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ABSTRACT. We determine the maximum number of edges in a connected graph with n
vertices if it contains no path with k& + 1 vertices. We also determine the extremal graphs.

Dedicated to Miklés Simonovits on his 60th birthday

1. INTRODUCTION

A problem, first considered by Erdés and Gallai [2], was to determine the maximum
number of edges in any graph on n vertices if it contains no path with k + 1 vertices. This
maximum number, ext(n, Py1), is called the extremal number for the path P.;. FErdés
and Gallai proved the following theorem, which was one of the earliest extremal results in
graph theory.

Theorem 1.1 ([2]). For every k > 0, ext(n, Pyy1) < 2(k — 1)n with equality if and only if
n = kt, in which case the extremal graph is UZ:1 K.

In 1975 this result was improved by Faudree and Schelp [3], determining ext(n, Py 1) for
all n > k > 0 as well as the corresponding extremal graphs. This is given by

Theorem 1.2 ([3]). If G is a graph with |V(G)| = kt +r, 0 < r < k, containing no

path with k + 1 vertices then |E(G)| < t(g) + (;) with equality if and only if G is either

(i) (UZ:1 Ky) UK, or (ii) (Uf;ll_l Ky) U (Kg—1y/2 + K(k+1)/2+lk+r) for some l, 0 <[ < t,
when k is odd, t > 0, and r = (k£ 1)/2.

We use G to denote the edge complement of a graph G, G U H to denote the vertex-
disjoint union of graphs G and H, and G + H to denote the join of G and H, defined as
G U H together with all edges between G and H.

In this paper we consider the extremal problem for P, taken over all connected graphs.
We determine this number as well as the extremal graphs. These extremal graphs are
particular examples of graphs of the following form.

Definition. For n >k > 2s > 0 let Gpps = (Kp2s UK, pys) + K (see Figure 1).
Note that |E(Gprs)| = (k;s) + s(n — k+ s) and since k > 2s, G, s contains no Py ;.
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FIGURE 1. The graph G, 1 s.

The central result of this paper is:

Theorem 1.3. Let G be a connected graph on n vertices containing no path on k + 1
vertices, n > k > 3. Then |E(G)| is bounded above by the mazimum of (*3')+ (n—k+1)

and (HHQI)/Q]) + L%J (n— (%D If equality occurs then G is either G 1 or Gk, |(k-1)/2) -

A simple calculation shows that for & > 4 the maximum edge count is given by the first
expression for n < n., and by the second for n > n., where

k—>5)/4 if kis odd;

n, = § Ok =0)/4 if ks odd; (1.1)

(bk —2)/4 if k is even.

For k = 3 or 4 the bounds and extremal graphs are equal for all n.

The extremal numbers, but not the extremal graphs, were previously obtained in [4]. The
proof given there uses the extremal number for a cycle of length > k in any 2-connected
graph by forming the 2-connected graph G’ by joining a new vertex to all the vertices
of GG. This proof does not lend itself to finding the extremal graphs. The proof given here,
however, is constructive, giving both the extremal numbers and the extremal graphs.

Note that in the statement of Theorem 1.3, the second class of extremal graphs G, j s
satisfy k — 2s = 2 for k even and k — 2s = 1 for k odd. In particular, when k is odd
and n = k + %, we have G i (k-1)/2] = Kr-1)2 + K. Thus Theorem 1.2 shows that
Theorem 1.3 holds when £ is odd and n = k + % With this fact it is not difficult to
prove the case where £ is odd and n > k + % Unfortunately proving the remainder of
this theorem is somewhat harder and will require several lemmas. One result that will also
be used generalizes a result of Erdés and Gallai [2] and appears in [1].

Lemma 1.4 ([1]). Let G be a graph and for each v € V(G) let p, be the number of edges
in the longest path in G starting at v. Then |E(G)| < %EveV(G) Py, with equality if and
only if G is a disjoint union of complete graphs.

The strategy of the proof of Theorem 1.3 is to take a longest path P in G and divide the
vertices into two sets, V(P) and Y = V(G) \ V(P). For each v € Y we bound the number
of edges in G[V(P)] as a function of the number of edges from v to P and the length of
the longest path in G[Y] starting at v. Combining these bounds for all v € Y and using
Lemma 1.4 then gives the result.
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2. PROOF OF THEOREM 1.3

A key part of the proof is to analyze the case when a longest path in G is of length &
and misses precisely one vertex, so that |V (G)| = k + 1. The next two lemmas deal with
this situation.

Lemma 2.1. Suppose S is a set of s+ 1 independent vertices in a graph G of order k+1,
with the degree of each w € S at least s in G and suppose G\ S is complete and G contains
no Hamiltonian path. Then the neighborhoods of each w € S are the same and G = Gji1 s

Proof. Consider the set of all paths in G starting at a fixed vertex w; € S. Of these,
consider the set P of paths that contain the maximal number of vertices of S. Pick a path
P € P of maximal length. We shall show that if G # Gj11 1 s then P is a Hamiltonian path.
Suppose first that P does not contain some vertex w € S. Let uq,...,us be s neighbors
of w.

Case A: One of the vertices u; occurs in P after all the vertices of S in P.

In this case we can change the path P after u;, removing subsequent vertices and adding
w so that it ends with w;w. This new path contains more vertices of S, contradicting the
assumption that P € P.

Case B: There are neighbors u; and u; of w on P that are not separated by a vertex of S
on P.

In this case we delete the vertices of the path P between u; and u; and insert w so that
the path goes w;wu;. This uses one more vertex of S, contradicting the assumption that
PeP.

Case C: Some vertex u; does not lie in the path P.

The path P must end with a vertex w’ € S (otherwise we could extend P by adding ;).
Let the path end with the edge uw’. Then u € G\ S since S is an independent set. Now
replacing this edge with uu;w gives a longer path meeting the same number of vertices of S.
This contradicts the choice of P € P.

Since none of the cases A, B, or C occur, at least s + 1 vertices of S lie on the path P.
Hence P contains all the vertices of S. If P ends at a vertex of G\ S then we can append the
remaining vertices of G\ S to get a Hamiltonian path. Similarly, if there are two neighboring
vertices uu’ of P that both lie in G \ S then we can insert the remaining vertices of G \ S
between them. Otherwise P must be of the form wjujwous . .. wsuswsy 1, w; € S, u; ¢ S. If
the neighborhoods of the w; are not all equal to {uy,...,us}, there must be some u € G'\ S
not equal to any of the u; which is a neighbor of some w;. We can now insert u after w; in
P to get a longer path, contradicting the choice of P.

Hence if P is not a Hamiltonian path then the neighborhoods of every w; € S must be
exactly {ui,...,us} and so G = Gji1 - O

Define for sy < k/2 the function
h(k,so) = max {(*}%) +s(s+1)}. (2.1)

80§8<k/2
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F1GURE 2. Cases for which G has a Hamiltonian path in Lemma 2.2.

This is just the maximum of the edge counts of the graphs G115, So < s < k/2, occurring
in Lemma 2.1.
The function (*;*) + s(s + 1) is convex in s, so

h(k, so) = max { (*5°) + so(so + 1), (*3™) + sm(sm + 1)} (2.2)
where s, = 21 |. We note for future reference that
h(k,so) —h(k—1,s9) > min {k—s—1}=[%] (2.3)

s0<s<(k—1)/2

Lemma 2.2. Suppose G is a connected graph on k + 1 vertices with no Hamiltonian path,
but with a path P with k vertices, and suppose the vertex v € V(G) \ V(P) has degree sg.
Then |E(G)| < h(k,so). If equality holds then G = Gii1.k.s, -

Proof. The bound h(k, sy) is monotonic, decreasing with increasing so. Hence we may
assume that v is a vertex of maximal degree such that G — v has a Hamiltonian path. Let
s > sg be the degree of v and P = (z1,...,x;) a Hamiltonian path of G — v. Let the
neighbors of v be z;,, ..., x,,.

Ifij41 = 1;+1 for any j then G contains the Hamiltonian path (z1,..., 2, v, 2, ..., T).
Similarly if i1 = 1 or 45 = k then G has a Hamiltonian path (see Figure 2). Therefore i; > 2,
ij41 >+ 2, and so k—1>1i3 > 2s. Thus s < (k—1)/2.

If there were an edge of the form x; ,12;,+1 for some ¢ > r, or an edge of the form x;z;,14
then G would have a Hamiltonian path (see Figure 2). Since vxy,vx;, 11 ¢ E(G), the set
{v,21,%i,+1,...,xi+1} is an independent set of G of size s + 2.

We shall now show that, without loss of generality, every z; € {x1,2;11,...,%;.+1} has
degree d; either at most s, or more than [%1 in GG. To see this, let G’ be the graph obtained
from G by deleting the vertex z;, and adding (if possible) the edge x;_jx;;;. Clearly G’ has
a path of length k — 1 together with a vertex v of degree s (since vz; ¢ E(G)). If G' had a
Hamiltonian path using the edge x;_1x;; then G would have a Hamiltonian path (replace
x;_1x;p1 with z;_12;2;,1). On the other hand, if G’ had a Hamiltonian path not using the
edge z;_1x;41 then G — x; would have a Hamiltonian path. In this case, the degree of x;
would be at most s by choice of v. Hence either d; < s or G’ has no Hamiltonian path. If G’
has no Hamiltonian path, then by induction on k we can assume |E(G’)| < h(k—1,s). (The
base of the induction is the case k = 2s+ 1, where G — x; always has a Hamiltonian path.)
Thus |E(G)| < h(k —1,s) +d;. If d; < (%} then by (2.3) |E(G)| < h(k,s) < h(k, so).
Moreover, if we have equality, then G’ = Gy -1, the edge x;_12;11 did not need to be
added to make G', and G consists of G' with one more vertex x;. Since G has no Py
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i=1,1<t<j—1 i=1j<t<k
F1GURE 3. Cases for which G has a Hamiltonian path in Lemma 2.2.

it is clear that x; cannot be joined to the independent set of size s + 1 in G’, thus G is a
subgraph of Gji1 4. Since |E(G)| = h(k,s) we must have G = Gj41 s and since all the
vertices x € GG for which G — x has a Hamiltonian path have the same degree s, s = s,.

k

Now we shall show that at most one of these degrees d; is greater than [7]. Suppose

otherwise and assume d;,d; > (%} with i < 7, 4,5 € {1,y +1,...,is + 1}. We shall deal
with the case ¢ > 1 first. If 1 <t <i—1 and 2,2, v4417; € E(G) then G has a Hamiltonian
path (see Figure 3). Similarly when ¢ < ¢t < j — 1, x5, 2425 € E(G), or j <t < k,

Ty, vz € E(G). Set
A={t: x5z, € E(G)} B={t:z1-s7; € E(G)}

where § = 1if ¢ <t < j and § = 0 otherwise. Since i — 1,k ¢ B, j — 1 ¢ A, the sets A
and B are disjoint subsets of {1,...,k}. Also, since z12;,z,2; ¢ E(G), |A| = d;, |B| = d;.
Thus d; + d; < k. This contradicts the assumption that d;,d; > [£].

The case when ¢ = 1 is similar. We cannot have 1 <t < j — 1, ;121,225 € E(G), or
J<t<k, i, rz; € E(G). Thus once again A and B (defined as above) are disjoint
subsets of {1,...,k} since k ¢ B and j —1 ¢ A. Also x12; ¢ E(G) so |[A] = d;, and
|B| = d;. Hence d; + d; < k, contradicting the assumption that d;,d; > [£].

Thus there is an independent subset S of s+ 1 elements of the set {v, x1,z;11,..., T 11}
all of whose elements have degree at most s in G. The maximum number of edges in G is
therefore (k+12_|5|) +S| = (%) + s(s + 1) < h(k,s) < h(k, s).

For the extremal graph note that the maximum number of edges occurs when G \ S is
complete and the degree of every x € S is exactly s. Hence G = G415 by Lemma 2.1.
Since all the vertices x € G for which G —x has a Hamiltonian path have the same degree s,
5 = Sp. O

Lemma 2.3. Let G be a connected graph on n vertices with a path P with k vertices but
no path with k + 1 vertices and set Y = V(G)\ V(P). Let v € Y be a vertex adjacent to
s > 1 vertices of P and assume a longest path Q) in Y starting at v has p + 1 wvertices,

p>0. Then2s+2p <k —1 and |E(G[V(P)])| < (’2“) — fi(s,p) where
filsp)=@+Dk-p=2)+(5) (>0 (24)
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x; \ Tj Tj41 Z;

v

FIGURE 4. Path with k£ + 1 vertices in Lemma 2.3 (p = 3).

Proof. Label the vertices P = (x1,...,2;) and let z;,...,z;, be the vertices adjacent
to v. The path (xy,...,z;,v) U Q must have at most k vertices, so i; > p + 2. Similarly
is <k—(p+1). Asin the proof of Lemma 2.2, i, 1 > i, + 2. In particular k — 2p — 3 >
is—1i1>2(s—1),802s+2p < k—1.

For each ¢ = 1,...,p + 1 consider the pair of vertices x; and zy = x;1,_p—1. Suppose
edges exist from z; to x;1, and z; to zy where i < j < ¢ — 1. Then there is a cycle
(Tiy Tig1y o j Tiry ..oy Tiv1, ;) of length k — p. If s > 1 then at least one vertex of this

cycle is joined to v and hence to the path Q with p + 1 vertices in Y. This gives a path
with k+ 1 vertices (see Figure 4). Hence at least one of the edges z;x;41 and z;x; does not
exist in GG. Similarly the edges x;x;, x;xiyq, ..., T;xE, and x;_ 124, ..., r124 do not exist.
Thus we have a total of k — 2 edges missing from either x; or z;.

The total number of missing edges can be calculated as (p + 1)(k — 2) — (p+ 1)p =
(p+1)(k —p—2) since each pair {z;, z;} is incident to k — 2 missing edges and if ¢ < j then
at most two edges from {z;,z;} to {x;, z; } have been double counted (z;x; and zz;, but
not x;x; or TyTy).

As in Lemma 2.2 the edges z; 112,41 are missing in G. For 1 < r <t < s — 1 these
vertices are not among the {z;, z;} considered above. Hence there are an additional (8;1)
missing edges not already counted. Hence we have at least fi(s,p) = (p+1)(k—p—2)+ (")
missing edges from G[V (P)].

The following lemma deals with the case when s = 0.

Lemma 2.4. Let G be a connected graph on n vertices with a path P with k vertices but
no path with k + 1 vertices and set Y = V(G) \ V(P). Let v € Y be a vertex that is not
adjacent to any vertex of P and assume a longest path Q) in'Y starting at v has p + 1
vertices. Then p < k — 3 and |E(G[V(P)])| < (g) — f1(0,p) where

f1(0,p) = 3(k = D)([] + 1) (2.5)

Proof. Since G is connected, there must be a path from v to P in G. Let v’ be the last vertex
of this path that lies in Y, so that v’ is connected by a path in G[Y] to v and is adjacent to
s > 1 vertices of P. Let p’+1 be the number of vertices in the longest path in G[Y] with v’ as
an endvertex. Then p’ > [£]. Thus, by Lemma 2.3, 2p'+2s < k—1,s0 [§] <p' < (k—3)/2
and p < k — 3. Also by Lemma 2.3, there are at least fi(s,p") > (p' +1)(k — p' — 2) edges
missing from G[V (P)], but p/ < (k—3)/2 gives k —p' —2 > (k —1)/2, so there are at least
s(k—=1)(p' +1) > 5(k—1)([5] + 1) missing edges from G[V (P)]. O
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Proof of Theorem 1.3. For k > 2s the number of edges in G, j. s is (kgs) +s(n—k+s), which
is strictly increasing with k. Hence we may assume by induction on k£ that G contains a
path with k vertices. For k = 3 we note that all connected graphs on n > 4 vertices contain
a Pg.

Let P be a path with k vertices in G and let Y = V(G) \ V(P). For each vertex v € Y
let s, be the number of vertices of P adjacent to v in G and let p, be the number of edges
in the longest path in G[Y] starting at v. By Lemma 1.4 the number of edges in G[Y] is
bounded above by Y _\ p,/2. By Lemma 2.2, the number of edges in G[V(P)] is bounded

above by (’;) — fo(sy) where

fols) = s+ () —max {(*;°) +s(s+ 1), (*3™) + sm(sm +1) — 1}
= min {$(2k — 35— 1), s + 2 (2k — 3s,, — 3) + 1}, (2.6)
The extra —1 in the second expression in the max comes from the fact that |E(G[V (P) U
o) = *5) + smlsm +1) > (kgs) + s(s + 1) contradicts the extremal graph given by
Lemma 2.2. By Lemma 2.3 or 2.4, the number of edges in G[V (P)] is also bounded above
(g) - fl(swpv)? where

fi(s,p) = {(%Iz;_l)l()k; (_%’1]94:12)) + (5 i z i 8? (2.7)
Hence
[BGIV(PI) < (5) = f(s0,p0),  where f(s,p) = max{fo(s), fi(s,p)}. (2.8)
The total number of edges in GG is therefore bounded by
(5) — max f(su,p0) + Y (50 +p0/2). (2.9)

veY

This in turn is bounded above by the average n—ik > vey By of the values

E, = (5) = f(s0,p0) + (n = k) (50 + 0 /2). (2.10)

This average is a linear function of n with slope given by the average value of s, + p, /2.
Claim 1. 1 < -3 (s, 4+ pu/2) < [(k—1)/2].

Proof. For the upper bound we have 2s,+2p, < k—1 when s, > 0, 80 s, +p,/2 < s,+p, <
|(k—1)/2], and p, < k—3 when s, = 0, so s, +p,/2 < |(k—1)/2]. For the lower bound,
the only case when s, + p,/2 < 1 is when s, = 0 and p, = 1 (G is connected so we cannot
have s, = p, = 0). In this case Y contains a component which is a star at v. At least
one of the endvertices, u, of this star must be joined to P so has p,,s, > 1. Any other
endvertex of the star must have p,, > 2. The average value of s, + p,./2 for this component
is therefore at least 1. The claim now follows. U

The statement of the theorem requires us to bound the number of edges of G by the
maximum of two linear functions of n, with slopes 1 and [ (k — 1)/2] respectively. Since we
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have a linear bound ﬁ >, B, with slope between these two values, it is enough to prove
the bound at the point n = n.. Indeed, we shall show that E, is bounded above at n = n,.
by the expressions in the statement of the theorem for every v € Y separately.
Claim 2.

() = F(s.p) + (ne — k) (s +p/2) < (*3") + (ne — k + 1), (2.11)
and if equality holds, p =10 and f(s,p) = s+ (g) — h(k,s).

Proof. Substituting the values of n. from (1.1) and rearranging gives f(s,p) > g(s,p), where

g(s,p) = {%(/{—2)(28—0—]7—1—6) if k is even,

2.12
s(k—=5)(2s+p+6)+3 if kis odd. (2.12)

Note that §(k —2)(2s +p+6) > g(k—5)(2s +p+6) +3 when s > 1 or p > 2.

Case A: s =0.

In this case we use f(s,p) > f1(0,p) = 3(k—1)([2] +1). Now p > 1s0 4([E] +1) > p+6.
Thus f(s,p) > g(s,p) for all even k and for odd k£ when p > 2. For odd k and p = 1,
fi(0,p) =k —1> g(k —5)+3=g(s,p). Thus in all cases we get a strict inequality.

Case B:s>1,p>0,p>2(s—1)/7.
Use f(s,p) > fi(s,p) = (p+ 1)(k —p—2) + 3(s — 1)(s — 2). Then
8(f—g) > (k—=2)(Tp—2s+2)—=8(p+ 1)p+4(s—1)(s—2). (2.13)
However 7Tp —2s+2>0and k > 25+ 2p+ 1, so
8(f—g)>2p+2s—1)(Tp—25+2)—8(p+ 1Lp+4(s—1)(s —2)
=(6p—1)p+2(s—1)(bp—3) > 0. (2.14)
Hence we have strict inequality f > ¢ in this case also.
Case C: s > 1, (kgs) +s(s+1) < (k_;m) + S (Sm + 1).
Use f(s,p) > fo(s) = s + *(2k — 3s,, — 3) + 1. For even F,
8(f—g) >8s+ (k* =2k +8) — (k—2)(2s +p +6)
=(k—6)(k—2—-2s—2p)+ (8+ (k—10)p). (2.15)
Since 2s +2p < k — 1 and k is even, 2s + 2p < k — 2. Hence if k£ > 10 we get a strict

inequality. We also get a strict inequality when 4 < k < 10 and p = 0. For k£ < 10 and
p > 0 we have s < 3,50 2(s — 1)/7 < 1 and we are done by Case B. If k is odd then

8(f—g)>8s+ (k* —4k +11) — (k—5)(2s +p+6) — 24
= (k=9 (k—1—2s—2p)+ (8+ (k— 13)p). (2.16)
Since 2s +2p < k — 1, if k > 13 we get a strict inequality. If £ < 13 and p > 0 then s < 4,
2(s—1)/7 < 1, so we are done using Case B. If k£ < 13 and p = 0, we get a strict inequality

except for the cases k = 5,7, s = 1 where we get equality. However, in both these cases,

f(s,p) = fo(s) = £(2k —3s — 1) = s+ £ — h(k, s).
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Case D: s > 1, (*}°) + > (M5m) + Sp(sim + 1).
Use f(s,p) > fo(s) = (2k: 35 — 1) Since s > 1,

8(f—g) >4s(2k —3s—1) — (k—2)(2s + p+6)
=6(s—1)(k—2s—2)—p(k—2). (2.17)
If k£ is odd we also have
8(f—g) >4s(2k —3s—1)— (k—5)(2s+p+6) — 24
=6(s—1)(k—2s—1)—p(k—5). (2.18)

Thus if p = 0 then we have f > g with equality only when s = 1, [5]. If p > 0 we get
a strict inequality unless p(k —2) > 6(s — 1)(k — 2s — 2). However, 1f ( 3 +s(s+1) >

(k_;’”) + $m(sm + 1) then s < [E2] < 3 (k—2), 50 p > s — 1 and we are done by Case B,

unless £ = 4. However in this case we also have p > s — 1 since s = 1.

Hence we have a strict inequality for all pairs (s, p) except for some cases when p = 0
and f(s,p) = 5(2k —=3s+1) = s + % — h(k, s) where we get equality. This completes the
proof of Claim 2. O

For the extremal graph, note that we must have equality in Claim 2 for each v € Y, so
py =0 and |E(G[V(P)U{v}])| = h(k,s,) for all v € Y. Thus Y is an independent set and
for each v € Y, G[V(P)U{v}] = Gry14s, by Lemma 2.2. Hence G|V (P)] = Gy.s,. Since
these graphs are non-isomorphic for different values of s, (e.g., the minimum degree is s,),
s, = S is a constant for all v € Y. Let S be the independent set K, in Gk.s- Then SU{v}
is independent for each v € Y (otherwise G would contain a path with k& + 1 vertices).
Applying Lemma 2.1 to G[V(P) U {v}] we see that the neighborhood of v is the same as

the neighborhood of any w € S. In particular it is the same for all v € Y. Thus G = G, j. 5.

The number of edges is maximized when s = 1 or [%51], so the result follows. U
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