line P(Q) inside of D,, and the second is the area above P()
inside Dy.) It is useful also to define

L(a,b,¢) = —L(b,a, —¢) when ¢ < 0. (6)

The angle of the lune A in Figure 2 is given by
¢ = cos™'(a/2r) € 10,3 ]

(The angle ¢ is also one of the angles at the base of the isosceles triangle OvP.)
Clearly a@ < 2r, and indeed, 6 € (—¢, ¢), otherwise v would not lie in D,. By
symmetry we may assume that 6 > 0, so that 6 € [0,¢). Now

|AUB| = |C| = ma?. (7)
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Area: %(21/1 — 8in 2¢))

Figure 4: Lune used to define L(a, b, ¢).

and a simple calculation shows that

[C\(AUB)|=(AUB)\C| = (5 + %)a™. (8)

2

Also, by the definition of L(a, b, ¢),

Al = Lia, 7, ). (9)

We now calculate |A N C|. This calculation splits into three cases depending on
whether the two intersection points of the boundary of D, and B(v,«) (P and
@ in Figure 2) lie inside of B(u,a). The result is

L(a,r,0) <é—
ANCl =050 -0+ 5) +Llar,¢o—F) 0>¢—
Al = [(AUB)\ C| + L(r.e,0) 0<%

¢
—¢;  (10)

Wy wly

us
37
us
37
¢.

(First case when P,Q ¢ B(u,«), third case P,Q € B(u,«), second case when
P € B(u,a), Q@ ¢ B(u,a). Also, in the second case ¢ — % will be negative if
r < a, so we also use (6).) Combining (7)—(10) allows us to evaluate the areas

necessary for the calculation of px(u).

To prove a bound on the integral in (5), we note that (10) is monotonic in 6, while
(7)-(9) are independent of #. One can check that the formulae giving px (u)el?!
(as a function of a and #) are monotonically increasing with both « and 6, for
each choice of X. Also e71#l is decreasing in a. One can effectively bound px (u)
over a small region R in the («,6)-plane by multiplying the maximum value of
px(u)e!Bl in R by the maximum value of e15l over R. A bound on the total
integral is then obtained by summing the bounds on the integrals over a suitable
partition of D, N B(v,s) (see [1] for more details). Table 1 gives the results we

obtained using this approach.
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