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Abstract

A proper edge coloring of a simple graph G is called vertex-distinguishing if no two distinct
vertices are incident to the same set of colors. We prove that the minimum number of colors
required for a vertex-distinguishing coloring of a random graph of order n is almost always
equal to the maximum degree A(G) of the graph.

1 Introduction

Let G be a simple graph with n vertices. For d > 0 write ng for the number of vertices in G of
degree d. Let x'(G) be the minimum number of colors required in a proper edge coloring of G. If
we have such a proper coloring with colors {1,...,k} and v is a vertex of G, denote by S(v) the
set of colors used to color the edges incident to v.

A proper edge coloring of a graph is said to be vertex-distinguishing if each pair of vertices is
incident to a different set of colors. In other words, S(u) # S(v) for all u # v. A vertex-
distinguishing proper edge coloring will also be called a strong coloring. A graph has a strong
coloring if and only if it has no more than one isolated vertex and no isolated edges. Such a graph
will be referred to as a vdec-graph. The minimum number of colors required for a strong coloring
of a vdec-graph G will be denoted Y, (G). If G is not a vdec-graph then we write x.(G) = oo.

The concept of vertex-distinguishing colorings was introduced independently by Aigner, Triesch,
and Tuza, by Hoindk and Sotdk, and by Burris and Schelp, and has been considered in several
papers [1, 2, 3,4, 5, 8,9, 11, 12]. In [8] Burris and Schelp made the following conjecture:

Conjecture 1 Let G be a vdec-graph and let k = k(G) be the minimum integer such that (5) > ng
for all d with §(G) < d < A(G). Then X.(G) =k ork+1.

Conjecture 1 was strengthened to give conjectural criteria for when 4 (G) = k and when . (G) =
k + 1 in [4]. In practice this strengthened conjecture suggests that the “usual” value is k, with
k+1 only occurring when some parity constraint forces it. This would be analogous to the normal
edge chromatic number x/(G) which by Vizing’s Theorem is either A or A + 1 with the “usual”
value being A (see [10]).



The strengthened conjecture (and hence the exact value of x.(G)) is known for complete graphs,
complete bipartite graphs, and many trees [8]. More recently it has been proved for unions of
cycles [2], unions of paths [2], and for graphs of small order [4].

Conjecture 1 is proved for graphs of large maximum degree in [3], where the following result is
also given.

Theorem 1 Assume k > x'(G). If no,ni,ne <1, nz,ng,np <2, ngp—1 < k+1, and for 5 <d <

k—2,
d—4 k—3 k
< ——min<2 -2 1

= s ass) () - 2
then we can find a strong coloring of G with at most k + 1 colors.
Let G, p be a random graph on n vertices with edge probability p = p(n). If f;n, (%O_gp %" — 00 then
almost all such graphs satisfy the conditions of Theorem 1 with £ = A(G), so x4(G) < A(G) + 1.
Since it is clear that xL(G) > k(G) > A(G), we know Conjecture 1 holds for these graphs. In this
paper we will prove the stronger conjecture holds almost always by showing that for almost all
graphs x%(G) = A(G). This is analogous to (and implies) the main result of [10], that for almost
all graphs x'(G) = A(G).

For v € V(G), define a split at v to be a new graph G’ in which the vertex v has been replaced by
two non-adjacent vertices vy and ve with the neighborhood of v in G equal to the disjoint union
of the neighborhoods of v; and v in G’. We call a split an r-split if the degree of vy, say, is r. In
Section 2 we shall prove:

Theorem 2 Let G be a graph with precisely one vertex, v say, of maximum degree and let k >
A(G). If there exists a 2-split G' of G at v with X,(G') < k —1 then x.(G) < k.

Theorems 1 and 2 have the following consequence.

Corollary 3 Write A = A(G). If na =1, na,na—1 =0, ng,n1,na—2 < 1, ng,ng < 2, na_3 <
A—1and for5<d<A—4,

ng < Z:gmin{2<§__35>,<A;2>}2, (2)

Proof. Let v be the (unique) vertex of degree A in G. The conditions imply that A > 8 and that
any 2-split G’ of G at v satisfies the degree sequence conditions of Theorem 1 with k& = A — 2.
The strengthened version of Vizing’s theorem proved in [14] states that if x'(G') > A(G’) then
G’ contains at least three vertices of maximum degree. However there are at most two vertices
of maximum degree A(G') = k in G', so k > x'(G’). Hence x.(G') < A —1 and the result now
follows from Theorem 2 with k = A. O

then x4 (G) = A.

The following theorem will be proved in Section 3 by showing that almost all graphs satisfy the
conditions of Corollary 3.



Theorem 4 If G = Gy, is a random graph on n vertices with edge probability p = p(n) and if

pn_ (1—p)n

logn?’ logn — 00 as n — oo then P(XIS(G) - A) — 1 asn — .

2 The proof of Theorem 2

Fix a 2-split G’ and a strong coloring of G’ with k — 1 colors. Now S(v1) is a set of two colors
and S(vy) is a set of A —2 < k — 2 colors. Identifying the vertices v; and v gives a coloring of
G which is vertex-distinguishing and proper except possibly at v, where at most two colors are
incident to v twice. We can distinguish three cases.

Case I: No color is repeated at v. In this case, the coloring is proper and we are done. The vertex v
is distinguished from all the others since it is the only vertex of degree A.

Case II: One color is repeated at v, say color 1. Re-color one of the two edges from v that are
colored 1, vw say, with the (so far unused) color k. The result is a strong coloring with & colors
since S(v) is the only set with size A, S(w) is the only other set containing k, and all the other
sets S(u), u # v, w, are unaltered.

Case III: Two colors are repeated at v, say colors 1 and 2. The color k is unused anywhere and
since A < k, there exists some other color, say 3, which is not incident to v. Let v;;, 1 < 4,5 < 2,
be the four distinct vertices with vv;; colored with i. For any two colors a and b and set of colors
S define 4,5 to be the set obtained by replacing any occurrence of a by b and any occurrence of
bbyain S.

First we shall attempt to change the color of one of the edges vv;;, say vv11, to 3. This may cause
one of two problems. The first is that the new coloring may fail to be proper at u; = vy since
v11 may already be incident to color 3. The other problem is that the vertex vi;; may now have
the same color set as some other vertex uq. In either case there is a vertex u; with an edge ujus
colored 3 and S(v11) = 4135(u1). (Here and below S(z) will refer to the set of colors meeting x in
the original coloring.) Note that u;,us # v since 3 € S(uy), S(uz). If no such u; exists then we
can re-color vvy; with 3 and we are reduced to case Il where we can re-color, e.g., vva; with k to
get a strong coloring.

v21 V22 v21 V22

Assuming no uy with S(v11) = 4135 (u1).

Assume now that at least one of the sets S(v;;) contains color 3. Without loss of generality we
may assume 3 € S(v11), 8o u; = v11. If we re-color vvy; with 3 and re-color vvg; and ujus with k,
then the only color sets that have changed are at v, u, ug, and vg1, each of which now meets color
k and is thus distinguished from all other vertices. The vertex us now does not meet color 3 so
is distinguished from w;. As before, v is distinguished from all other vertices since it is the only
vertex of degree A. Hence the coloring will be strong unless v is not distinguished from either u;
or uz. In other words, the coloring will be strong unless S(ve1) = i215(u1) or S(va1) = i235 (u2).
(The second possibility also covers the case when vo; = us.)



V21 V22 v21 V22

Assuming S(va1) # i215(u1), 235 (u2).

By symmetry, we are also done if S(ve2) # i91.5(u1), 4235 (ug). Since S(va1) # S(va2), we can now
assume without loss of generality that S(ve1) = i21S(u1) and S(ve2) = i23S(u2). In this case,
re-color the vertices as shown below to give a strong coloring. The color sets S(uz) and S(va2) are
swapped (or unchanged if us = v92) and all other color sets are unchanged except at v1; and v
which see distinct color sets and are the only color sets containing k. The coloring is proper at uy
since S(u1) = i21.5(v21) and ve1 # uy which imply 2 ¢ S(uq).

v21 V22 v21 V22

Assuming S(’Ugl) = igls(ul), S(Ugg) = ’ngS(Ug).

Now assume 3 ¢ S(vj;) for all 1 <, < 2. Hence u; and ug are distinct from all the v;; and v.
Once again, color vvy; with 3 and both ujus and vve; with k. Now w11 is now properly colored,
does not meet color k£ and is distinguished from all other vertices. The color sets of u; and wus
are both changed by i3k, so u; and ug remain properly colored and distinguished from each other.
Hence the coloring will be strong unless vg; is no longer distinguished from wu; or wy. In other
words, unless S(ve1) = i235(u1) or i23S5(ug).

V21 V22

ASSquiIlg S(UQl) 75 iggS(ul), ngS(Ug).

Re-coloring vvyy instead of vvy; we are also done if S(ve2) # i235(u1),i235(uz). Hence by sym-
metry we can assume S(va1) = i235(u1) and S(va2) = i235(u2). Thus S(v;j) = ;35 (uy) for all 4,5
except possibly (i,7) = (1,2). Now apply the same argument to vyy in place of v;; with colors 1
and 2 interchanged. The vertex uso is the “u;” for voe and the edge uou; takes the place of ujus.
Hence we can assume there exists a single edge ujus with S(vi;) = 4;35(u;) for all 1 < 4,5 < 2
and the uy, are distinct from all v;;.



Since S(u1) # S(u2), we may assume by symmetry that there is a color, 4 say, which is in S(us2)
but not in S(u1). (We know S(u;) N {1,2,3,k} = {3} for i = 1,2 so S(u1) and S(uz) must differ
in some other color.) Hence 4 € S(v12),S(ve2). The edge ujusg is not incident to either color 1
or 2. We shall re-color ujug with either 1 or 2, vv;; with 3 and vve; with k. The only remaining
problem is that wuo is not distinguished from one of vy or vee. Let viow; be the edges colored
with 4 and re-color viswy, say, with k. Note that wy # v11, v21, u1 since these vertices do not meet
color 4. It is however possible that w1 = ug or w1 = v9o. If w1 = we, color ujus with 2, otherwise
color it 1. Apart from at v, wy, vi2, and vo1, all color sets are unchanged or permuted. Vertex
wi is distinguished from vy since when wy # ueo, the only color change either see is on the edge
viowi and when w; = ug only vie sees color 1. The vertex vyo is distinguished from wvs; since
only v12 meets color 1. Hence this re-coloring succeeds in giving a strong coloring of G unless
wy is not distinguished from wve;. This occurs only when w; # ug,v92 (since va; does not meet
color 2) and i4;S(w1) = 19SS (v21) = i3S (u1). If i4xS(w1) = i3S (u1) then color vegws with k
instead. Now w; # ws since otherwise it would meet color 4 twice in the original coloring. Hence

S(wy) # S(wa), 465 (w2) # i3,5(u1) and we are done. O
i 1/2 U2 u 1/2 U2
*r—e *r—
V11 vi2 k w1 v11 V12

or

V21 V22

Assuming u; and v;; all distinct and S(v;;) = 435 (uy)

3 Proof of Theorem 4.

It is sufficient to show that for almost all graphs the conditions of Corollary 3 hold. The details
are somewhat tedious so we shall only sketch them here. The ideas used here follow the proofs in
[6, 7, 10, 13].

Let 0 < € < 0.2 be some fixed small number and let D = {d € Z : |% —p| < epq} where ¢ = 1—p.

Write d, for the degree of v € V(G). We shall show that it is enough that there exists an integer
ko > 7 for which each of the following events occurs with small probability.

Ey Yo:d, € D and d, < ko + 3,
E, Ju,v : dy,dy > ko, dy,d, € Dand d, < d, < d, +1,
E3 3d < ko :d € D and ng > 2ko—1-4,

E, 3d ¢ D :ng > 0.

Assume events E1—F, fail. Since E; and Ej fail, A € D and A > kg + 3. Since Fs also fails,
na=1,na_1=0and ng <1 for kg <d <A —2. Since A € D, D does not contain any number

less than F-PIA > %—;:A > 2(ko + 1). Hence ng = 0 for d < 2(ko + 1) and in particular for

d < 5. We now require ng < by for %(ko +1) < d < ko where by = Z—:é min {2(3:35), (ACIZ)} — 2.




17 <k <A-3and5<d< ko then by > ymin {2(%72), (1) } = 2. Since (%77), (J2) = 4,
ba > ca = Jmin {2(979), (5) }. Now (§) = £ (,£,), s0 220 > =2, > 2 provided d = 3 (ko +1).
Hence, by induction, cpy—p > ¢ 2" = 271 whenever r > 0 and kg — r € D. Thus by > 2Fo—1-d
for d € D and d < kg. Therefore since E35 fails we have ng < by for these values of d. Now all the
conditions of Corollary 3 are satisfied. Thus x%(G) = A provided E1—-FEj all fail for some ko > 7.

Let pg = (”;1) p%q" ¢ be the probability of a vertex having degree d and let pa,q be the probability

of two distinct vertices having degrees d and d’ respectively. Write % = p+ apq and nd—_/l =
p+ a/pg. A simple calculation shows that

n—2\ d—1 nfdfl(n—Q

Py = p(d_l)p q d'—1 nfd’fl+q(n;2)pd nfd72(n— d' n—d —2

d’—l)p q q d )p q

_ dd’ (n—1—d)(n—1-d’)
= PdPda’ (p(n—1)2 + q(n—1)2 )

= papa (P(1+ aq)(1+ a’q) + (1 + ap)(1 + o'p))
= papa (1 + ad'pq)
< papa (1 + €*pq) if d,d € D (3)

If S CZ,let ng = ) cgna be the number of vertices with degree d, € S and write jq = E(ng),
s = E(ng). Then if S C D, we have

2
Var(ng) = n(n-—1) Z Dd,d + and — (Z npd>

d,d'eS des des
< n? Z papa (1 + 62pq) —n? Z PPy + and
d,d'eS d,d'es des
= Zpau + ps. (4)
Also, if d € D then
fd_ _ Pd__ dgq S(p+€pq)q§1+e§§ )
Hd+1 pivi (n—=1-—d)p = (g—epg)p ~ 1—€ ~ 2

Let S={deD:d>ky+ 3} and ¢ = P(d, ¢ D). For any random variable X with E(X) > ¢
we have by Chebechev, P(X < t) < Var(X)/(E(X) —t)%. If kg > p(n — 1) then py and pg are



decreasing functions of d for d > k. Hence we have the following estimates.

P(E)) = P(ns=0) < (pud + pus)/uh = e*pq + pug* (6)
P(E2) < n(n—1) Y paatnin—1 > pian
d>ko, deD d>ko, d,d+1€D
< n’pe2 Y pall+€¥pg)
d>ko, deD
< 3/”60 (:UJS + 3:“%0) (7)
Epquz, _, + Hko—r
PE) < Y Bme, x2St
>0, ko—r€D >0, ko—reD ko—r
-y (3/2)% i, + (3/2)" g - tie, + Hio (2
16(u7 +
7(§ - :uko)
P(E;) < né (9)

Therefore we need to show that for n sufficiently large, ne’ is small and we can choose ky >
p(n — 1) > 7 so that pug is large and py,ps (and hence g, ) is small.

First we shall show that if € > 0 is small enough, then for sufficiently large n we have ne’ < e. For
this we use the estimate

IA

E((1+ €)®)(1 4 ¢)~ (= D+erq)
= (g+p(+)" (14 (T NEH)
n—1
(A +pe(1+ =) (10)

P-4 > p+ epg)

It is an easy exercise to show that (1 + pe)(1 + €)= PTPD) = exp(—e2pg(1 + O(€))/2). Hence for
small enough € we have ]P’(% > p+ epq) < exp(—e€*pgn/3). A similar argument shows that
nd_vl < p—epq) < exp(—e?pgn/3). Thus if lfg"n, loqg”n — 00, then % — oo and

¢ =P(d, ¢ D) = O(n~*) for any s > 0. In particular, for sufficiently large n we have ne’ < e.

for small €, P(

Now we need to choose kg. Define v4 by 74 = %Md when d = max{d : d € D} + 1 and
inductively define 74 = vg11 + pg for smaller values of d. Since MZ—L < % for d € D, it is

easy to check inductively that ~4 > %,ud and Yg+1 < vq < %WH for all d € D. Also,

s < Yoy < ps + 3k, + ne'(1 4 €)/2e < pg + 3k, + 1, so it is now sufficient to find ko with g,
large and fux, vk, small.

When ko = [p(n —1)], ug, > 1 and so 4, > 1/2e. When ko = max{d : d € D}+1, up, < ne’ <e
and so vg, < pg,/2¢ < 1. Therefore ,uko’Y;%O varies monotonically from a value greater than ﬁ
when ko = [p(n — 1)] to a value less than € when kg = max{d : d € D} + 1. Take ky maximal so
that Nko%%() > 1. Then Mko%%o < (%2)3 < 4. Since pg, < 2eyy, we have 26720/1/&0 > g, and so
Yhe = (26) 713, Also firgYhe < 4/7k < 4(26)'/3. Thus 4y, is large and jig, Yk, is small as desired.
O
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