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Define the Linus sequence Ln for n ≥ 1 as a 0-1 sequence with L1 = 0, and Ln

chosen so as to minimise the length of the longest immediately repeated block
Ln−2r+1 . . . Ln−r = Ln−r+1 . . . Ln. Define the Sally sequence Sn as the length r
of the longest repeated block that was avoided by the choice of Ln. We prove sev-
eral results about these sequences, such as exponential decay of the frequency of
highly periodic subwords of the Linus sequence, zero entropy of any stationary pro-
cess obtained as a limit of word frequencies in the Linus sequence and infinite average
value of the Sally sequence. In addition we make a number of conjectures about both
sequences.
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1. Introduction

This paper is about a specific 0-1 sequence which we now know to have been described as
early as 1968, and is referred to as the Linus sequence [9]. The motivation for the study
of this sequence comes from ergodic theory, although no knowledge of ergodic theory is
required in order to read this paper. Indeed, all the proofs we present are purely combi-
natorial and “elementary” in nature. Nevertheless, the study of sequences is central to
ergodic theory. There are too many such studies to list them all but here are a few. Coven
and Hedlund [3] analysed sequences that contain few distinct blocks of length n; Chris-
tol, Kamae, Mendès France and Rauzy [2] compared sequences produced by automata
with sequences produced by substitution and Keane [7] considered generalisations of the
Thue-Morse sequence. A number of papers consider sequences from the standpoint of
spectral theory, such as Jacobs and Keane [6] for nearly periodic sequences and Yarla-
gadda and Hershey [13] for the Thue-Morse sequence. Queffélec [10] analysed the rôle
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that the Rudin-Shapiro sequence plays in the theory of Fourier series, and in [11] devel-
oped statistical tools for a quantitative analysis of sequences (particularly substitutive
sequences); Allouche and Mendès France [1] did this analysis using a more combinatorial
point of view.

All these studies are connected to ergodic theory because of the way in which sequences
give rise to stationary processes. The connection is that given a sequence of numbers you
can generally define a stationary process by assigning each finite word a probability given
by a limiting frequency of that word in the infinite sequence. In ergodic theory one is
particularly interested in zero entropy processes. These can be derived from sequences
in which, for sufficiently large n, when you see a word of length n in the sequence, it
tends to determine the next digit. If it actually did determine the next digit, the sequence
would turn out to be periodic, so it is of interest to obtain a sequence which has zero
entropy and is actually chosen to avoid periodicity. Of course many non-periodic zero
entropy processes are known, but the reason we think that this sequence will give rise to
a particularly interesting zero entropy process is that its definition is precisely chosen to
avoid periodicity.

The definition of the Linus sequence Ln is that it is a 0-1 sequence which starts with
L1 = 0, and for n > 1, Ln is chosen so as to avoid a long repeated word. More precisely,
define the terminal repeat length of a sequence L1L2 . . . Ln as the largest r ≥ 0 such
that the last r digits Ln−r+1 . . . Ln are the same as the immediately preceding r digits
Ln−2r+1 . . . Ln−r. We define Ln for n > 1 so as to minimise the terminal repeat length of
L1 . . . Ln. The Sally sequence Sn is defined for n > 1 as the terminal repeat length that
was avoided, so that Ln−2Sn+1 . . . Ln−Sn 6= Ln−Sn+1 . . . Ln only because Ln 6= Ln−Sn .
The first few terms of the Linus and Sally sequences are as follows.

L = 0 1 0 0 1 1 0 10 0 1 0 1 1 0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 1 0 0 · · ·
S = · 1 1 2 1 3 1 13 2 1 6 3 2 1 3 1 1 6 3 2 4 1 1 3 2 1 3 1 6 4 2 1 2 4 3 1 8 3 2 1 6 3 2 1 3 · · · (1.1)

For example, L9 = 0 since a 1 would cause a terminal repeat length of S9 = 3 (repeated
block 011), while a 0 would cause a terminal repeat length of only 2 (repeated block 10).

This sequence is fantastically tantalising because there are many symmetries in it which
elude proof, and because it appears to be approaching a process which ergodic theorists
have never studied before. Until this paper, essentially nothing was known about the
Linus sequence. Even despite this paper, there are many conjectures that are not only
backed by looking at the data but are quite understandable intuitively, yet elude proof.
We feel confident that the reader will be teased into spending time trying to prove them.
For example it is clear that the frequency of a word, the frequency of the reverse word
and the frequency of the word obtained by interchanging 0s and 1s are all the same. We
can’t prove that. We can’t even prove that the frequency of 1s is 1

2 , or that the frequency
of any single word even exists at all.

The good news is that we have finally developed some techniques to analyse this
sequence and have several results. In the process we have solved a related combinatorial
problem which is of interest in its own right (see Section 7). The fact that this sequence
leads us to notice other interesting problems is testimony to the naturalness of the Linus
sequence.
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It should perhaps be noted that none of our results depend on the initial digits of
the Linus sequence. Indeed, one could specify, say, the first 100 digits arbitrarily, and
then use the algorithm described above to continue the sequence. All our results and
conjectures apply equally to these modified versions of the Linus sequence, although for
simplicity we shall only state them for the sequence as originally defined.

Finally, we note that a superficially similar sequence was defined by Ehrenfeucht and
Mycielski ([4] — see also [12] and [8]) in 1992. Their sequence is defined in a simi-
lar fashion, except that they wish to avoid any repeated block, not just a terminating
one. Specifically, the first two digits are set to 0 and 1 respectively. For n ≥ 2, given
that X1, X2, . . . , Xn have been defined, we find the largest k such that the block of
k digits Xn−k+1 . . . Xn has already occurred, as a block, among the first n − 1 digits
X1X2 . . . Xn−1. Let the penultimate occurrence of this block be XjXj+1 . . . Xj+k−1, so
that j +k−1 < n. We then define Xn+1 = 1−Xj+k. This and similar sequences turn out
to be somewhat different in character from the Linus sequence, for instance, they tend
to contain many more long runs of zeros and ones, and they are likely to have entropy
one (although this is unknown at the time of writing).

2. Notation

We record some notation that we will use repeatedly throughout. Given a (finite or
infinite) 0-1 sequence X1X2 . . . , we call the individual terms Xn digits of the sequence.
For b ≥ a − 1, denote by X[a, b] the finite subsequence, or word, XaXa+1 . . . Xb, where
for b = a− 1 we define X[a, a− 1] to be the empty word. If X is a word, |X| will denote
the length of X and |X|0 and |X|1 will denote the number of 0s and 1s respectively in
X, so that |X| = |X|0 + |X|1. We will denote by X← the word obtained by reversing
the order of the digits in X and by Xc the complement of X, i.e., the word obtained by
replacing each 0 by a 1 and each 1 by a 0. X∧ will denote the word obtained from X by
complementing just the last digit of X (see Figure 1).

The concatenation XY of the words X and Y is simply the word obtained by writing
out the digits of X followed by those of Y . If g ≥ 0 is an integer, we write Xg for the
g-fold concatenation of X with itself. The terminal repeat length

TR(X) = max{|Q| | X = PQQ for some (possibly empty) words P and Q}
is the length of the longest immediately repeated subword that occurs at the end of X.
A finite or infinite sequence X is said to be periodic with period p, or p-periodic, if
p < |X| and Xi+p = Xi for all i such that Xi and Xi+p are both defined. Equivalently,
X[1 + p,N ] = X[1, N − p] where N = |X|. The minimal p for which X is p-periodic will
be called the minimal period of X (if it exists).

Using the above terminology, the Linus sequence can be defined by

L1 = 0 and for n > 1, Ln is chosen so that TR(L[1, n]) < TR(L[1, n]∧), (2.1)

while the Sally sequence is defined by

Sn = TR(L[1, n]∧). (2.2)
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X = 0000100 X← = 0010000 Xc = 1111011 X∧ = 0000101

|X| = 7 |X|0 = 6 |X|1 = 1 TR(X) = 1

Periods of X are 5 and 6. Minimal period = 5.

Figure 1. Examples of notation in the case X = 0000100.

The following are easy consequences of these definitions.

Ln 6= Ln−Sn
. (2.3)

Li = Li−Sn for n− Sn < i < n. (2.4)

If L[n− k + 1, n] = L[n− 2k + 1, n− k] then Sn > k. (2.5)

2Sn ≤ n. (2.6)

We sometimes call Sn the look-back time of the digit Ln, or say that Ln looks back to
Ln−Sn .

For |X| ≤ |Y | < ∞, define the frequency f(X, Y ) of occurrences of X in Y by

f(X, Y ) = 1
|Y |−|X|+1 |{t | 1 ≤ t ≤ |Y | − |X|+ 1 and Y [t, t + |X| − 1] = X}|. (2.7)

If Y is infinite then we define the frequency of X in Y to be

f(X, Y ) = lim
M→∞

f(X, Y [1,M ]),

provided this limit exists.

3. Results and conjectures

Given any infinite 0-1 sequence X, there is always a way (which is not in general unique)
to choose a subsequence of the sequence of words X[1,M ], M = 1, 2, . . . , such that, in
that subsequence, the frequency of any finite word of 0s and 1s converges to a limit. If
we take that limiting frequency, for every finite word, and call it the probability of that
word, then we obtain a stationary process. The following theorem shows that no matter
how you do this with the Linus sequence, the limiting stationary process will have zero
entropy.

Theorem 3.1. The Linus sequence “has zero entropy”, i.e., if for any finite word Y

we define

HN (Y ) =
∑

X : |X|=N

−f(X, Y ) log2 f(X, Y )

to be the entropy of the distribution on words of length N given by the frequency of times
they occur as a subword of Y , then

lim sup
M→∞

HN (L[1,M ]) = o(N).
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Having looked at the first 16,000,000 digits of the Linus sequence it appears that there
is no need to pass to subsequences because the limiting frequency of every finite word
seems to exist. However we cannot prove that, so we will state it as a conjecture.

Conjecture 3.2. For any word X, the limiting frequency of occurrences of X in the
Linus sequence

f(X, L) = lim
M→∞

f(X,L[1, M ])

exists and is strictly positive.

We have no proof of the existence of the frequency for any non-empty word. Also, for
example, the word 00000 does not occur in L[1, 16000000], and one has to wait quite
a while even to see the word 0000 — the first occurrence is L[12842, 12845] = 0000.
Nonetheless, we conjecture that all words occur with strictly positive frequency.

For single digits we do know that the lower limiting frequencies of 0s and 1s are both
positive.

Theorem 3.3. The frequencies of 0s and 1s in L[1,M ] are bounded away from zero
for all sufficiently large M , i.e.,

lim inf
M→∞

f(0, L[1, M ]) > 0 and lim inf
M→∞

f(1, L[1,M ]) > 0.

Theorem 3.3 is in fact an immediate corollary of the following much more powerful
result, since if the frequency of 0s, say, is low then there must be many long stretches
of 1s, contradicting the next theorem with X = 1.

Theorem 3.4. There is an absolute constant γ < 1 such that for any finite word X

and any g > 3,

lim sup
M→∞

f(Xg, L[1,M ]) ≤ γ(g−3)|X|.

Of course one would expect that the periodic word Xg would be less likely than a
typical word of length g|X| and, since there are 2g|X| possible words of length g|X|,
one would therefore expect that f(Xg, L) ≤ 2−g|X|. However, our best bound on γ is
significantly greater than 1

2 .
Regarding Theorem 3.3, for longer words we know even less, however each of the four

2-digit combinations 00, 01, 10, 11 does occur infinitely often.

Theorem 3.5. In the Linus sequence there are infinitely many pairs of consecutive
zeros and infinitely many pairs of consecutive ones.

(That there are infinitely many 01s and 10s follows easily from Theorem 3.5.) Applying
Theorem 3.4 with X = 01 it is clear that in L[1,M ] the frequency of 00s and 11s combined
is bounded away from zero as M →∞, but this does not imply that individually 00s or
11s have positive frequency, or even that they occur at all.
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Assuming Conjecture 3.2 holds, we make the following additional conjecture.

Conjecture 3.6. For any word X, the limiting frequencies of X, its reverse X← and
its complement Xc are all equal.

Here is a heuristic argument supporting Conjecture 3.6 for Xc. For large numbers N ,
any N consecutive digits in the Linus sequence tend to determine the (N + 1)st digit
because long repeats are rare. In exactly the same way, N consecutive digits of the
complement of the sequence will tend to force the (N + 1)st digit of the complement.
Hence it is very common to have long sequences which are exactly the complement of
other long sequences.

Interestingly, many long “four-tuples” of the form (Y Y cY Y c)∧ occur in the Linus
sequence. Indeed, the entire word L[1, 11752] is of this form. So is the word L[37, 1176].
These also tend to force the frequency of smaller words X and Xc to be the same.

Here is a heuristic argument supporting Conjecture 3.6 for X←. In a certain sense
the sequence is reversible. This sequence is constructed for the purpose of avoiding big
repeats, so after a long word, the next digit will tend to avoid a big repeat. However for
exactly the same reason, because the word avoids big repeats, if you know a word, the
previous digit will tend to avoid big repeats. Hence the previous digit will be chosen in
a similar way to the next digit. Thus if a given word will tend to give rise to a 1 after it,
its reverse will tend to give rise to a 1 before it.

Interestingly, the data suggest the following conjecture.

Conjecture 3.7. The limiting frequency of the word 11 in the Linus sequence is 1
5 .

We do not have any heuristic argument for this and would love to hear any reasonable
explanation as to why it is likely to be true.

We now consider the Sally sequence. Sequences on integers are a little more complicated
than 0-1 sequences because if some of the terms drift to infinity there may be no way
to obtain a stationary process out of them. For example, the sequence 1 2 1 3 1 4 1 5 . . .

cannot give any limiting distribution on two letter words. However this problem can be
avoided if big numbers occur with small frequency, and in that case, just as in the case
of 0-1 sequences, we can always obtain a stationary process by passing to a subsequence.
On looking at the first few terms of the Sally sequence, it appears that Sn tends to be
small in general. Our first result in this direction therefore seems somewhat discouraging.

Theorem 3.8.

1
n− 1

n∑

i=2

Si →∞ as n →∞.

However, all we need is that the frequency of terms that are greater than N tends to
zero as N →∞, and indeed we were able to prove this.
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Theorem 3.9. There exists an absolute constant C such that for all N ,

lim sup
n→∞

1
n− 1

∣∣{i | 2 ≤ i ≤ n and Si ≥ N}∣∣ ≤ C

N
.

Hence limiting distributions exist, although by Theorem 3.8 any term of a limiting
process will have infinite expectation.

As for the Linus sequence, we conjecture that you don’t have to pass to subsequences.

Conjecture 3.10. For any finite sequence of integers X, the limiting frequency

f(X, S) = lim
M→∞

f(X,S[1,M ])

exists.

Unlike with the Linus sequence, we do not conjecture that the limiting frequency is
always strictly positive. Indeed it cannot be, since, for example, if 0 < |n−m| < Sn then
Sm 6= Sn (see Lemma 6.2).

Our next observation is that for n = 2, 4, 6, 12, 60 and 11752 we have Sn = n
2 , which

means that we have to examine the entire sequence L[1, n − 1] to determine Ln. We
conjecture that this happens infinitely often.

Conjecture 3.11. There are infinitely many n for which Sn = n
2 .

Finally, we give some numerical results about the first few digits in the Linus sequence.
We note that there are many long subwords that appear in different parts of the sequence,
possibly reversed and/or complemented. Table 1 gives a few examples. Table 2 gives a
compact description of the first 11751 digits of the Linus sequence by recursively defining
stretches of the sequence in terms of previously known subwords. This gives an efficient
method of computing L[1, 11751]. Note that there is some redundancy as certain stretches
are defined in more than one way.

To conclude, what we really want to have is a deep understanding of the limiting
stationary processes given by the Linus and Sally sequences, including ergodic properties
of those processes, but we are not even close to understanding these sequences well enough
for that.

The rest of the paper is dedicated to giving proofs of the theorems stated above, except
for Section 7 which deals with what appears at first sight to be an unrelated problem. We
included this section since the proof techniques used form part of the (rather technical)
proof of Theorem 3.4, but occur in a much simpler setting.

4. Infinite average look-back time (Theorem 3.8)

Proof of Theorem 3.8. Fix n and write A = {2, . . . , n}. We say that k ∈ A is a
j-point if 2Sk ≥ j + 2, and that k ∈ A is a j-covered point if k + j is a j-point, that is, if
k + j ∈ A and 2Sk+j ≥ j + 2. We write Aj and A′j for the set of j-points and j-covered
points respectively, and note that |A′j | = |Aj |, since k ∈ Aj iff k − j ∈ A′j . (By (2.6),
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Table 1. Large repeats of previous blocks, their reverses and/or complements

Identical Complement
L[31, 59] = L[1, 29] L[8, 15] = L[4, 11]c

L[109, 162] = L[1, 54] L[20, 29] = L[8, 17]c

L[211, 317] = L[103, 209] L[50, 101] = L[8, 59]c

L[589, 1139] = L[37, 587] L[313, 1139] = L[37, 863]c

L[1693, 2747] = L[37, 1091] L[1645, 2519] = L[265, 1139]c

L[5877, 11751] = L[1, 5875] L[2939, 11751] = L[1, 8813]c

Reverse Reverse complement
L[8, 12] = L[1, 5]← L[1, 8] = L[1, 8]c←

L[1, 18] = L[1, 18]← L[50, 60] = L[1, 11]c←

L[26, 48] = L[1, 23]← L[68, 90] = L[1, 23]c←

L[103, 126] = L[1, 24]← L[379, 413] = L[206, 240]c←

L[200, 239] = L[26, 65]← L[476, 515] = L[26, 65]c←

L[5712, 5764] = L[2909, 2961]← L[2909, 2961] = L[2774, 2826]c←

Table 2. Compact description of L[1, 11751]

L[1, 1] = 0
L[2, 3] = L[1, 2]c

L[4, 7] = L[2, 5]c

L[8, 15] = L[4, 11]c

L[16, 19]= L[1, 4]
L[20, 29]= L[8, 17]c

L[30, 34]= L[15, 19]
L[31, 59]= L[1, 29]

L[50, 101] = L[8, 59]c

L[80, 108] = L[50, 78]
L[109, 162] = L[1, 54]
L[157, 210] = L[55, 108]
L[211, 317] = L[103, 209]
L[313, 1139] = L[37, 863]c

L[1093, 1643]= L[13, 563]
L[1640, 1697]= L[326, 383]

L[1693, 2747] = L[37, 1091]
L[2744, 2796] = L[104, 156]
L[2796, 2805] = L[1, 10]
L[2805, 2821] = L[2787, 2803]
L[2816, 2871] = L[157, 212]
L[2866, 2922] = L[433, 489]
L[2914, 2946] = L[2789, 2821]c

L[2939, 11751]= L[1, 8813]c

k ∈ Aj implies k ≥ j + 2, so k − j ∈ A.) The significance of A′j is that if k ∈ A′j then we
have to “look back” strictly further than k to determine Lk+j . We note the inequality

n∑

i=2

2Si =
n∑

i=2

n∑

j=1

1{j≤2Si} ≥
n∑

j=1

n∑

i=2

1{j+2≤2Si} =
n∑

j=1

|Aj |. (4.1)

Now let h ∈ A and let k ≥ 1 be such that h + 2k+2 − 2 ∈ A. Define B = {h, h +
1, . . . , h+2k+1− 1}. We say that d ∈ B is good if there is some j such that k ≤ j < 2k+1

and d ∈ A′j .

Claim. At least half of the points in B are good.

Proof of claim. Suppose not. Then there are at least 2k +1 bad (i.e., not good) points
in B. Associate with each bad d the word L[d, d + k − 1]. There are at most 2k possible
distinct values for these words, so by the pigeonhole principle there exist d1 and d2 with
d1 < d2 such that

d1 and d2 are both bad, (4.2)

d1 and d2 are both in B, (4.3)
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and

L[d1, d1 + k − 1] = L[d2, d2 + k − 1]. (4.4)

For any j such that k ≤ j < 2k+1, (4.2) implies that neither d1 nor d2 are in A′j , thus
2Sd1+j ≤ j +1 and 2Sd2+j ≤ j +1. But by (2.2) this implies that Sd1+j , and hence Ld1+j

is determined by L[d1, d1 + j − 1]. Similarly Ld2+j is determined by L[d2, d2 + j − 1].
Using (4.4) and induction on j we obtain

L[d1, d1 + 2k+1 − 1] = L[d2, d2 + 2k+1 − 1]. (4.5)

Also, by (4.3),

d1 + 2k+1 − 1 ≥ d2. (4.6)

Now (4.5) and (4.6) imply that

L[d1, d2 + 2k+1 − 1] is periodic with period p = d2 − d1, (4.7)

where 1 ≤ p < 2k+1 (by (4.6)). If we set t = dk+1
p e, then

k < tp ≤ 2k+1. (4.8)

Indeed tp ≥ k + 1 > k always holds, and if p > k then t = 1 so tp = p < 2k+1,
while if 1 ≤ p ≤ k then tp ≤ k + p ≤ 2k < 2k+1. Now by (4.7), L[d1, d2 + tp − 1]
consists of t + 1 repetitions of the block L[d1, d2 − 1]. We observe that the choice of
Ld2+tp−1 causes a repeat of length b t+1

2 cp ≥ tp
2 , so by (2.5), 2Sd2+tp−1 > tp. Also,

d2 + tp − 1 ≤ h + 2k+2 − 2 ∈ A. Consequently, d2 ∈ A′tp−1, which together with (4.8)
contradicts the badness of d2. Thus the Claim is proved.

Fix a k such that n ≥ 2k+3. Write I = 2k+1 and consider the sets of integers
{2, 3, . . . , I +1}, {I +2, I +3, . . . , 2I +1}, . . . , {(a−2)I +2, (a−2)I +3, . . . , (a−1)I +1},
where a = bn/Ic. These intervals comprise more than half of {2, 3, . . . , n}. Indeed, they
contain (a − 1)I = (bn/Ic − 1)I ≥ n − 2I points, but n ≥ 4I, so n − 2I > n−1

2 . More-
over, each interval comprises a valid choice for the set B, since if h ≤ (a− 2)I + 2 then
h + 2k+2 − 2 ≤ aI ≤ n. Thus at least half of the points in each interval are good. Hence
there are at least n−1

4 good points in A. Now if d ∈ A is good then d ∈ A′j for some
k ≤ j < 2k+1. Thus

2k+1−1∑

j=k

|Aj | =
2k+1−1∑

j=k

|A′j | ≥ |{d ∈ A | d is good}| ≥ n− 1
4

.

Define g : N → N by g(1) = 1 and g(t + 1) = 2g(t)+1 for all t > 0. Fix an integer s > 0.
Then, for n satisfying n ≥ 4g(s + 1), we have by (4.1)

n∑

i=2

2Si ≥
n∑

j=1

|Aj | ≥
s∑

t=1

g(t+1)−1∑

j=g(t)

|Aj | ≥
s∑

t=1

n− 1
4

=
s(n− 1)

4
.

But we can make s arbitrarily large by choosing n sufficiently large. Thus 1
n−1

∑n
i=2 Si ≥

s
8 →∞ as n →∞.
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5. Double zeros and double ones (Theorem 3.5)

We shall prove that there are infinitely many ones, and indeed infinitely many pairs of
consecutive ones in the Linus sequence. The proof for zeros is exactly analogous.

Define a gap to be a (possibly empty) block of zeros between two ones in the Linus
sequence. Let gi be the size of the ith gap, i.e., the number of zeros between the ith and
(i + 1)st ones. (Set gi = ∞ if there is no (i + 1)st one.) For completeness, let g0 = 1 be
the number of zeros before the first one. From (1.1) one can see that the first few values
of gi are

g0 = 1, g1 = 2, g2 = 0, g3 = 1, g4 = 2, g5 = 1, g6 = 0, g7 = 2, g8 = 3, . . .

Lemma 5.1. For all i ≥ 0, gi+1 ≤ 1 + max{g0, g1, . . . , gi}. In particular, there are an
infinite number of ones in the Linus sequence.

Proof. Let g = max{g0, g1, . . . , gi} and suppose for contradiction that gi+1 ≥ g+2. Let
LT = 1 be the 1 immediately before the (i + 1)st gap. Then L[1, T + g + 2] = · · · 1(0)g+2

has a terminal repeat length of at least one, so the definition of the Linus sequence implies
that L[1, T + g + 2]∧ = · · · (0)g+11 has a terminal repeat length of r, where r ≥ 2. But
then LT+g+2−r = 1, so r ≥ g + 2 and hence (0)g+11 must occur earlier in the sequence,
contradicting the definition of g.

Proof of Theorem 3.5. Assume there are only finitely many consecutive pairs of ones.
Thus gi = 0 for only a finite number of i. Choose N so that all pairs of consecutive ones
occur before LN .
Case 1. Assume gi is unbounded.

Then there exists an M > N with LM = 1 and the block of g = gi consecutive zeros
occurring immediately after M is larger than any previous such block.
Subcase 1.1. gi+1 < g.

Then L[1, T ] = · · · 1(0)g1(0)gi+11 where T = M + g + gi+1 + 2. Since there are no
pairs of consecutive ones after time N , we must have both gi+1 > 0 and LT+1 = 0.
But setting LT+1 = 0 causes a repeat of the word (0)gi+1−110. Therefore had we set
LT+1 = 1 we would have had an even longer repeat. Since that repeated word ends in a
pair of consecutive ones, the entire word L[N,T ] is included in the repeated word. But
that is impossible unless the gap of size g immediately following M had also shown up
before M , contradicting the definition of M .
Subcase 1.2. gi+1 ≥ g.

L[1,M +2g+1] = · · · 1(0)g1(0)g has a terminal repeat of length at least g+1 and hence
L[1,M + 2g + 1]∧ = · · · 1(0)g1(0)g−11 has an even longer repeat. Just as in Subcase 1.1,
that is impossible unless the word of size g immediately following M had also shown up
before M , contradicting the definition of M .
Case 2. Assume gi is bounded.

Let g = lim inf gi. Then 1 ≤ g < ∞. Fix M > N so that all gaps of size strictly less
than g occur before time M . Consider a gap of size gi = g that occurs just before time
T where T > 2M + g. Then gi+1 ≥ g, so L[1, T + g] = · · · 1(0)g1(0)g has a terminal
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repeat length of at least g +1. Hence L[1, T +g]∧ = · · · 1(0)g1(0)g−11 has a repeat of size
r > g + 1. This means that there is a gap of size g − 1 in the Linus sequence after time
T − r. By (2.6), r ≤ (T + g)/2, so T − r ≥ (T − g)/2 > M . Thus we have a gap of size
less than g after time M , contradicting the choice of M .

6. Zero Entropy (Theorem 3.1)

We shall use the following simple observations.

Lemma 6.1. Suppose X[a, b] = Y [a, b] is a subword of length n of a periodic sequence
X of minimal period p, and is also a subword of a periodic sequence Y of period p′. If
n ≥ 2p then p′ ≥ p.

Proof. Suppose p′ < p. Fix a t > 0 such that t + p′ ≤ |X|. Write t = kp + r, k ∈ Z,
where a ≤ r < a + p and hence r + p′ < a + 2p− 1 ≤ b. Then Xt = Xr = Yr = Yr+p′ =
Xr+p′ = Xt+p′ , so that X has period p′ < p, a contradiction.

We remark that this is not quite best possible — the Fine-Wilf Theorem [5] states
that if a word X has periods p and q and length |X| ≥ p + q− gcd(p, q), then it also has
period gcd(p, q), where gcd(p, q) denotes the greatest common factor of p and q.

Lemma 6.2. Suppose there is an n > m with n− Sn < m. Then Sn 6= Sm.

Proof. By (2.4), Lm = Lm−Sn , which contradicts (2.3) if Sn = Sm.

Lemma 6.3. Fix distinct integers m, n with m′ ≤ n′, where m′ = m − Sm and
n′ = n − Sn. Let p = |Sn − Sm| and suppose p < m − n′ − 1. Then L[n′ + 1, m − 1] is
p-periodic.

Proof. Note that 0 < p < |L[n′ + 1, m− 1]|. Indeed, by assumption p < m− n′ − 1 =
|L[n′ + 1, m− 1]|, while if p = 0 then Sn = Sm, m ≤ n (so m < n), and 0 < m− n′ − 1
(so n′ < m). But then Sn = Sm and n − Sn = n′ < m < n, contradicting Lemma 6.2.
Fix x with n′ < x < m− p. Suppose first that Sm > Sn. Then n′ < x < m− Sm + Sn =
m′ + Sn ≤ n′ + Sn = n and m′ ≤ n′ < x + p < m. Thus by (2.4) (twice) Lx = Lx−Sn =
Lx+p−Sm = Lx+p. Now suppose Sm < Sn. Then n −m = (n′ −m′) + p > 0, so n > m.
Hence m′ < x < m and n′ < x + p < m < n, so Lx = Lx−Sm = Lx+p−Sn = Lx+p. In
either case, Lx = Lx+p for all x with n′ < x < m− p, so L[n′ + 1,m− 1] is p-periodic.

Proof of Theorem 3.1. Fix constants N and P with N À P À 1. Declare each digit
Ln to be one of the following types.

(A) Ln has short look-back time: Sn < 3P .
(B) Ln is not of Type (A) and follows a periodic segment with short period: the word

L[n− 3P + 1, n− 1] is periodic with minimal period strictly less than P .
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Figure 2. Proof of Theorem 3.1

(C) Ln is not of Type (A) or (B) and the word L[n−Sn +1, n] is periodic with minimal
period strictly less than 1

5Sn.
(D) Ln is not of Type (A), (B) or (C).

Note that for Type (B), Ln is not part of the periodic word, whereas for Type (C) it is.
We will begin by bounding the number of Type (C) and (D) digits. Then we will show

that if most of the digits are of Type (A) or (B), we can predict most of a word of length
N > 6P on the basis of its first 6P digits. This will imply that L has zero entropy.

Claim 1. If there exists m > n with Sm < 6
5Sn and m′ ≤ n′, where n′ = n − Sn and

m′ = m− Sm, then Ln is not of Type (D).

Proof. Suppose that there is such a pair (m,n). Set p = Sm − Sn. Note that 0 < p <
1
5Sn < n− n′ ≤ m− n′ − 1 (see Figure 2), so by Lemma 6.3, L[n′ + 1,m− 1] is periodic
with minimal period at most p < 1

5Sn. Thus, if Ln is not of Type (A) or (B), then it is
of Type (C). In particular, it is not of Type (D), proving Claim 1.

Claim 2. It is impossible to exhibit distinct s and t with s, t > n, max{Sn, Ss, St} <
6
5 min{Sn, Ss, St}, and s′, t′ ∈ (n′, n′+ 1

2Sn], where s′ = s−Ss, t′ = t−St and n′ = n−Sn.

Proof. Suppose that (s, t, n) were such a triple. If Ss = St then |s − t| = |s′ − t′| <
1
2Sn ≤ 3

5Ss, contradicting Lemma 6.2, so we may assume without loss of generality that
p = St − Ss > 0. Note that p < 1

5Ss < 1
3Sn so that n − p > n − 1

3Sn > n′ + 1
2Sn and

hence both n and n− p lie strictly between s′ and s and strictly between t′ and t. Thus
by (2.4),

Ln = Ln−St = Ln−St+Ss = Ln−p. (6.1)

Also, if we set s′′ = s′ − Ss and t′′ = t′ − St, then s′′, t′′ < n′ + 1
2Sn − 5

6Sn = n′ − 1
3Sn <

n′−p. But n′ < s′, t′, so both n′ and n′−p lie before s′ and t′ but after s′′ and t′′. Hence

Ln′ = Ln′+Ss = Ln′+Ss−St = Ln′−p, (6.2)

But by (2.4), Ln−p = Ln′−p, so by (6.1) and (6.2),

Ln = Ln−p = Ln′−p = Ln′ , (6.3)

which is a contradiction since we know by (2.3) that Ln 6= Ln′ . Hence no such triple
(s, t, n) exists, proving Claim 2.
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Now fix K ∈ R, K ≥ 3P , and consider the number of Type (D) digits Ln with
K ≤ Sn < 6

5K. By Claim 2, if three of these look back to digits that are within 1
2K of

each other, say Ln, Ls and Lt with n < s < t, then either s′ ≤ n′ or t′ ≤ n′. But then
by Claim 1, Ln would not be of Type (D), a contradiction. Thus in any initial sequence
L[1,M ], there can be at most two such Type (D) digits that look back to any fixed (real)
interval of length 1

2K, and hence at most 2d(M −K)/ 1
2Ke ≤ 4M/K such digits in total.

(The (M −K) is because the look-back points n′ cannot be within K of the beginning
of the sequence.)

Now let Ki = ( 6
5 )i3P . Applying this argument with each Ki in turn gives that the

total number D(M, P ) of Type (D) digits in L[1,M ] is bounded above by

D(M, P ) ≤
∞∑

i=0

4M

Ki
=

4M

3P

∞∑

i=0

(
5
6

)i

=
8M

P
, (6.4)

since all such digits look-back at least 3P , and so satisfy Ki ≤ Sn < 6
5Ki for some i.

Now we bound the number of Type (C) digits. Assume Ln is of Type (C). In the
following, the period of Ln will mean the minimal period of L[n− Sn + 1, n].

Claim 3. For any p and t, there are at most two Type (C) digits in L[t, t+p−1] whose
periods pi satisfy p ≤ pi < 2p.

Proof. Suppose Ln is of Type (C). Since Ln is not of Type (A), Sn ≥ 3P . Since Ln

is not of Type (B), the period p of Ln satisfies P ≤ p < 1
5Sn. Suppose some digit Lm

in L[n − p + 1, n − 1] is also of Type (C). Now m − 4p > n − 5p > n − Sn = n′, so
L[m−4p+1,m] is a repetition of a word of size 2p. (Indeed, it is a four-fold repetition of
a word of length p.) Hence by (2.5), Sm > 2p. But then Lemma 6.1 implies that the period
p̃ of Lm must be at least p, since L[m− Sm + 1,m] contains a subword L[m− 2p + 1,m]
of length 2p that is also a subword of a word X = L[n − Sn + 1, n] that has minimal
period p.
Case 1. p̃ = p.

Recall that m ∈ (n − p, n) and Sn, Sm > 5p. Firstly, by Lemma 6.2, Sm 6= Sn.
Now m′ = m − Sm cannot lie in [n′ − p, n′) since by Lemma 6.3 this would result in
L[n′ + 1, m − 1] being periodic with period |Sm − Sn| < p, contradicting Lemma 6.1.
Also, m′ cannot be less than n′ − p since this would imply that Ln = Ln−p = Ln′−p =
Ln′ , contradicting (2.3). Finally, m′ cannot be more than n′ + p as this would imply
Lm = Lm−p = Lm′−p = Lm′ , again contradicting (2.3). Thus m′ ∈ [n′, n′ + p] and so
Sm ∈ (Sn − 2p, Sn). Suppose now that we have another Ls of Type (C) and periodicity
p with s ∈ (n − p, n). Then Sn, Sm, Ss ∈ (Sn − 2p, Sn], so at least one of |Sn − Sm|,
|Sn−Ss| and |Sm−Ss| (all of which are non-zero by Lemma 6.2) is less than p. However,
by Lemma 6.3, this would imply a periodicity of less than p in (n′+p, n−p], contradicting
Lemma 6.1. Thus there are at most two Type (C) digits of period p in L[n− p + 1, n].
Case 2. p̃ > p.

In this case L[m−Sm +1,m] is not a subword of L[n−Sn +1, n], and hence Lm looks
back before Ln′ . Applying Lemma 6.1 to X = L[m−Sm +1, m] and Y = L[n−Sn +1, n]
we deduce that 2p̃ > m− n′ > Sn − p > 4p, and so p̃ > 2p.
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Now suppose that for some p and t, there are three Type (C) digits at locations
n1 < n2 < n3 in L[t, t + p− 1] whose periods pi satisfy p ≤ pi < 2p. Applying the above
argument to Ln3 , we get an immediate contradiction, completing the proof of Claim 3.

It follows from Claim 3 that there are at most 2d(M −5p)/pe ≤ 2M/p Type (C) digits
whose periods pi satisfy p ≤ pi < 2p in any initial segment L[1,M ] of the Linus sequence.
(The (M − 5p) is because no such digit can occur in the first 5p digits of L[1,M ].) Any
Type (C) digit has period at least P since otherwise it would be of Type (B). We classify
the Type (C) digits by placing those whose period lies in [2jP, 2j+1P ) into class Cj ,
j = 0, 1, 2, . . . . For each j there are at most 2M/(2jP ) digits of L[1,M ] in class Cj .
Therefore the total number C(M, P ) of Type (C) digits in L[1,M ] is bounded above by

C(M, P ) ≤
∞∑

j=0

2M

2jP
=

4M

P
. (6.5)

Now fix N > 6P . We wish to estimate the number of words of length N with a limited
number of Type (C) or (D) digits. If one specifies the first 6P digits, then one can predict
the word by assuming all digits have short look-back times, or are highly periodic. To be
more precise, if L[n− 3P +1, n− 1] is periodic with any period strictly less than P , then
assume Ln is given by extending this periodic subsequence. Note that this is well-defined
by Lemma 6.1. Otherwise predict Ln on the basis of the previous 6P digits, assuming
Sn < 3P . To determine a word uniquely it is enough to fix the points where this rule
gives an incorrect digit. This can occur at digits of Type (C) or (D), or at digits where
extrapolating a periodic sequence gives the incorrect digit, since if the periodic rule is
not applied, then the digit cannot be of Type (B) and will be correctly predicted if of
Type (A). However, if extrapolating a periodic sequence gives an incorrect digit then
this rule will not be applied for the next P digits. This is because for the next P steps,
L[n − 3P + 1, n − 1] will contain a word X of length 2P which is periodic with period
strictly less than P , except for the last digit. But then, by Lemma 6.1, X (and hence
any word containing X) cannot be periodic with any period strictly less than P . Indeed,
if X has minimal period p and X∧ has minimal period p̃ with p, p̃ ≤ 1

2 (|X| − 1) then by
Lemma 6.1, p̃ = p, contradicting the fact that the last digits of X and X∧ are distinct.
Thus the number t of errors in any block of length N is at most the number of Type (C)
and (D) digits in that block plus dN−6P

P e ≤ N
P − 5.

Now assume M ≥ N . There are M −N +1 subwords of length N in L[1,M ] which we
can group into N sets

Si = {L[i + Nj + 1, i + Nj + N ] | j = 0, 1, . . . , bM−N−i
N c},

for i = 0, . . . , N − 1, each Si consisting of disjoint subwords. The total number of errors
in all the words in each Si is then bounded by the number of Type (C) and Type (D)
digits in L[1,M ], plus N

P − 5 for each word. Thus by (6.4) and (6.5) the total number of
errors in all the subwords of L[1,M ] is at most N( 8M

P + 4M
P ) = 12NM

P plus N
P − 5 for
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each word. The average number of errors per word is then at most

1
M −N + 1

12NM

P
+

(
N

P
− 5

)
=

13N

P
− 5 +

12N(N − 1)
P (M −N + 1)

which is at most 13N
P − 1 for sufficiently large M . The number Nt of possible words of

length N with t errors is at most Nt ≤ 26P
(
N−6P

t

) ≤ 26P N t since one need only specify
the first 6P digits and the locations of the t errors. Let pt be the proportion of words in
L[1,M ] with t errors. By concavity of the function −x log x, the entropy is maximised
by assuming all possible words X with t errors are equally likely, so

HN (L[1,M ]) ≤
∑

t

−Nt
pt

Nt
log2

pt

Nt

=
∑

t

pt(log2 Nt − log2 pt)

≤
∑

t

pt(6P + t log2 N − log2 pt). (6.6)

But there are at most N possible values for t, so once again by concavity of −x log x,
∑

t

−pt log2 pt ≤ N(− 1
N log2

1
N ) = log2 N.

Finally,
∑

t pt = 1 and
∑

t tpt ≤ 13N
P − 1. Thus for N > 6P > 0 and all sufficiently

large M , (6.6) gives

HN (L[1,M ]) ≤ 6P +
(

13N
P − 1

)
log2 N + log2 N = 6P + 13N

P log2 N.

(In fact this holds for any N, P > 0 since if N ≤ 6P then the bound is greater than the
obvious upper bound of N on the entropy.) Setting P = d√N log2 Ne, we obtain

lim sup
M→∞

HN (L[1, M ]) ≤ 19d
√

N log2 Ne

for all N > 1, which is o(N) as required.

7. Justified sequences

The following problem is not directly related to the Linus sequence, however we believe
it is interesting in its own right. Moreover, the proof is a substantially simplified version
of the proof we have of Theorem 8.5, which is required in the proofs of Theorems 3.3,
3.4 and 3.9.

Let N ≥ 1 and let X = X[1, N ] be a word of length N consisting of the letters +
and −. (For this section only we shall use + and − rather than 0 and 1 to distinguish
our words from the subwords of the Linus sequence.) We say that X is justified , if
|X| > 0 and for every t with Xt = −, there exists an r ≥ 1 such that Xt−2r = + and
X[t− 2r, t− r − 1] = X[t− r, t− 1], i.e., each − is immediately preceded by a repeated
block beginning with a +. For instance, the sequence ++−++−+−− is justified but
++−− is not (see Figure 3). Given a justified sequence X, write X+ = {t | Xt = +} and
X− = {t | Xt = −}.
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Figure 3. A justified sequence and its graph.

Theorem 7.1. If X is justified then

|X+| ≥ |X−|+ 1.

In other words, any justified sequence must contain strictly more +s than −s.

Proof. Given X as above, we construct a graph G on vertex set V (G) = X+ as follows.
For every t ∈ X−, we select an r = rt such that Xt−2r = + and X[t − 2r, t − r − 1] =
X[t − r, t − 1]. There may of course be more than one such r, in which case we fix one
particular choice arbitrarily. For any such t ∈ X−, write t′′ = t − 2r and t′ = t − r so
that t′′, t′ ∈ X+ and (t′′, t′, t) forms an arithmetic progression. Now join t′′ and t′ by an
edge in G, so that E(G) = {t′′t′ | t ∈ X−}. In this way, G has exactly |X+| vertices
(some of which may be isolated) and exactly |X−| edges (see Figure 3). Suppose for a
contradiction that |X−| ≥ |X+|. Since any acyclic graph must have strictly more vertices
than edges, it follows that G must contain a cycle, C say. Let

t0 = max{t ∈ X− | t′′t′ ∈ E(C)}.
If we remove the edge t′′0 t′0 from C then the remaining edges constitute a path from t′′0
to t′0. The intervals [t′′, t′] corresponding to the edges t′′t′ 6= t′′0 t′0 of C cover the interval
[t′′0 , t′0], since if z ∈ (t′′0 , t′0) then the path from t′′0 to t′0 must jump over z at some point, and
so there must be an edge t′′t′ 6= t′′0 t′0 of C such that z ∈ [t′′, t′]. Let Em ⊆ E(C) \ {t′′0 t′0}
be a set of edges whose corresponding intervals form a minimal cover of [t′′0 , t′0]. Write
Em = {e1, e2, . . . , es}, where the ei = t′′i t′i are ordered so that t′′1 < t′′2 < · · · < t′′s . (These
inequalities are all strict by the minimality of Em.) Note that it is possible that t′i = t′′i+1

for any 1 ≤ i ≤ s− 1; indeed all we know is that

t′′1 ≤ t′′0 < t′′2 ≤ t′1 < t′′3 ≤ t′2 < · · · ≤ t′s−2 < t′′s ≤ t′s−1 < t′0 ≤ t′s < t0

(see Figure 4). Let I = [t′′1 , t0 − 1] and define a map T : I → I by

T (z) =





z + (t1 − t′1), if t′′1 ≤ z < t′1;

z + (ti − t′i), if t′i−1 ≤ z < t′i, i = 2, . . . , s;

z − (t0 − t′0), if t′s ≤ z < t0.

Note that the image of T lies in the interval [t′′0 ,max{t1, t2, . . . , ts}− 1] ⊆ [t′′1 , t0− 2] and
for all z ∈ I,

XT (z) = Xz. (7.1)

Since I is finite, we must have T p(z) = z for some z ∈ I and some p > 0. Moreover, as
t0 − 1 does not lie in the image of T , we must have z < t0 − 1. From these observations
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t′′3
.
t′3

.
t3

T : [ +(t1−t′1) )[ +(t2−t′2) )[ +(t3−t′3) )[ −(t0−t′0) )

Figure 4. Cover of t′′0 t′0 and function T .

it follows that there is a pair of consecutive integers z, z + 1 ∈ I such that T p(z) = z but
T p(z+1) 6= z+1. Choosing such a z, there must be an i ≥ 0 such that T i(z+1) = T i(z)+1
but T i+1(z + 1) 6= T i+1(z) + 1. Replacing z with T i(z) we may assume without loss of
generality that T (z+1) 6= T (z)+1. From the definition of T it is clear then that z+1 = t′j
for some j, 1 ≤ j ≤ s, and hence that

Xz+1 = Xt′j = + (7.2)

while

XT (z)+1 = Xtj = −. (7.3)

Writing z′ = T (z) we see that T i(z′ + 1) = T i(z′) + 1 for all i. Otherwise there would
be an i ≥ 0 such that T i(z′ + 1) = T i(z′) + 1 but T i+1(z′ + 1) 6= T i+1(z′) + 1. But then
by the above argument, XT i(z′+1) = +, so that by (7.1), Xz′+1 = +, contradicting (7.3).
Now letting i = p− 1 we have T i(z′ + 1) = T i(z′) + 1 = T p(z) + 1 = z + 1 and so (7.1)
and (7.3) imply Xz+1 = Xz′+1 = −, contradicting (7.2). Thus G contains no cycles and
so |X+| ≥ |X−|+ 1.

8. Periodic Subwords (Theorem 3.4)

Recall that a word X = X[1, N ] is said to be p-periodic if p < N and X[1, N − p] =
X[1 + p,N ]. We call X completely periodic if it is p-periodic for some p | N , p < N .
Equivalently, X = P g for some word P and integer g ≥ 2.

Let X = X[1, N ] and Y = Y [1,M ] be finite words. We say that X overlaps Y if there
is a non-empty word Z such that X = PZ and Y = ZQ for some (possibly empty) words
P and Q. In other words X[N − r + 1, N ] = Y [1, r] for some r with 0 < r ≤ min{N,M}.
The order here is important — it is possible that X overlaps Y without Y overlapping X.
Note that X overlaps X iff X is p-periodic for some p < |X|.

The kth (left) cyclic rearrangement of X = X[1, N ] is the word X(k) = X[1 +
k, N ]X[1, k]. A word Y is a cyclic rearrangement of X if it is the kth cyclic rearrangement
for some k, 0 ≤ k < N . It is clear that any cyclic rearrangement of a completely periodic
word is still completely periodic.

Call a word X = X[1, N ] admissible if X does not overlap X and X[1, r]∧ does not
overlap X for all r with 1 ≤ r ≤ N and Xr = 0. As an example, 00101 is admissible (see
Figure 5).

Lemma 8.1. Any word X that is not completely periodic has an admissible cyclic
rearrangement.
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Overlapping

01001
0 1 0 0 1

0 1 0 0 1
01001

0 1 0 0 1

Non-Overlapping

00101
0 0 1 0 1

0 0 1 0 1
0 0 1 0 1

0 0 1 0 1

Non-Overlapping

00101
0 0 1 1

0 0 1 1
0 0 1 1

Figure 5. The word X = 01001 overlaps itself, but the cyclic rearrangement Y = 00101 does not.
Moreover, Y [1, 4]∧ = 0011 does not overlap Y (and neither does Y [1, 1]∧ = 1 or Y [1, 2]∧ = 01),
so Y is admissible.

Proof. Define the lexicographic ordering on 0-1 words of length N by declaring P < Q

iff there exists an r, 1 ≤ r ≤ N such that P [1, r − 1] = Q[1, r − 1] and Pr = 0, Qr = 1.
Equivalently, we can interpret P and Q as binary numbers, NP =

∑N
i=1 Pi2N−i and

NQ =
∑N

i=1 Qi2N−i, so that P < Q iff NP < NQ. In particular, < is a total order on the
set of all 0-1 words of length N .

Let Y be a lexicographically minimal cyclic rearrangement of X, and suppose Y over-
laps itself, so that Y is periodic. Let p < |Y | be the minimal period of Y . Since X,
and hence Y , is not completely periodic, there exist non-empty words P and Q with
Y = (PQ)kP = PQ . . . PQP for some k ≥ 1 and |P | + |Q| = p. Comparing Y with
the cyclic rearrangement Y (N−p) = QP (PQ)k−1P we see that QP ≥ PQ. Comparing
Y with the cyclic rearrangement Y (p) = (PQ)k−1PPQ we see that PQ ≥ QP . Thus
PQ = QP . But then Y = PQPQP . . . QP = PPQPQ . . . PQ is |P |-periodic, contradict-
ing the minimality of p. Thus Y does not overlap itself.

Now suppose Y [1, r]∧ overlaps Y and Yr = 0. Then Y [1 + k, r]∧ = Y [1, r− k] for some
k with 0 ≤ k < r. But then the cyclic rearrangement Y (k) = Y [1+k, N ]Y [1, k] is strictly
less than Y , since Y [1, r − k − 1] = Y (k)[1, r − k − 1] and Yr−k = 1 while Y

(k)
r−k = 0. But

this contradicts the choice of Y .

Fix an admissible word P , |P | = N > 0. Since P does not overlap itself, all copies
of P in L[1,M ] are disjoint. Thus one can decompose L[1,M ] uniquely in the form
Q0P0Q1P1 . . . Qn where Pt = P gt for some gt > 0, no Qt contains a copy of P as a
subword, and |Qt| > 0 for 0 < t < n. Note that Q0 or Qn may be empty. Define the
extended length Λt of Pt to be the maximum r ≤ M − y + 1 such that L[y, y + r − 1] is
N -periodic, where Ly is the first digit of Pt. In other words, Λt is the maximum r such
that (PtQt+1Pt+1 . . . Qn)[1, r] = P gt+1[1, r]. Note that L[y, y + Λt − 1] may extend not
only into Qt+1, but also into Pt+1, however we always have |Pt| ≤ Λt < |Pt|+ |P | since
the extension cannot include a complete copy of P .

Now fix a length limit Λ ≥ |P | and absorb any Pt with Λt < Λ into the surrounding
blocks Qt and Qt+1. We have the following.

Lemma 8.2. Given an admissible word P and Λ ≥ |P |, L[1,M ] can be decomposed
uniquely as X = Q0P0Q1P1 . . . Qn where each Pt = P gt has extended length Λt ≥ Λ,
gt = b Λt

|P |c > 0, Qt does not contain P as an initial subword when t > 0, Qt does not
contain P as a terminal subword when t < n, |Qt| > 0 for 0 < t < n, and every copy of
P dΛ/|P |e[1, Λ] in L[1,M ] starts within some Pt.
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Q1 P1 Q2 P2 Q3

Sequence | 1 1 1 | 0 0 0 1 1 0 0 0 1 1 | 0 | 0 0 0 1 1 0 0 0 1 1 | 0 1 0 |
Order of zero – – – – – – – – 3 4 5 – – 6 7 8 – – – 3 4 5 – – 6 – –

Extended blocks |←− Λ1=13, `1=9
|←−
−→|

Λ2=11, `2=7−→|

Figure 6. The order of a block or zero digit. In this example P = 00011, Λ = |P | = 5, ` = 3.

P1 Q2 P2 Q3 P3 Q4 P4

· · · 00101 111 00101 00101 0011 00101 111 00101 00101 00101 · · ·
`1 ≥ `3 `2 = 8 `3 =3 `4 > `2

Figure 7. Good zero (underlined) associated to P4 looks back to a one (underlined) in Q3. Here
P = 00101, Λ = |P | = 5, t = 4, t′ = 2, and r = 2.

Define xt and yt so that Qt = L[xt, yt−1] and Pt = L[yt, xt+1−1]. Define a potentially
good zero associated to Pt to be any zero digit Lm with yt + Λ ≤ m < yt + Λt, i.e., any
zero digit that lies in the extended block associated with Pt, but does not lie within the
first Λ digits of this extended block. Since Λt < |Pt| + |P | and Λ ≥ |P |, any potentially
good zero is associated with a unique Pt, although it may actually lie in Qt+1 or even
Pt+1.

Define the order `t of Pt to be the number of zeros in the extended block L[yt, yt +
Λt − 1], the order limit ` to be the number of zeros in P dΛ/|P |e[1,Λ], and the order of
each of the potentially good zeros associated to Pt to be the number of preceding zeros
in L[yt, yt +Λt− 1] (see Figure 6). Note that, given P , ` and `t are simply functions of Λ
and Λt respectively. Also, the order of any potentially good zero associated to Pt lies in
the interval [`, `t), and the number of potentially good zeros associated with Pt is `t − `.

We call a potentially good zero associated to Pt a good zero if it looks back before Qt.
In other words a potentially good zero Lm is a good zero iff m− Sm < xt.

Lemma 8.3. Any good zero of order k associated to Pt looks back to a digit of some
Qt′+1, t′ = t − r, r ≥ 2. Also `t′−r+1 ≥ `t′+1, `t′−r+j = `t′+j for all j, 1 < j < r, and
`t′ = k < `t. Moreover, no two good zeros associated to the same Pt can look back to the
same Qt′+1.

Proof. If Lm is a good zero associated to Pt and Lm looks back to m′ = m − Sm,
then m′ < xt < yt, so L[y′t,m

′] = L[yt,m]∧ where y′t = yt − Sm. But L[y′t,m
′] must

then look like P qR where R = P [1, s]∧, 1 ≤ s ≤ N and |P qR| > Λ. Hence L[y′t,m
′ − 1]

must be part of an extended block of some Pt′ . But P is admissible, so P and R do not
overlap P . Thus the copy of R in L[y′y,m′] cannot extend into Pt′+1 and must therefore
end inside of Qt′+1. Since Lm is good, t′+1 < t. Also, the copy of P q in L[y′t,m′] must be
a terminal segment of Pt′ . Thus m′ = xt′+1 +s−1, |Qt′+1| ≥ s and Qt′+1[1, s] = P [1, s]∧.
Moreover, since the block L[yt′+1, yt−1] = Pt′+1 . . . Qt is repeated immediately before y′t,
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the sequence must look like

· · · (Pt′+1 · · ·Qt)P qQt′+1(Pt′+1 · · ·Qt)Pt · · · .

Thus, by Lemma 8.2, Pt′+1 is a terminal subword of Pt′−r+1; Qt′−r+j = Qt′+j and
Pt′−r+j = Pt′+j for all j, 1 < j < r; and Qt′ = Qt, Pt′ = P q. In particular, `t′−r+1 ≥
`t′+1; `t′−r+j = `t′+j for all j, 1 < j < r; and `t′ = k < `t.

The order k = `t′ of the good zero Lm is determined by the extended block of Pt′ .
Thus if two good zeros look back to the same block then they have the same order. But
the orders of the good zeros associated to Pt are unique, so at most one such zero looks
back to Qt′+1.

We will need the next lemma in the proof of Theorem 8.5.

Lemma 8.4. Let I1, . . . , I2n ⊆ [0, n] be a sequence of 2n (non-trivial) distinct closed
real intervals with integer endpoints. Then there exists an i such that the interval Ii is
strictly contained in an interval I which itself is contained in the union of the intervals
I1, . . . , Ii−1.

Proof. Since [0, 1] is the only interval possible when n = 1, the assertion is vacuously
true for n = 1; we proceed by induction on n. If I2n−1 = [0, n], then I2n 6= [0, n] and we
can take i = 2n, I = [0, n]. Thus we may suppose that I2n−1 6= [0, n]. Write

J =
⋃

1≤j≤2n−2

Ij ,

so that if J = [0, n] we are done — simply take i = 2n− 1. Next suppose that J 6= [0, n].
Then J ⊆ A ∪ B, where A = [0, a], B = [a + 1, n] and a ∈ {0, 1, . . . , n− 1}. If A = {0},
the 2n− 2 intervals I1, . . . , I2n−2 all lie in the interval B of length n− 1, so we are done
by induction; a similar argument deals with the case B = {n}. If both A and B are
non-trivial intervals, we consider two cases. If at least 2a of the intervals I1, . . . , I2n−2

lie in A, we are done by induction, and if at least 2(n − a − 1) of these intervals lie in
B, we are also done by induction. However, one of these cases must arise since we have
2n− 2 = 2a + 2(n− a− 1) intervals in total, and each is contained in either A or B.

We remark that the lemma is best possible, in that 2n − 1 intervals are not enough.
This can be seen by considering the first 2n− 1 intervals of the sequence (Ii)∞i=1, defined
by I2m−1 = [0,m] and I2m = [1,m + 1].

Theorem 8.5. Fix an admissible P and Λ ≥ |P |. Decompose L[1,M ] = Q0P0 . . . Qn

as in Lemma 8.2. Then the total number of good zeros is less than 2n.

Proof. We follow the proof of Theorem 7.1, although there are a number of additional
complications. Assume we have 2n good zeros, Lz1 , . . . , Lz2n . By Lemma 8.3, each good
zero is associated to a block Pt and looks back to a digit in some Qt′+1, t′ = t− r, r ≥ 2.
Define for each good zero an interval [t′′, t′] of length r − 1 > 0, where t′′ = t′ − r + 1.
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t′3
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t3

T : [ +(t1−t′1) )[ +(t2−t′2) )[ +(t3−t′3) )[ −(t0−t′0) ]

Figure 8. Cover of t′′0 t′0 and function T .

By Lemma 8.3 these are distinct, so by Lemma 8.4, one of these intervals is strictly
contained in an interval that is covered by intervals corresponding to earlier good zeros.
Take a minimal such cover and relabel the good zeros as z1, . . . , zs < z0, with zj associated
to the block Ptj

and interval [t′′j , t′j ] where

[t′′0 , t′0] (
s⋃

i=1

[t′′i , t′i],

t′′1 ≤ t′′0 < t′′2 ≤ t′1 < t′′3 ≤ t′2 < · · · ≤ t′s−2 < t′′s ≤ t′s−1 < t′0 ≤ t′s < t0,

and either t′′1 < t′′0 or t′0 < t′s (see Figure 8). Set I = [t′′1 , t0] and define a map T : I → I

by

T (z) =





z + (t1 − t′1), if t′′1 ≤ z < t′1;

z + (ti − t′i), if t′i−1 ≤ z < t′i, i = 2, . . . , s;

z − (t0 − t′0), if t′s ≤ z ≤ t0.

Since either t′′1 < t′′0 or t′0 < t′s, the image of T lies in I. Indeed it lies in [t′′1 , t0 − 1]. To
see this, note that if z < t′i, i > 0, and T (z) = z + (ti − t′i) then T (z) < ti ≤ t0, and if
z > t′0 and T (z) = z − (t0 − t′0) = z − (t′0 − t′′0 + 1) then T (z) ≥ t′′0 ≥ t′′1 . Thus the only
problematic case is when z = t′s = t′0, so T (z) = t′′0 − 1. But in this case t′′1 < t′′0 , so once
again T (z) ≥ t′′1 .

In general `T (z) 6= `z, but by Lemma 8.3, `T (z)+1 = `z+1 for z ∈ [t′′1 , t′1 − 2], or
z ∈ [t′i−1, t

′
i − 2] (1 < i ≤ s) or z ∈ [max{t′s, t′0 + 1}, t0 − 2]. Thus `T (z)+1 = `z+1 for

all z ∈ [t′′1 , t0 − 1] except when z = t′i − 1, 1 ≤ i ≤ s; z = t′s = t′0; or z = t0 − 1.
For z = t′i − 1 we have a strict inequality `T (z)+1 > `z+1, and these are precisely the
cases when T (z + 1) 6= T (z) + 1. For z = t′s = t′0 we have at least `T (z)+1 ≥ `z+1,
while T (z + 1) = T (z) + 1. For z = t0 − 1 we have `T (z)+1 < `z+1, but if z = T (z′) then
z′+1 = t′i for some i > 0 with ti = t0. But by Lemma 8.3, `t′i is the order of the good zero
zi, and since ti = t0, both zi and z0 are associated with the same block Pt0 . But zi < z0,
so `t′i < `t′0 . Thus in this case `T 2(z′)+1 = `t′0 > `t′i = `z′+1. To summarise, `T i(z)+1 is an
increasing function of i, provided we skip `t0 when it occurs, and it is strictly increasing
whenever T (T i(z) + 1) 6= T i+1(z) + 1.

Since I is finite, we must have T p(z) = z for some z ∈ I and some p > 0. Thus there
is a pair of consecutive integers z, z + 1 such that T p(z) = z but T p(z + 1) 6= z + 1.
Therefore there must be one or more values of i ≥ 0 such that T i+1(z)+1 6= T (T i(z)+1).
But the sequence `T i(z)+1 is increasing in i (skipping any `t0), and for at least one value
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of i it strictly increases. This contradicts the fact that it is also periodic in i. Thus there
are fewer than 2n good zeros.

It remains to limit the number of “bad” zeros. For this we need to split the problem
up into several cases depending on P . For Lemmas 8.6–8.8, we shall assume L[1,M ] =
Q0P0 . . . Qn has been decomposed as in Lemma 8.2.

Lemma 8.6. If P is the single digit 0, then the number of good zeros is at least

1
2

n−1∑

i=0

(`i − `− 1).

Proof. Clearly P = 0 is admissible and `i = Λi = |Pi| since each Qi must start and
end with a one. Let ai = `i − ` denote the number of potentially good zeros associated
with Pi, and let bi ≤ ai denote the number of good zeros. For i = 2, . . . , n write

δi =





max{ai−1 − ai−2 − `− 1, 0}, if Qi−1 = 1 = Qi;

max{ai−1 − 1, 0}, if Qi−1 6= 1 = Qi;

0 if Qi 6= 1.

(8.1)

We shall now show that for i = 2, . . . , n− 1,

bi ≥ max{ai − 1− δi, 0} ≥ δi+1. (8.2)

Suppose first that the preceding word Qi is not a single 1. If a potentially good zero of
order k in Pi looks back to a digit Lx of Qi, then the preceding k ≥ ` digits L[x−k, x−1]
must all be 0, and hence must form the end of the block Pi−1. But then Lx must be
the first digit of Qi. Since |Qi| > 1, then the last digit of Qi must also be repeated,
so Lx−k−1 = 1. In particular Pi−1 has order (i.e., length) exactly k. Since different
potentially good zeros associated to Pi have different orders, at most one potentially good
zero can be bad. Thus bi ≥ ai − 1. But bi ≥ 0 and δi = 0, so bi ≥ max{ai − 1− δi, 0} =
max{ai − 1, 0}. But this is at least δi+1 as either δi+1 = 0 or δi+1 = max{ai − 1, 0}.

Now suppose Qi = 1. The first δi potentially good zeros may be bad, but the next
ai−1− δi potentially good zeros are all good. To see this, suppose Lx is a zero of order k,
` + δi ≤ k < `i−1. If Qi−1 = 1 then δi ≥ ai−1 − ai−2 − `− 1, so

0 ≤ `i−1 − k − 1 = ai−1 + `− k − 1 ≤ ai−1 − δi − 1 ≤ ai−2 + ` = `i−2,

and

L[1, x] = · · · (0)`i−1−k−11(0)k+1(0)`i−1−k−11(0)k+1

has a terminal repeat length of at least `i−1 + 1 ≥ k + 2. Thus Sx > k + 2 and Lx looks
back strictly before Qi. If Qi−1 6= 1 then k ≥ `+δi ≥ `+ai−1−1 = `i−1−1 and k < `i−1,
so k = `i−1 − 1. Thus

L[1, x] = · · · 1(0)k+11(0)k+1

once again has a terminal repeat length of at least k + 2, so Sx > k + 2 and Lx is good.
Now consider the final ai − ai−1 − 1 zeros in Pi, i.e., the zeros with order > `i−1.



The Linus sequence 23

These are also all good, since if any of these looked back to Qi, then Pi−1 would have
to contain more than `i−1 zeros in order to produce a repeat of the desired length.
Thus in total we have at least (ai−1 − δi) + (ai − ai−1 − 1) = ai − 1 − δi good zeros
in Pi. Since the number of good zeros cannot be negative, we obtain the first inequality
in (8.2). The second inequality is trivial if δi+1 = 0, so we may assume Qi+1 = 1. Then
δi+1 = max{ai − ai−1 − `− 1, 0} ≤ max{ai − 1− δi, 0} since Qi = 1 and δi ≤ ai−1 in all
cases of (8.1).

Using (8.2), our aim is to prove that in fact

2
n−1∑

i=0

bi ≥
n−1∑

i=0

(ai − 1) + δn,

which immediately implies the lemma. We argue by induction on n. By Lemma 5.1, the
first block of zeros of length ≥ ` must have length equal to `, and the next block of length
≥ ` is of length at most ` + 1. Hence b0 = a0 = 0 and b1 ≤ a1 ≤ 1. Thus the inequality
holds for n = 1 and 2 (taking δ1 to be zero in the n = 1 case). For the induction step,
assume the assertion is true for n ≥ 2. Then

2
n∑

i=0

bi = 2
n−1∑

i=0

bi + bn + bn

≥
n−1∑

i=0

(ai − 1) + δn + (an − 1− δn) + δn+1

=
n∑

i=0

(ai − 1) + δn+1,

and the result holds for n + 1. The result now follows.

Lemma 8.7. If P is admissible with |P |0 ≥ 2 and Λ ≥ 2|P |, then the number of good
zeros is at least

1
2

n−1∑

i=0

(`i − `− 1).

Proof. Suppose Lx is a potentially good but bad zero associated to Pi with order k ≥ `

and x looks back to x′ = x− Sx. Since Λ ≥ 2|P |, the previous |P | digits prior to Lx are
repeated, so Sx > |P |. Thus L[1, x′] ends with P [1, s]∧ for some s ≥ 1 and Ps = 0. But
since P [1, s]∧ does not overlap P and Sx > |P |, Lx must look back beyond the previous
full copy of P . Thus L[1, x′] ends with P (P [1, s]∧). Since P does not overlap itself, Lx′

cannot lie in Pi, and so it must lie in Qi. But then L[1, x′] ends with P dΛ/|P |e[1, λ]∧

where λ > Λ. Thus Qi starts with P [1, s]∧, and so Qi determines s. Since s is given by
the location of Lx mod |P |, there can be at most one bad (but potentially good) zero
per copy of P . Hence the number of good zeros is at least

∑
i((`i − `)− d `i−`

|P |0 e) which is
at least

∑
i

⌊
`i−`

2

⌋ ≥ 1
2

∑
i(`i − `− 1) since |P |0 ≥ 2.
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Lemma 8.8. If P = 01 and Λ ≥ 2|P | = 4, then

1
2

n−1∑

i=0

(`i − `− 3) < 2n.

Proof. Although 01 is admissible, there is no adequate lower bound on the number of
good zeros. For example, consider

· · · 01|1|01 01|11|01 01|1|01 01 01|11|01 01 01|1|01 01 01 01|11|01 01 01 01|1| · · · .

It is not clear that any of the zeros in this sequence are good even for ` = 1. (It is
important here that the Qi alternate between 1 and 11 since otherwise many of the
zeros would create long repetitions, ensuring that they must look back far enough to
be good.) However, the following argument will show that this example is essentially
unique. Indeed, if more than one potentially good zero associated with Pi is bad, then
the preceding Qi must be either 1 or 11. To see this, suppose Lx is a potentially good zero
with order k ≥ ` associated to Pi. Then as in the proof of Lemma 8.7, Lx must look back
to Qi, which must then start with P [1, s]∧. Since P = 01 and Ps = 0, we must have s = 1,
so Lx looks back to the first digit of Qi. Then Qi = 1R and L[1, x] = · · ·RP k1RP k0.
If R is not a terminal subword of Pn for some n, then the order of Pi−1 is k, and so
determines the location of the bad zero. But the only terminal subwords of Pn that don’t
end in P are the empty word and R = 1. Thus either Qi = 1 or 11 or there is at most
one bad zero associated to Pi.

Let S be the set of i such that Qi 6= 1, 11. Then we have at least
∑

i∈S(`i− `−1) good
zeros and so by Theorem 8.5 ∑

i∈S
(`i − `− 1) < 2n. (8.3)

To complete the proof, we interchange 0s and 1s in our argument and count the number
of good ones. Instead of P = 01 we use P c = 10 as our periodic block since 01 is not
now admissible. Unfortunately, the decomposition into Pi and Qi changes, as do the `i.
However, the number of repetitions of 10 in any part of the sequence is between t − 1
and t + 1, where t is the number of repetitions of 01. Thus if we replace ` by `c = ` + 1
(Λc = Λ + 2) then the number n of blocks Pi does not increase, and the new `i (for the
surviving blocks) is at least `i − 1. Let Sc be the set of the new Qi that are not of the
form 0 or 00. Then ∑

i∈Sc

(`c
i − `c − 1) < 2nc ≤ 2n. (8.4)

Since `c
i ≥ `i − 1, (8.4) gives

∑

i∈Sc

(`i − `− 3) ≤
∑

i∈Sc

(`c
i − `c − 1) < 2n (8.5)

and so, adding (8.3) and (8.5), we get
∑

i∈S∪Sc

(`i − `− 3) < 4n.
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Now Sc ∪ S covers all the surviving blocks where `c
i ≥ `c, so in particular covers all the

blocks where `i − `− 3 is positive. The result follows.

Proof of Theorem 3.4. Applying either Lemma 8.8, or Lemma 8.6 or Lemma 8.7
together with Theorem 8.5, we have in all cases

n−1∑

i=0

(`i − `− 3) < 4n

for any admissible P with |P |0 ≥ |P |1, and Λ ≥ 2|P |. Rewriting this we obtain
n−1∑

i=0

(`i − `− 7) < 0.

If we decompose L[1,M ] into the form Q0P0 . . . Qn without employing a length limit Λ,
then the number of i such that `i ≥ ` does not change, nor do the values of these `i.
Hence if we include short Pi blocks we have that for all ` ≥ 2|P0|,

∑

i : `i≥`

(`i − `− 7) < 0.

Let A` =
∑

`i≥`(`i − `). Then A`−1 −A` counts the number of Pi with `i ≥ `. Hence

A` − 7(A`−1 −A`) < 0,

or more simply

A` < 7
8A`−1 for all ` ≥ 2|P |0.

But A` counts the number of potentially good zeros, so A` ≤ M for all ` ≥ |P |0. Thus
by induction A` ≤ ( 7

8 )`−2|P |0+1M . But any X that is not completely periodic has an
admissible cyclic rearrangement P , and the number of copies of Xg in L[1,M ] is then at
most A(g−1)|P |0−1 ≤ ( 7

8 )(g−3)|P |0M (since Xg must contain P g−1 as a subword). Thus if
|X|0 ≥ |X|1 and g > 3, then

lim sup
M→∞

f(Xg, L[1,M ]) ≤ ( 7
8 )(g−3)|X|0 ≤ γ(g−3)|X|,

where γ =
√

7
8 . By considering complements, this also applies to X with |X|1 ≥ |X|0.

Finally, if X = Y k is completely periodic, then we apply the above result to Y to get

lim sup
M→∞

f(Xg, L[1,M ]) = lim sup
M→∞

f(Y kg, L[1,M ]) ≤ γ(kg−3)|Y | ≤ γ(g−3)|X|.

Note that if we want to bound the frequency of g repetitions of any word of size N , then
we need to multiply the estimate in Theorem 3.4 by 2N . Now γ11 < 0.5, so 2Nγ(g−3)N <

γ(g−14)N is such a bound.

9. Proofs of Theorems 3.3 and 3.9

Proof of Theorem 3.3. One can use Theorem 3.4, but it is simpler to use Lemma 8.6
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and Theorem 8.5 directly. Let X = L[1,M ] and apply Lemma 8.6 with ` = 1. Then the
number of good zeros is at least 1

2

∑n−1
i=0 (`i − 2) = 1

2 (|X|0 − 2n). Thus by Theorem 8.5,
1
2 (|X|0 − 2n) < 2n, and so |X|0 < 6n. But there are n − 1 gaps between the blocks of
zeros. These must correspond to blocks of 1s, each consisting of at least one 1. Hence
|X|1 ≥ n− 1. Thus

f(1, X) =
|X|1
|X| ≥

n− 1
(n− 1) + (6n− 1)

=
n− 1
7n− 2

.

Since there are infinitely many blocks of zeros in the Linus sequence,

lim inf
M→∞

f(1, L[1, M ]) ≥ 1
7 .

Interchanging 0s and 1s throughout gives the result for 0s.

Proof of Theorem 3.9. We use arguments similar to those in the proof of Theo-
rem 3.1. Fix T ≥ 4 and k ≥ 2 and classify digits Ln into one of three types.

(A) Ln has short look-back time: Sn < T .

(B) Ln is not of Type (A) and L[n − b 1
2Snc, n − 1] is periodic with minimal period

< 1
2kSn.

(C) Ln is not of Type (A) or (B).

Our aim is simply to show that the limiting frequency of Type (A) digits is at least
1− C

T , or equivalently that the limiting frequency of Types (B) and (C) combined is at
most C

T , for some constant C. The idea is to bound the number of digits of Type (C),
since those of Type (B) are bounded by Theorem 3.4.

To this end, fix a real number K ≥ T and count the number of digits Ln in L[1,M ] of
Type (C) which have look-back times Sn with

K ≤ Sn <
(
1 + 1

2k

)
K. (9.1)

If two of these digits, say Ln and Lm, look back to points n′ = n−Sn and m′ = m−Sm

with 0 ≤ n′−m′ < K
2 then m−n′−1 > K

2 −1 ≥ K
2k (as K ≥ T ≥ 4 and k ≥ 2). Hence by

Lemma 6.3, L[n′+1,m−1] is p-periodic with p = |Sn−Sm| < K
2k . But n′+1 < m−K

2 +1,
so n′+1 ≤ m−b 1

2Smc. Thus Lm is of Type (B) (or (A)). Therefore, the total number of
Type (C) digits with Sn in this range is at most d(M −K)/(K/2)e ≤ 2M/K. Applying
this argument to each Ki = (1+ 1

2k )iT in turn, we get that the total number of Type (C)
digits is at most

C(k, M, T ) =
2M

T

(
1 +

(
1 + 1

2k

)−1 +
(
1 + 1

2k

)−2 + . . .
)

= (4k + 2)
M

T
. (9.2)

For each period p the frequency of Type (B) digits with period p is at most γ(g−14)p

where g ≥ b 1
2Sn/pc. Thus g ≥ max{k, bT/(2p)c} as p < 1

2kSn and Sn ≥ T . Set k = 29.
Then (g − 14)p ≥ max{15p, T

2 − 15p}. Write T
4 = 15p0 + δ with 0 ≤ δ ≤ 15. Then the
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density of Type (B) digits is at most the sum of

∑

p≤p0

γ(g−14)p ≤
∑

p≤p0

γ(T/2)−15p ≤
∑

i≥0

γT/4+δ+15i =
γT/4+δ

1− γ15

and
∑

p≥p0+1

γ(g−14)p ≤
∑

p≥p0+1

γ15p ≤
∑

i≥0

γT/4+15−δ+15i =
γT/4+15−δ

1− γ15
.

The sum γT/4(γδ+γ15−δ)/(1−γ15) of these is maximised (by convexity) when δ ∈ {0, 15},
so the density of Type (B) digits is at most γT/4(1 + γ15)/(1 − γ15) = C ′γT/4 for some

constant C ′ < 2.17. (Recall that we can take γ =
√

7
8 .) Adding the density of Type (C)

digits from (9.2), we see that the density of Types (B) and (C) combined is at most

4k + 2
T

+ C ′γT/4 =
118
T

+ C ′γT/4 ≤ C

T
,

for some constant C (in fact C = 166 will do). The result now follows.
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