
Vertex-distinguishing edge colorings of random graphs

P.N. Balister

July 25, 2001

Department of Mathematical Sciences, University of Memphis,
Memphis, TN 38152 USA

Abstract

A proper edge coloring of a simple graph G is called vertex-distinguishing if no two distinct
vertices are incident to the same set of colors. We prove that the minimum number of colors
required for a vertex-distinguishing coloring of a random graph of order n is almost always
equal to the maximum degree ∆(G) of the graph.

1 Introduction

Let G be a simple graph with n vertices. For d ≥ 0 write nd for the number of vertices in G of
degree d. Let χ′(G) be the minimum number of colors required in a proper edge coloring of G. If
we have such a proper coloring with colors {1, . . . , k} and v is a vertex of G, denote by S(v) the
set of colors used to color the edges incident to v.

A proper edge coloring of a graph is said to be vertex-distinguishing if each pair of vertices is
incident to a different set of colors. In other words, S(u) 6= S(v) for all u 6= v. A vertex-
distinguishing proper edge coloring will also be called a strong coloring. A graph has a strong
coloring if and only if it has no more than one isolated vertex and no isolated edges. Such a graph
will be referred to as a vdec-graph. The minimum number of colors required for a strong coloring
of a vdec-graph G will be denoted χ′s(G). If G is not a vdec-graph then we write χ′s(G) = ∞.

The concept of vertex-distinguishing colorings was introduced independently by Aigner, Triesch,
and Tuza, by Hořnák and Soták, and by Burris and Schelp, and has been considered in several
papers [1, 2, 3, 4, 5, 8, 9, 11, 12]. In [8] Burris and Schelp made the following conjecture:

Conjecture 1 Let G be a vdec-graph and let k = k(G) be the minimum integer such that
(
k
d

) ≥ nd

for all d with δ(G) ≤ d ≤ ∆(G). Then χ′s(G) = k or k + 1.

Conjecture 1 was strengthened to give conjectural criteria for when χ′s(G) = k and when χ′s(G) =
k + 1 in [4]. In practice this strengthened conjecture suggests that the “usual” value is k, with
k+1 only occurring when some parity constraint forces it. This would be analogous to the normal
edge chromatic number χ′(G) which by Vizing’s Theorem is either ∆ or ∆ + 1 with the “usual”
value being ∆ (see [10]).
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The strengthened conjecture (and hence the exact value of χ′s(G)) is known for complete graphs,
complete bipartite graphs, and many trees [8]. More recently it has been proved for unions of
cycles [2], unions of paths [2], and for graphs of small order [4].

Conjecture 1 is proved for graphs of large maximum degree in [3], where the following result is
also given.

Theorem 1 Assume k ≥ χ′(G). If n0, n1, n2 ≤ 1, n3, n4, nk ≤ 2, nk−1 ≤ k + 1, and for 5 ≤ d ≤
k − 2,

nd ≤ d− 4
d− 3

min
{

2
(

k − 3
d− 3

)
,

(
k

d

)}
− 2, (1)

then we can find a strong coloring of G with at most k + 1 colors.

Let Gn,p be a random graph on n vertices with edge probability p = p(n). If pn
log n , (1−p)n

log n →∞ then
almost all such graphs satisfy the conditions of Theorem 1 with k = ∆(G), so χ′s(G) ≤ ∆(G) + 1.
Since it is clear that χ′s(G) ≥ k(G) ≥ ∆(G), we know Conjecture 1 holds for these graphs. In this
paper we will prove the stronger conjecture holds almost always by showing that for almost all
graphs χ′s(G) = ∆(G). This is analogous to (and implies) the main result of [10], that for almost
all graphs χ′(G) = ∆(G).

For v ∈ V (G), define a split at v to be a new graph G′ in which the vertex v has been replaced by
two non-adjacent vertices v1 and v2 with the neighborhood of v in G equal to the disjoint union
of the neighborhoods of v1 and v2 in G′. We call a split an r-split if the degree of v1, say, is r. In
Section 2 we shall prove:

Theorem 2 Let G be a graph with precisely one vertex, v say, of maximum degree and let k ≥
∆(G). If there exists a 2-split G′ of G at v with χ′s(G′) ≤ k − 1 then χ′s(G) ≤ k.

Theorems 1 and 2 have the following consequence.

Corollary 3 Write ∆ = ∆(G). If n∆ = 1, n2, n∆−1 = 0, n0, n1, n∆−2 ≤ 1, n3, n4 ≤ 2, n∆−3 ≤
∆− 1 and for 5 ≤ d ≤ ∆− 4,

nd ≤ d− 4
d− 3

min
{

2
(

∆− 5
d− 3

)
,

(
∆− 2

d

)}
− 2, (2)

then χ′s(G) = ∆.

Proof. Let v be the (unique) vertex of degree ∆ in G. The conditions imply that ∆ ≥ 8 and that
any 2-split G′ of G at v satisfies the degree sequence conditions of Theorem 1 with k = ∆ − 2.
The strengthened version of Vizing’s theorem proved in [14] states that if χ′(G′) > ∆(G′) then
G′ contains at least three vertices of maximum degree. However there are at most two vertices
of maximum degree ∆(G′) = k in G′, so k ≥ χ′(G′). Hence χ′s(G′) ≤ ∆ − 1 and the result now
follows from Theorem 2 with k = ∆.

The following theorem will be proved in Section 3 by showing that almost all graphs satisfy the
conditions of Corollary 3.
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Theorem 4 If G = Gn,p is a random graph on n vertices with edge probability p = p(n) and if
pn

log n , (1−p)n
log n →∞ as n →∞ then P(χ′s(G) = ∆) → 1 as n →∞.

2 The proof of Theorem 2

Fix a 2-split G′ and a strong coloring of G′ with k − 1 colors. Now S(v1) is a set of two colors
and S(v2) is a set of ∆ − 2 ≤ k − 2 colors. Identifying the vertices v1 and v2 gives a coloring of
G which is vertex-distinguishing and proper except possibly at v, where at most two colors are
incident to v twice. We can distinguish three cases.

Case I: No color is repeated at v. In this case, the coloring is proper and we are done. The vertex v
is distinguished from all the others since it is the only vertex of degree ∆.

Case II: One color is repeated at v, say color 1. Re-color one of the two edges from v that are
colored 1, vw say, with the (so far unused) color k. The result is a strong coloring with k colors
since S(v) is the only set with size ∆, S(w) is the only other set containing k, and all the other
sets S(u), u 6= v, w, are unaltered.

Case III: Two colors are repeated at v, say colors 1 and 2. The color k is unused anywhere and
since ∆ ≤ k, there exists some other color, say 3, which is not incident to v. Let vij , 1 ≤ i, j ≤ 2,
be the four distinct vertices with vvij colored with i. For any two colors a and b and set of colors
S define iabS to be the set obtained by replacing any occurrence of a by b and any occurrence of
b by a in S.

First we shall attempt to change the color of one of the edges vvij , say vv11, to 3. This may cause
one of two problems. The first is that the new coloring may fail to be proper at u1 = v11 since
v11 may already be incident to color 3. The other problem is that the vertex v11 may now have
the same color set as some other vertex u1. In either case there is a vertex u1 with an edge u1u2

colored 3 and S(v11) = i13S(u1). (Here and below S(x) will refer to the set of colors meeting x in
the original coloring.) Note that u1, u2 6= v since 3 ∈ S(u1), S(u2). If no such u1 exists then we
can re-color vv11 with 3 and we are reduced to case II where we can re-color, e.g., vv21 with k to
get a strong coloring.

•
v21

•
v22

•
v11 •

v12

•
v

....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
..................................................................................................................................................................................................................................................................................

1 1

2 2

⇒
•

v21
•

v22

•
v11 •

v12

•
v

....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
..................................................................................................................................................................................................................................................................................

3 1

k 2

Assuming no u1 with S(v11) = i13S(u1).

Assume now that at least one of the sets S(vij) contains color 3. Without loss of generality we
may assume 3 ∈ S(v11), so u1 = v11. If we re-color vv11 with 3 and re-color vv21 and u1u2 with k,
then the only color sets that have changed are at v, u1, u2, and v21, each of which now meets color
k and is thus distinguished from all other vertices. The vertex u2 now does not meet color 3 so
is distinguished from u1. As before, v is distinguished from all other vertices since it is the only
vertex of degree ∆. Hence the coloring will be strong unless v21 is not distinguished from either u1

or u2. In other words, the coloring will be strong unless S(v21) = i21S(u1) or S(v21) = i23S(u2).
(The second possibility also covers the case when v21 = u2.)
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•
v21

•
v22

•
u1=v11 •

v12

•
v

....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
..................................................................................................................................................................................................................................................................................

1 1

2 2

•

•
u2

3

...............................
...............................

...............................
...............................

...............................
...............................

.................

⇒
•

v21
•

v22

•
u1=v11 •

v12

•
v

....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
..................................................................................................................................................................................................................................................................................

3 1

k 2

•

•
u2

k

...............................
...............................

...............................
...............................

...............................
...............................

.................

Assuming S(v21) 6= i21S(u1), i23S(u2).

By symmetry, we are also done if S(v22) 6= i21S(u1), i23S(u2). Since S(v21) 6= S(v22), we can now
assume without loss of generality that S(v21) = i21S(u1) and S(v22) = i23S(u2). In this case,
re-color the vertices as shown below to give a strong coloring. The color sets S(u2) and S(v22) are
swapped (or unchanged if u2 = v22) and all other color sets are unchanged except at v11 and v
which see distinct color sets and are the only color sets containing k. The coloring is proper at u1

since S(u1) = i21S(v21) and v21 6= u1 which imply 2 /∈ S(u1).

•
v21

•
v22

•
u1=v11 •

v12

•
v

....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
..................................................................................................................................................................................................................................................................................

1 1

2 2

•

•
u2

3

...............................
...............................

...............................
...............................

...............................
...............................

.................

⇒
•

v21
•

v22

•
u1=v11 •

v12

•
v

....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
..................................................................................................................................................................................................................................................................................

k 1

2 3

•

•
u2

2

...............................
...............................

...............................
...............................

...............................
...............................

.................

Assuming S(v21) = i21S(u1), S(v22) = i23S(u2).

Now assume 3 /∈ S(vij) for all 1 ≤ i, j ≤ 2. Hence u1 and u2 are distinct from all the vij and v.
Once again, color vv11 with 3 and both u1u2 and vv21 with k. Now v11 is now properly colored,
does not meet color k and is distinguished from all other vertices. The color sets of u1 and u2

are both changed by i3k, so u1 and u2 remain properly colored and distinguished from each other.
Hence the coloring will be strong unless v21 is no longer distinguished from u1 or u2. In other
words, unless S(v21) = i23S(u1) or i23S(u2).

•
v21

•
v22

•
v11 •

v12

•
v

....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
..................................................................................................................................................................................................................................................................................

1 1

2 2

•
u1 •

u23
......................................................................................................................................................................................

⇒
•

v21
•

v22

•
v11 •

v12

•
v

....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
..................................................................................................................................................................................................................................................................................

3 1

k 2

•
u1 •

u2k
......................................................................................................................................................................................

Assuming S(v21) 6= i23S(u1), i23S(u2).

Re-coloring vv22 instead of vv21 we are also done if S(v22) 6= i23S(u1), i23S(u2). Hence by sym-
metry we can assume S(v21) = i23S(u1) and S(v22) = i23S(u2). Thus S(vij) = ii3S(uj) for all i, j
except possibly (i, j) = (1, 2). Now apply the same argument to v22 in place of v11 with colors 1
and 2 interchanged. The vertex u2 is the “u1” for v22 and the edge u2u1 takes the place of u1u2.
Hence we can assume there exists a single edge u1u2 with S(vij) = ii3S(uj) for all 1 ≤ i, j ≤ 2
and the uk are distinct from all vij .
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Since S(u1) 6= S(u2), we may assume by symmetry that there is a color, 4 say, which is in S(u2)
but not in S(u1). (We know S(ui) ∩ {1, 2, 3, k} = {3} for i = 1, 2 so S(u1) and S(u2) must differ
in some other color.) Hence 4 ∈ S(v12), S(v22). The edge u1u2 is not incident to either color 1
or 2. We shall re-color u1u2 with either 1 or 2, vv11 with 3 and vv21 with k. The only remaining
problem is that u2 is not distinguished from one of v12 or v22. Let vi2wi be the edges colored
with 4 and re-color v12w1, say, with k. Note that w1 6= v11, v21, u1 since these vertices do not meet
color 4. It is however possible that w1 = u2 or w1 = v22. If w1 = u2, color u1u2 with 2, otherwise
color it 1. Apart from at v, w1, v12, and v21, all color sets are unchanged or permuted. Vertex
w1 is distinguished from v12 since when w1 6= u2, the only color change either see is on the edge
v12w1 and when w1 = u2 only v12 sees color 1. The vertex v12 is distinguished from v21 since
only v12 meets color 1. Hence this re-coloring succeeds in giving a strong coloring of G unless
w1 is not distinguished from v21. This occurs only when w1 6= u2, v22 (since v21 does not meet
color 2) and i4kS(w1) = i2kS(v21) = i3kS(u1). If i4kS(w1) = i3kS(u1) then color v22w2 with k
instead. Now w1 6= w2 since otherwise it would meet color 4 twice in the original coloring. Hence
S(w1) 6= S(w2), i4kS(w2) 6= i3kS(u1) and we are done.

•
v21

•
v22

•
v11 •

v12

•
v

....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
..................................................................................................................................................................................................................................................................................

1 1

2 2

•
u1 •

u23
......................................................................................................................................................................................

•
w14

........................................................................................................................................

•
w24

........................................................................................................................................

⇒
•

v21
•

v22

•
v11 •

v12

•
v

....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
..................................................................................................................................................................................................................................................................................

3 1

k 2

•
u1 •

u21/2
......................................................................................................................................................................................

•
w1k

........................................................................................................................................

or

•
v21

•
v22

•
v11 •

v12

•
v

....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
..................................................................................................................................................................................................................................................................................

3 1

k 2

•
u1 •

u21/2
......................................................................................................................................................................................

•
w2k

........................................................................................................................................

Assuming uj and vij all distinct and S(vij) = ii3S(uj)

3 Proof of Theorem 4.

It is sufficient to show that for almost all graphs the conditions of Corollary 3 hold. The details
are somewhat tedious so we shall only sketch them here. The ideas used here follow the proofs in
[6, 7, 10, 13].

Let 0 < ε < 0.2 be some fixed small number and let D = {d ∈ Z : | d
n−1−p| ≤ εpq} where q = 1−p.

Write dv for the degree of v ∈ V (G). We shall show that it is enough that there exists an integer
k0 ≥ 7 for which each of the following events occurs with small probability.

E1 ∀v : dv ∈ D and dv < k0 + 3,

E2 ∃u, v : du, dv ≥ k0, du, dv ∈ D and du ≤ dv ≤ du + 1,

E3 ∃d ≤ k0 : d ∈ D and nd > 2k0−1−d,

E4 ∃d /∈ D : nd > 0.

Assume events E1–E4 fail. Since E1 and E4 fail, ∆ ∈ D and ∆ ≥ k0 + 3. Since E2 also fails,
n∆ = 1, n∆−1 = 0 and nd ≤ 1 for k0 ≤ d ≤ ∆− 2. Since ∆ ∈ D, D does not contain any number
less than p−εpq

p+εpq∆ ≥ 1−ε
1+ε∆ > 2

3(k0 + 1). Hence nd = 0 for d < 2
3(k0 + 1) and in particular for

d < 5. We now require nd ≤ bd for 2
3(k0 + 1) ≤ d ≤ k0 where bd = d−4

d−3 min
{

2
(
∆−5
d−3

)
,
(
∆−2

d

)}− 2.
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If 7 ≤ k0 ≤ ∆− 3 and 5 ≤ d ≤ k0 then bd ≥ 1
2 min

{
2
(
k0−2
d−3

)
,
(
k0+1

d

)}− 2. Since
(
k0−3
d−4

)
,
(

k0

d−1

) ≥ 4,

bd ≥ cd = 1
2 min

{
2
(
k0−3
d−3

)
,
(
k0

d

)}
. Now

(
k
d

)
= d+1

k−d

(
k

d+1

)
, so cd

cd+1
≥ d−2

k0−d ≥ 2 provided d ≥ 2
3(k0 +1).

Hence, by induction, ck0−r ≥ ck02
r = 2r−1 whenever r ≥ 0 and k0 − r ∈ D. Thus bd ≥ 2k0−1−d

for d ∈ D and d ≤ k0. Therefore since E3 fails we have nd ≤ bd for these values of d. Now all the
conditions of Corollary 3 are satisfied. Thus χ′s(G) = ∆ provided E1–E4 all fail for some k0 ≥ 7.

Let pd =
(
n−1

d

)
pdqn−d be the probability of a vertex having degree d and let pd,d′ be the probability

of two distinct vertices having degrees d and d′ respectively. Write d
n−1 = p + αpq and d′

n−1 =
p + α′pq. A simple calculation shows that

pd,d′ = p
(
n−2
d−1

)
pd−1qn−d−1

(
n−2
d′−1

)
pd′−1qn−d′−1 + q

(
n−2

d

)
pdqn−d−2

(
n−2
d′

)
pd′qn−d′−2

= pdpd′
(

dd′
p(n−1)2

+ (n−1−d)(n−1−d′)
q(n−1)2

)

= pdpd′
(
p(1 + αq)(1 + α′q) + q(1 + αp)(1 + α′p)

)

= pdpd′(1 + αα′pq)
≤ pdpd′(1 + ε2pq) if d, d′ ∈ D (3)

If S ⊂ Z, let nS =
∑

d∈S nd be the number of vertices with degree dv ∈ S and write µd = E(nd),
µS = E(nS). Then if S ⊆ D, we have

Var(nS) = n(n− 1)
∑

d,d′∈S

pd,d′ +
∑

d∈S

npd −
(∑

d∈S

npd

)2

≤ n2
∑

d,d′∈S

pdpd′(1 + ε2pq)− n2
∑

d,d′∈S

pdpd′ +
∑

d∈S

npd

= ε2pqµ2
S + µS . (4)

Also, if d ∈ D then

µd

µd+1
=

pd

pd+1
=

dq

(n− 1− d)p
≤ (p + εpq)q

(q − εpq)p
≤ 1 + ε

1− ε
≤ 3

2
(5)

Let S = {d ∈ D : d ≥ k0 + 3} and ε′ = P(dv /∈ D). For any random variable X with E(X) > t
we have by Chebechev, P(X ≤ t) ≤ Var(X)/(E(X) − t)2. If k0 ≥ p(n − 1) then pd and µd are
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decreasing functions of d for d ≥ k0. Hence we have the following estimates.

P(E1) = P(nS = 0) ≤ (ε2pqµ2
S + µS)/µ2

S = ε2pq + µ−1
S (6)

P(E2) ≤ n(n− 1)
∑

d≥k0, d∈D
pd,d + n(n− 1)

∑

d≥k0, d,d+1∈D
pd,d+1

≤ n2pk02
∑

d≥k0, d∈D
pd(1 + ε2pq)

≤ 3µk0(µS + 3µk0) (7)

P(E3) ≤
∑

r≥0, k0−r∈D
P(nk0−r ≥ 2r−1) ≤

∑

r≥0, k0−r∈D

ε2pqµ2
k0−r + µk0−r

(2r−1 − µk0−r)2

≤
∑

r≥0

(3/2)2rµ2
k0

+ (3/2)rµk0

(2r−1 − (3/2)rµk0)2
≤ µ2

k0
+ µk0

(1
2 − µk0)2

∑

r≥0

( 9
16)r

≤ 16(µ2
k0

+ µk0)

7(1
2 − µk0)2

(8)

P(E4) ≤ nε′ (9)

Therefore we need to show that for n sufficiently large, nε′ is small and we can choose k0 ≥
p(n− 1) ≥ 7 so that µS is large and µk0µS (and hence µk0) is small.

First we shall show that if ε > 0 is small enough, then for sufficiently large n we have nε′ < ε. For
this we use the estimate

P( dv
n−1 > p + εpq) ≤ E((1 + ε)dv)(1 + ε)−(n−1)(p+εpq)

= (q + p(1 + ε))n−1(1 + ε)−(n−1)(p+εpq)

=
(
(1 + pε)(1 + ε)−(p+εpq)

)n−1
(10)

It is an easy exercise to show that (1 + pε)(1 + ε)−(p+εpq) = exp(−ε2pq(1 + O(ε))/2). Hence for
small enough ε we have P( dv

n−1 > p + εpq) ≤ exp(−ε2pqn/3). A similar argument shows that
for small ε, P( dv

n−1 < p − εpq) ≤ exp(−ε2pqn/3). Thus if pn
log n , qn

log n → ∞, then pqn
log n → ∞ and

ε′ = P(dv /∈ D) = O(n−s) for any s > 0. In particular, for sufficiently large n we have nε′ < ε.

Now we need to choose k0. Define γd by γd = 1+ε
2ε µd when d = max{d : d ∈ D} + 1 and

inductively define γd = γd+1 + µd for smaller values of d. Since µd
µd+1

≤ 1+ε
1−ε for d ∈ D, it is

easy to check inductively that γd ≥ 1+ε
2ε µd and γd+1 ≤ γd ≤ 1+ε

1−εγd+1 for all d ∈ D. Also,
µS ≤ γk0 ≤ µS + 3µk0 + nε′(1 + ε)/2ε < µS + 3µk0 + 1, so it is now sufficient to find k0 with γk0

large and µk0γk0 small.

When k0 = dp(n− 1)e, µk0 > 1 and so γk0 ≥ 1/2ε. When k0 = max{d : d ∈ D}+1, µk0 ≤ nε′ < ε
and so γk0 ≤ µk0/2ε < 1. Therefore µk0γ

2
k0

varies monotonically from a value greater than 1
4ε2

when k0 = dp(n− 1)e to a value less than ε when k0 = max{d : d ∈ D}+ 1. Take k0 maximal so
that µk0γ

2
k0
≥ 1. Then µk0γ

2
k0
≤ (1+ε

1−ε)
3 ≤ 4. Since µk0 < 2εγk0 we have 2εγ3

k0
µk0 ≥ µk0 and so

γk0 ≥ (2ε)−1/3. Also µk0γk0 ≤ 4/γk0 ≤ 4(2ε)1/3. Thus γk0 is large and µk0γk0 is small as desired.
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[10] P. Erdős and R.J. Wilson, On the Chromatic Index of Almost All Graphs, J. Combin. Theory
Ser. B 23 (1977), 255–257.
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