
Note on Nakayama’s Lemma For Compact Λ-modules.

By P.N. Balister and S. Howson.

1. Introduction.

We discuss here two results which are widely used in the study of compact Λ(G) modules, where
Λ(G) = Zp[[G]] = lim

←
Zp[G/U ] for G a suitable profinite group, and the inverse limit is taken over

open normal subgroups U of G. The first result is a simple condition for a compact Λ(G) module X
to be finitely generated, the proof of which is essentially known. We recently noticed, however, that
there is a slight gap in the proof usually quoted e.g., in [4], even in the case where G = Zp. The proof
seems to originate in [2] where X is assumed to be profinite. We show how to extend this result to
cover a wide class of examples, including the case considered in [4].

The second result concerns an important condition for X to be Λ(G) torsion in the case of Abelian
G. Unfortunately, this condition does not generalise to all uniform G, as has erroneously been claimed
in [1]. We discuss here why that is, and explain when it does hold.

We would particularly like to thank Marcus du Sautoy for his help, especially for the suggestion
that the second result extends to some non-Abelian groups.

2. Motivation.

The main application of these results in number theory occurs in Iwasawa Theory, where one
attempts to study arithmetic objects over an infinite tower of fields.

As an example, let E be an elliptic curve defined over a number field K and assume that p is
a prime at which E has good ordinary reduction. Let Epn be the group of pn-division points on
E, and Ep∞ = ∪Epn . Define fields Kn = K(Epn) and let K∞ = ∪Kn. Let G = Gal(K∞/K) be
the infinite Galois group with open subgroups Gn = Gal(K∞/Kn). We will assume that E has no
complex multiplication, so, by a theorem of Serre’s [3], G will be an open subgroup of finite index in
GL2(Zp). The situation when E has complex multiplication is well understood, and we shall say no
more about that here.

We can define Selmer groups S(E/K), S(E/Kn) and S(E/K∞) of the elliptic curve as subgroups
of H1(K, Ep∞), H1(Kn, Ep∞) and H1(K∞, Ep∞) respectively, given by the usual local triviality con-
ditions. It is natural to ask about the size of these groups. We are ultimately interested in Selmer
groups over number fields, but it is also useful to study S(E/K∞). There is a natural action of
G on S(E/K∞) which can be extended by continuity to an action of the completed group algebra
Λ(G) = lim

←
Zp[G/Gn]. ¿From knowing the structure of S(E/K∞) as a Λ(G) module, we then try to

deduce information about the S(E/Kn). We try to proceed as follows:-

• In most cases, it is possible to show that the natural restriction homomorphism H1(K, Ep∞) →
H1(K∞, Ep∞)G induces a map S(E/K) → S(E/K∞)G with finite kernel and cokernel, see
[6]. If M̂ denotes the Pontjagin dual of a Λ(G) module, M , then this means there is a map
̂S(E/K∞)G → ̂S(E/K) with finite kernel and cokernel. Here MG means the G coinvariants of

a Λ(G) module, M , that is the maximal quotient of M on which G acts trivially. It is given
by M/IM , where I denotes the augmentation ideal of Λ(G), i.e., the kernel of the natural map
Λ(G) → Zp[G/G] = Zp which arises from the definition of Λ(G) as an inverse limit.

• Use some analogue of Nakayama’s Lemma to deduce results about X. There are two ‘results’
that we are interested in:-
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(1) If X/IX is a finitely generated Zp module then X is a finitely generated Λ(G) module.
(2) If X/IX is a finite Zp module then X is a torsion Λ(G) module.

It is these statements that are the principal subject of this paper.

• We would then wish to prove some kind of ‘control theorem’ relating ̂S(E/K∞)Gn
and ̂S(E/Kn)

as n varies. Here XGn
denotes the maximal quotient of X on which Gn acts trivially. A result

of this kind would allow us to use general properties about finitely generated Λ(G) modules to
analyse the behaviour of ̂S(E/Kn) as n varies. Such a result is proved by Harris in [1] and we
will discuss this stage no further.

It is instructive to recall the classical example for which the above philosophy works. Let Q∞
denote the cyclotomic Zp extension of Q, where we continue to assume that p is a prime at which E
has good, ordinary reduction, and let S(E/Q∞) denote the Selmer group of E over Q∞. If S(E/Q)
is finite (for example this is known, by a deep theorem of Kolyvagin, to be true for all primes p when
E is modular and the L-function of E does not vanish at s = 1) the argument proves that ̂S(E/Q∞)
is a torsion module over the completed group algebra of Γ = Gal(Q∞/Q). In [7], Mazur proves a
control theorem for this case and shows that the rank of the group E(F ), of F -rational points of E,
is bounded as F ranges over all finite extensions of Q contained in Q∞.

We return now to the case discussed above, with G = Gal(K∞/K). Then result (1) still holds,
but, as noted above, result (2) now fails. The consequence of this is that we do not have a single
example, for any choice of E with no complex multiplication and for any prime p, where we can prove
̂S(E/K∞) is a torsion Λ(G) module. Some ‘examples’ were given in [1] but they all depended on a

false proof of the result (2) claimed there.

That paper also relates the conjecture that ̂S(E/K∞) is a torsion Λ(G) module to the longstanding
conjecture that ̂S(E/Q∞) is torsion as a Λ(Γ) module. This conjecture can be proved quite easily in
some cases, and Kato has recently announced a proof for all modular E and all ordinary p. Details of
this have not been published yet, however. Specifically, the claim in [1] is that under the hypotheses
on E and p made above, ̂S(E/K∞) being torsion as a Λ(G) module is equivalent to ̂S(E/Q∞) being
torsion as a Λ(Γ) module. Unfortunately, the arguments relating the two are incorrect for the same
reason that the proof there of result (2) fails.

We should point out that there are some other results in [1] which rely on result (2). Most notably,
calculations of the Λ(G) rank of the Galois group of the maximal Abelian pro-p extension of K∞ over
K∞ where K∞ is an extension of either Q or Qp, with Galois group a p-adic Lie group and G a
uniform pro-p subgroup. Most of these results can be proved by other means however.

3. (1) Condition for X to be Finitely Generated.

Theorem. Let Λ be a compact topological ring with 1 and let I be a (left) ideal with In → 0 in
Λ. Let X be a compact (Hausdorff) (left) Λ module and assume either that X is profinite, or that
condition (B) below holds. If IX = X then X = 0.

Corollary. Let Λ, X and I be as above. If X/IX is finitely generated as a Λ/I module then X is
finitely generated as a Λ module.

Proof (assuming Theorem).
Lift any finite set of generators of X/IX to X so that X/IX = (Λ/I)x1 + · · ·+(Λ/I)xs with xi ∈ X.
Define Y = Λx1 + · · ·+ Λxs. Since Y is a continuous image of a compact set, it is closed in X and so
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X/Y is both compact and Hausdorff. By construction I(X/Y ) = (IX + Y )/Y = X/Y , so X/Y = 0
and X = Y is finitely generated.

Proof of Theorem.
Assume X 6= 0 and let U be an open neighbourhood of 0 in X with U 6= X. Let x ∈ X. By
continuity of the action of Λ, there exists a neighbourhood Ux of x in X such that for sufficiently
large n, In.Ux = {ab : a ∈ In, b ∈ Ux} ⊆ U . Since X is compact, we can cover X with finitely many
Ux, and so obtain In.X = {ab : a ∈ In, b ∈ X} ⊆ U ⊂ X for some n. Now IX = X, so by induction
InX = X. We wish to obtain a contradiction from In.X ⊆ U 6= X. Unfortunately, the IX in the
statement of the lemma is not the set theoretic product of I and X, but is the submodule generated
by products, IX = {∑ aibi : ai ∈ I, bi ∈ X} and so InX = {∑ aibi : ai ∈ In, bi ∈ X} is not the same
as In.X in general. To proceed we must make some additional assumptions.

(A) Strengthen the condition on X:- Assume X is profinite.

In this case we can take U to be an open subgoup under addition, and so In.X ⊆ U implies
InX ⊆ U . Also note that in the corollary, the quotient of a profinite group by a closed subgroup is
still profinite.

This condition was assumed in [2]. It holds in the case of the Selmer groups since these are subsets
of cohomology groups which are direct limits of finite groups. The duals are therefore profinite.

(B) Strengthen the condition on I:- Assume that we are given a descending chain of (left) ideals In

such that In = 〈f1,n, . . . , fd,n〉 are finitely generated by a fixed number of generators independent of
n, also assume that In → 0 and that for all n there exists an N with IN ⊆ In.

In this case replace U in the above argument with V , an open neighbourhood of 0 in X such that
V + V + · · · + V ⊆ U ⊂ X, where there are d terms in the sum. Such a V exists by continuity of
addition in X. Since In → 0 as n → ∞, for sufficiently large n In.X ⊆ V by the argument above.
Now INX ⊆ InX = f1,nX + . . . fd,nX ⊆ In.X + . . . + In.X ⊆ V + . . . + V ⊆ U ⊂ X. The result then
follows.

We now note two cases where condition (B) is known to hold.

(B1) Λ is commutative and I is finitely generated.

If I = 〈f1, . . . , fd〉, write In = 〈fn
1 , . . . , fn

d 〉 and note that Id(n−1)+1 ⊆ In ⊆ In.

(B2) Λ = Λ(G) with G a topologically finitely generated powerful pro-p group and I any proper ideal.

A pro-p group G is said to be powerful if the commutator subgroup [G,G] is contained in the
closure of the subgroup Gp generated by pth powers of elements of G (or G4, 4th powers, in the
case p = 2). ¿From now on we will abbreviate ‘topologically finitely generated powerful pro-p’ to
‘f.g. powerful’. The result follows from the following basic facts known in this case (see [5]).

Facts about f.g. powerful groups.

a. G is topologically finitely generated. Write {a1, . . . , ad} for a generating set.

b. G has a decreasing sequence of normal open subgroups Gn where Gn is topologically generated

by {apn−1

1 , . . . , apn−1

d }.
c. There exist constants c, d such that for sufficiently large n, (G :Gn) = pdn+c. Write d = dim G.

d. Let In be the kernel of the projection map Λ(G) → (Zp/pnZp)[G/Gn]. Then In is generated as

a Λ(G) module by {b0,n, . . . , bd,n} where b0,n = pn and bi,n = apn−1

i − 1 for 1 ≤ i ≤ d.
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e. I1 is the (unique) maximal ideal of Λ(G).

f. Both {In} and {In
1 } form a base of neighbourhoods of 0 in Λ(G). In particular, for all n there

exists an N with IN
1 ⊆ In ⊆ In

1 .

Note that any proper ideal I will be contained in I1 and so IN ⊆ In.

4. (2) Condition for X to be Λ-torsion.

We now consider the stronger version of Nakayama’s lemma. Let I = Ker(Λ(G) → Zp) be the
augmentation ideal of Λ = Λ(G). It is well known that, in the case of G = Zp and with X as above, if
X/IX is finite then X is actually a torsion Λ module. This is immediate from the structure theorem
for Λ modules that we have in this case. This result does not, however, extend to other pro-p groups
in general.

We first note that the concept of a torsion module is only useful when Λ has no zero divisors. In
order to ensure this, we will assume that G is a uniform pro-p group. G is said to be uniform if it is
a f.g. powerful group in which the orders of the finite p-groups Gn/Gn+1 are constant, independent of
n. The following facts are known (see [5]).

Facts about uniform groups.

a. If G is a f.g. powerful group then the following are equivalent, (a) G is uniform, (b) G has no p
torsion elements and (c) the map g 7→ gp is injective.

b. Any f.g. powerful group contains an open subgroup that is uniform.

c. Any p-adic analytic group contains an open subgroup that is uniform.

d. If G is uniform then Λ(G) has no zero divisors.

e. If X is a finitely generated Λ(G) module, then there exists a map X → Λ(G)r with both kernel
and cokernel Λ(G) torsion. The integer r is uniquely defined and called the rank of X.

We will show that, for a uniform group G, result (2) holds if and only if G is soluble. First we will
prove some general results about f.g. powerful groups.

Proposition. Let G be a f.g. powerful group.

(1) If H is a closed normal subgroup of G then G/H is a f.g. powerful group and dim(G/H) ≤ dim G
with equality if and only if H is finite.

(2) If G is not soluble, there exists a closed normal subgroup H 6= 1 with H/[H,H] finite.

(3) If G is uniform, soluble and non-trivial, there exists a closed normal subgroup H isomorphic to
Zr

p for some r > 0 and with G/H a soluble uniform group with dim G/H < dim G.

Proof.
(1) The fact that G/H is f.g. powerful is clear from the definition of a f.g. powerful group.

(G : Gn) = (G :GnH)(GnH : Gn) = (G/H : (G/H)n)(H : H ∩Gn).

So for some constant c and sufficiently large n, (H :H ∩Gn) = p(dim G−dim(G/H))n+c.
But (H : H ∩Gn) ≥ 1 and (H : H ∩Gn) →∞ if and only if H is infinite (recall ∩Gn = 1). The result
follows.
(2) Let G(0) = G and G(n+1) = [G(n), G(n)]. Since G is not soluble, G(n) 6= 1. If G(n)/G(n+1) is
infinite then dim G/G(n+1) > dim G/G(n) by part (1), but dim G/G(n+1) is bounded by dim G, so
eventually G(n)/G(n+1) must be finite. Let H = G(n) so that H 6= 1 and H/[H, H] is finite.
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(3) In this case there exists an n with G(n+1) = 1 and G(n) 6= 1, so N = G(n) is an Abelian normal
subgroup of G. Let H = {g ∈ G : gpn ∈ N for some n}. We will show that H is also an Abelian
normal subgroup of G. If x, y ∈ H with xpn

, ypn ∈ N then (xpn

yx−pn

)pn

= xpn

ypn

x−pn

= ypn

. Since
the map g 7→ gp is injective, xpn

yx−pn

= y. Thus (y−1xy)pn

= y−1xpn

y = xpn

and so similarly
y−1xy = x. Therefore xy = yx and (xy)pn

= xpn

ypn ∈ N and xy ∈ H, from which it follows that
H is an Abelian subgroup of G. It is normal since (gxg−1)pn

= gxpn

g−1 ∈ N and so gxg−1 ∈ H.
We know that G, and hence all G(n), are topologically finitely generated pro-p groups. Also G, and
hence H, has no p torsion. Therefore H is isomorphic to Zr

p for some r > 0. By part (1), G/H is a
f.g. powerful group with dim G/H < dim G. Since G/H has no p torsion, it must also be uniform.

Theorem. If G is a non-soluble uniform pro-p group then result (2) fails. In particular we can find
a non-trivial ideal J of Λ(G) with J/IJ finite.

Proof.
Let H be as in part (2) of the proposition. Let I(H) denote the augmentation ideal of Λ(H) considered
as a subgroup of Λ(G). Consider the map φ : H → I(H) given by φ(g) = g − 1. Then

φ(ghg−1h−1) = (gh− hg)h−1g−1 = ((g − 1)(h− 1)− (h− 1)(g − 1))h−1g−1 ∈ I(H)2

(note that h and g are invertible elements of Λ(H)). φ therefore induces a map φ̄ : H/[H,H] →
I(H)/I(H)2, and it easy to see that this is a group homomorphism. The image of this map is both
compact and dense, so φ̄ is surjective and I(H)/I(H)2 is finite. But the map

I(H)/I(H)2 → (I(H) + II(H))/II(H) = ΛI(H)/IΛI(H)

is clearly well defined and surjective (I(H) ⊆ I). So if we take J = ΛI(H), J/IJ is finite. But J is
an ideal of Λ, and Λ has no zero divisors, so J is not torsion.

As an example, it is easy to check that if Hi = {x ∈ SLn(Zp) : x ≡ 1 mod pi} is the ith
congruence kernel of SLn(Zp) and if i ≥ 1 and p ≥ 3, then [Hi,Hi] = H2i and has finite index in Hi.
Result (2) will then fail for any uniform G containing one of these groups. In particular it fails for
uniform open subgroups of GLn(Zp), e.g., congruence subgroups of the form {x ∈ GLn(Zp) : x ≡ 1
mod pi} for i ≥ 1, p ≥ 3.

Theorem. If G is a soluble uniform pro-p group then result (2) holds. I.e., if X is a compact
(Hausdorff) Λ module and X/IX is finite then X is a torsion Λ(G) module.

Proof.
Proceed by induction on dimG. The case G = 1 is trivial, so let H be as in part (3) of the proposition,
and assume the result holds for G/H. Let X be a compact Λ = Λ(G) module with XG finite. By the
results of section 1, X is finitely generated. Hence there is a map X → Λr with torsion kernel and
cokernel. If X is not torsion then r > 0 and hence, by projecting onto any factor of Λr, there is a
non-trivial map φ : X → Λ. Let J = ΛI(H) = I(H)Λ be the two-sided ideal of Λ generated by the
augmentation ideal I(H) of Λ(H). (H is normal in G). Since ∩Jn = {0}, there exists an n ≥ 0 such
that φ(X) ⊆ Jn, but φ(X) 6⊆ Jn+1. Then X ′ = (φ(X) + Jn+1)/Jn+1 is a non-trivial submodule of
F = Jn/Jn+1. F is invariant under H, so both X ′ and F are Λ(G/H) modules. X ′ is a quotient of
X, so X ′

G/H = X ′
G is a quotient of XG and hence finite. Since the result holds for G/H, X ′ must be

a non-trivial torsion Λ(G/H) module. We will show that F is a free Λ(G/H) module, which will give
the required contradiction.
J = ΛI(H) = Λ⊗Λ(H) I(H), so Jn/Jn+1 = Λ⊗Λ(H) I(H)n/I(H)n+1. Since Λ⊗Λ(H) Zp = Λ(G/H),
it is enough to show that I(H)n/I(H)n+1 is a free Zp module (with trivial H action). The triviality
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of the H action follows from the fact that I(H)n/I(H)n+1 = I(H)H . The Zp module stucture can
be obtained using the isomorphisms H ∼= Zr

p and Λ(H) ∼= Zp[[T1, . . . , Tr]]. I(H) corresponds to the
ideal (T1, . . . , Tr), and I(H)n/I(H)n+1 ∼= ⊕∑

ai=n T a1
1 . . . T ar

r Zp is a free Zp module.
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1958/59. Also, Collected Papers, volume I, no. 41.

[3] J-P. Serre, Propriétés Galoisiennes des Points d’order Fini des Courbes Elliptiques. Invent Math
15 1972, 259–331. Also, Collected Papers, volume III, no. 94.

[4] L. Washington. Introduction to Cyclotomic Fields. Springer-Verlag GTM 83.

[5] J.D. Dixon, M.P.F. du Sautoy, A. Mann and D. Segal, Analytic pro-p Groups. LMS Lecture Notes
157 CUP. + 2nd edition, in preparation.

[6] J.H. Coates and S. Howson, Euler Characteristics and Elliptic Curves. To appear in The proceed-
ings of the National Academy of Sciences.

[7] B. Mazur, Rational Points of Abelian Varieties with Values in Towers of Number Fields. Invent
Math 18 1972, 183–266.

6


