Vertex-distinguishing edge colorings of random graphs

P.N. Balister

July 25, 2001

Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152 USA

Abstract

A proper edge coloring of a simple graph G is called *vertex-distinguishing* if no two distinct vertices are incident to the same set of colors. We prove that the minimum number of colors required for a vertex-distinguishing coloring of a random graph of order n is almost always equal to the maximum degree $\Delta(G)$ of the graph.

1 Introduction

Let G be a simple graph with n vertices. For $d \ge 0$ write n_d for the number of vertices in G of degree d. Let $\chi'(G)$ be the minimum number of colors required in a proper edge coloring of G. If we have such a proper coloring with colors $\{1, \ldots, k\}$ and v is a vertex of G, denote by S(v) the set of colors used to color the edges incident to v.

A proper edge coloring of a graph is said to be *vertex-distinguishing* if each pair of vertices is incident to a different set of colors. In other words, $S(u) \neq S(v)$ for all $u \neq v$. A vertexdistinguishing proper edge coloring will also be called a *strong* coloring. A graph has a strong coloring if and only if it has no more than one isolated vertex and no isolated edges. Such a graph will be referred to as a *vdec*-graph. The minimum number of colors required for a strong coloring of a vdec-graph G will be denoted $\chi'_s(G)$. If G is not a vdec-graph then we write $\chi'_s(G) = \infty$.

The concept of vertex-distinguishing colorings was introduced independently by Aigner, Triesch, and Tuza, by Hořnák and Soták, and by Burris and Schelp, and has been considered in several papers [1, 2, 3, 4, 5, 8, 9, 11, 12]. In [8] Burris and Schelp made the following conjecture:

Conjecture 1 Let G be a vdec-graph and let k = k(G) be the minimum integer such that $\binom{k}{d} \ge n_d$ for all d with $\delta(G) \le d \le \Delta(G)$. Then $\chi'_s(G) = k$ or k + 1.

Conjecture 1 was strengthened to give conjectural criteria for when $\chi'_s(G) = k$ and when $\chi'_s(G) = k + 1$ in [4]. In practice this strengthened conjecture suggests that the "usual" value is k, with k+1 only occurring when some parity constraint forces it. This would be analogous to the normal edge chromatic number $\chi'(G)$ which by Vizing's Theorem is either Δ or $\Delta + 1$ with the "usual" value being Δ (see [10]).

The strengthened conjecture (and hence the exact value of $\chi'_s(G)$) is known for complete graphs, complete bipartite graphs, and many trees [8]. More recently it has been proved for unions of cycles [2], unions of paths [2], and for graphs of small order [4].

Conjecture 1 is proved for graphs of large maximum degree in [3], where the following result is also given.

Theorem 1 Assume $k \ge \chi'(G)$. If $n_0, n_1, n_2 \le 1, n_3, n_4, n_k \le 2, n_{k-1} \le k+1$, and for $5 \le d \le k-2$,

$$n_d \leq \frac{d-4}{d-3} \min\left\{2\binom{k-3}{d-3}, \binom{k}{d}\right\} - 2, \tag{1}$$

then we can find a strong coloring of G with at most k + 1 colors.

Let $G_{n,p}$ be a random graph on n vertices with edge probability p = p(n). If $\frac{pn}{\log n}$, $\frac{(1-p)n}{\log n} \to \infty$ then almost all such graphs satisfy the conditions of Theorem 1 with $k = \Delta(G)$, so $\chi'_s(G) \leq \Delta(G) + 1$. Since it is clear that $\chi'_s(G) \geq k(G) \geq \Delta(G)$, we know Conjecture 1 holds for these graphs. In this paper we will prove the stronger conjecture holds almost always by showing that for almost all graphs $\chi'_s(G) = \Delta(G)$. This is analogous to (and implies) the main result of [10], that for almost all graphs $\chi'(G) = \Delta(G)$.

For $v \in V(G)$, define a *split* at v to be a new graph G' in which the vertex v has been replaced by two non-adjacent vertices v_1 and v_2 with the neighborhood of v in G equal to the disjoint union of the neighborhoods of v_1 and v_2 in G'. We call a split an *r*-split if the degree of v_1 , say, is r. In Section 2 we shall prove:

Theorem 2 Let G be a graph with precisely one vertex, v say, of maximum degree and let $k \ge \Delta(G)$. If there exists a 2-split G' of G at v with $\chi'_s(G') \le k - 1$ then $\chi'_s(G) \le k$.

Theorems 1 and 2 have the following consequence.

Corollary 3 Write $\Delta = \Delta(G)$. If $n_{\Delta} = 1$, $n_2, n_{\Delta-1} = 0$, $n_0, n_1, n_{\Delta-2} \le 1$, $n_3, n_4 \le 2$, $n_{\Delta-3} \le \Delta - 1$ and for $5 \le d \le \Delta - 4$,

$$n_d \leq \frac{d-4}{d-3} \min\left\{2\binom{\Delta-5}{d-3}, \binom{\Delta-2}{d}\right\} - 2, \tag{2}$$

then $\chi'_s(G) = \Delta$.

Proof. Let v be the (unique) vertex of degree Δ in G. The conditions imply that $\Delta \geq 8$ and that any 2-split G' of G at v satisfies the degree sequence conditions of Theorem 1 with $k = \Delta - 2$. The strengthened version of Vizing's theorem proved in [14] states that if $\chi'(G') > \Delta(G')$ then G' contains at least three vertices of maximum degree. However there are at most two vertices of maximum degree $\Delta(G') = k$ in G', so $k \geq \chi'(G')$. Hence $\chi'_s(G') \leq \Delta - 1$ and the result now follows from Theorem 2 with $k = \Delta$.

The following theorem will be proved in Section 3 by showing that almost all graphs satisfy the conditions of Corollary 3.

Theorem 4 If $G = G_{n,p}$ is a random graph on n vertices with edge probability p = p(n) and if $\frac{pn}{\log n}, \frac{(1-p)n}{\log n} \to \infty$ as $n \to \infty$ then $\mathbb{P}(\chi'_s(G) = \Delta) \to 1$ as $n \to \infty$.

2 The proof of Theorem 2

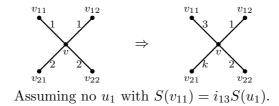
Fix a 2-split G' and a strong coloring of G' with k-1 colors. Now $S(v_1)$ is a set of two colors and $S(v_2)$ is a set of $\Delta - 2 \leq k - 2$ colors. Identifying the vertices v_1 and v_2 gives a coloring of G which is vertex-distinguishing and proper except possibly at v, where at most two colors are incident to v twice. We can distinguish three cases.

Case I: No color is repeated at v. In this case, the coloring is proper and we are done. The vertex v is distinguished from all the others since it is the only vertex of degree Δ .

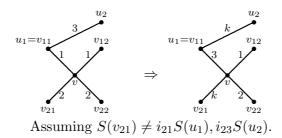
Case II: One color is repeated at v, say color 1. Re-color one of the two edges from v that are colored 1, vw say, with the (so far unused) color k. The result is a strong coloring with k colors since S(v) is the only set with size Δ , S(w) is the only other set containing k, and all the other sets S(u), $u \neq v, w$, are unaltered.

Case III: Two colors are repeated at v, say colors 1 and 2. The color k is unused anywhere and since $\Delta \leq k$, there exists some other color, say 3, which is not incident to v. Let v_{ij} , $1 \leq i, j \leq 2$, be the four distinct vertices with vv_{ij} colored with i. For any two colors a and b and set of colors S define $i_{ab}S$ to be the set obtained by replacing any occurrence of a by b and any occurrence of b by a in S.

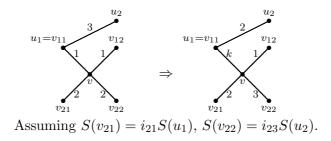
First we shall attempt to change the color of one of the edges vv_{ij} , say vv_{11} , to 3. This may cause one of two problems. The first is that the new coloring may fail to be proper at $u_1 = v_{11}$ since v_{11} may already be incident to color 3. The other problem is that the vertex v_{11} may now have the same color set as some other vertex u_1 . In either case there is a vertex u_1 with an edge u_1u_2 colored 3 and $S(v_{11}) = i_{13}S(u_1)$. (Here and below S(x) will refer to the set of colors meeting x in the original coloring.) Note that $u_1, u_2 \neq v$ since $3 \in S(u_1), S(u_2)$. If no such u_1 exists then we can re-color vv_{11} with 3 and we are reduced to case II where we can re-color, e.g., vv_{21} with k to get a strong coloring.



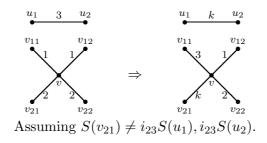
Assume now that at least one of the sets $S(v_{ij})$ contains color 3. Without loss of generality we may assume $3 \in S(v_{11})$, so $u_1 = v_{11}$. If we re-color vv_{11} with 3 and re-color vv_{21} and u_1u_2 with k, then the only color sets that have changed are at v, u_1, u_2 , and v_{21} , each of which now meets color k and is thus distinguished from all other vertices. The vertex u_2 now does not meet color 3 so is distinguished from u_1 . As before, v is distinguished from all other vertices since it is the only vertex of degree Δ . Hence the coloring will be strong unless v_{21} is not distinguished from either u_1 or u_2 . In other words, the coloring will be strong unless $S(v_{21}) = i_{21}S(u_1)$ or $S(v_{21}) = i_{23}S(u_2)$. (The second possibility also covers the case when $v_{21} = u_2$.)



By symmetry, we are also done if $S(v_{22}) \neq i_{21}S(u_1), i_{23}S(u_2)$. Since $S(v_{21}) \neq S(v_{22})$, we can now assume without loss of generality that $S(v_{21}) = i_{21}S(u_1)$ and $S(v_{22}) = i_{23}S(u_2)$. In this case, re-color the vertices as shown below to give a strong coloring. The color sets $S(u_2)$ and $S(v_{22})$ are swapped (or unchanged if $u_2 = v_{22}$) and all other color sets are unchanged except at v_{11} and vwhich see distinct color sets and are the only color sets containing k. The coloring is proper at u_1 since $S(u_1) = i_{21}S(v_{21})$ and $v_{21} \neq u_1$ which imply $2 \notin S(u_1)$.

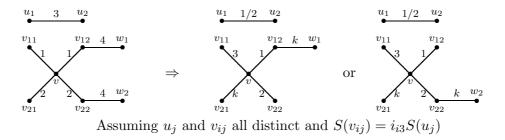


Now assume $3 \notin S(v_{ij})$ for all $1 \leq i, j \leq 2$. Hence u_1 and u_2 are distinct from all the v_{ij} and v. Once again, color vv_{11} with 3 and both u_1u_2 and vv_{21} with k. Now v_{11} is now properly colored, does not meet color k and is distinguished from all other vertices. The color sets of u_1 and u_2 are both changed by i_{3k} , so u_1 and u_2 remain properly colored and distinguished from each other. Hence the coloring will be strong unless v_{21} is no longer distinguished from u_1 or u_2 . In other words, unless $S(v_{21}) = i_{23}S(u_1)$ or $i_{23}S(u_2)$.



Re-coloring vv_{22} instead of vv_{21} we are also done if $S(v_{22}) \neq i_{23}S(u_1), i_{23}S(u_2)$. Hence by symmetry we can assume $S(v_{21}) = i_{23}S(u_1)$ and $S(v_{22}) = i_{23}S(u_2)$. Thus $S(v_{ij}) = i_{i3}S(u_j)$ for all i, j except possibly (i, j) = (1, 2). Now apply the same argument to v_{22} in place of v_{11} with colors 1 and 2 interchanged. The vertex u_2 is the " u_1 " for v_{22} and the edge u_2u_1 takes the place of u_1u_2 . Hence we can assume there exists a single edge u_1u_2 with $S(v_{ij}) = i_{i3}S(u_j)$ for all $1 \leq i, j \leq 2$ and the u_k are distinct from all v_{ij} .

Since $S(u_1) \neq S(u_2)$, we may assume by symmetry that there is a color, 4 say, which is in $S(u_2)$ but not in $S(u_1)$. (We know $S(u_i) \cap \{1, 2, 3, k\} = \{3\}$ for i = 1, 2 so $S(u_1)$ and $S(u_2)$ must differ in some other color.) Hence $4 \in S(v_{12}), S(v_{22})$. The edge u_1u_2 is not incident to either color 1 or 2. We shall re-color u_1u_2 with either 1 or 2, vv_{11} with 3 and vv_{21} with k. The only remaining problem is that u_2 is not distinguished from one of v_{12} or v_{22} . Let $v_{i2}w_i$ be the edges colored with 4 and re-color $v_{12}w_1$, say, with k. Note that $w_1 \neq v_{11}, v_{21}, u_1$ since these vertices do not meet color 4. It is however possible that $w_1 = u_2$ or $w_1 = v_{22}$. If $w_1 = u_2$, color u_1u_2 with 2, otherwise color it 1. Apart from at v, w_1, v_{12} , and v_{21} , all color sets are unchanged or permuted. Vertex w_1 is distinguished from v_{12} since when $w_1 \neq u_2$, the only color change either see is on the edge $v_{12}w_1$ and when $w_1 = u_2$ only v_{12} sees color 1. The vertex v_{12} is distinguished from v_{21} since only v_{12} meets color 1. Hence this re-coloring succeeds in giving a strong coloring of G unless w_1 is not distinguished from v_{21} . This occurs only when $w_1 \neq u_2, v_{22}$ (since v_{21} does not meet color 2) and $i_{4k}S(w_1) = i_{2k}S(v_{21}) = i_{3k}S(u_1)$. If $i_{4k}S(w_1) = i_{3k}S(u_1)$ then color $v_{22}w_2$ with k instead. Now $w_1 \neq w_2$ since otherwise it would meet color 4 twice in the original coloring. Hence $S(w_1) \neq S(w_2), i_{4k}S(w_2) \neq i_{3k}S(u_1)$ and we are done.



3 Proof of Theorem 4.

It is sufficient to show that for almost all graphs the conditions of Corollary 3 hold. The details are somewhat tedious so we shall only sketch them here. The ideas used here follow the proofs in [6, 7, 10, 13].

Let $0 < \epsilon < 0.2$ be some fixed small number and let $\mathcal{D} = \{d \in \mathbb{Z} : |\frac{d}{n-1} - p| \le \epsilon pq\}$ where q = 1 - p. Write d_v for the degree of $v \in V(G)$. We shall show that it is enough that there exists an integer $k_0 \ge 7$ for which each of the following events occurs with small probability.

 $E_1 \qquad \forall v : d_v \in \mathcal{D} \text{ and } d_v < k_0 + 3,$

$$E_2 \qquad \exists u, v : d_u, d_v \ge k_0, \ d_u, d_v \in \mathcal{D} \text{ and } d_u \le d_v \le d_u + 1,$$

- $E_3 \qquad \exists d \leq k_0 : d \in \mathcal{D} \text{ and } n_d > 2^{k_0 1 d},$
- $E_4 \qquad \exists d \notin \mathcal{D} : n_d > 0.$

Assume events $E_1 - E_4$ fail. Since E_1 and E_4 fail, $\Delta \in \mathcal{D}$ and $\Delta \ge k_0 + 3$. Since E_2 also fails, $n_{\Delta} = 1, n_{\Delta-1} = 0$ and $n_d \le 1$ for $k_0 \le d \le \Delta - 2$. Since $\Delta \in \mathcal{D}, \mathcal{D}$ does not contain any number less than $\frac{p - \epsilon pq}{p + \epsilon pq} \Delta \ge \frac{1 - \epsilon}{1 + \epsilon} \Delta > \frac{2}{3}(k_0 + 1)$. Hence $n_d = 0$ for $d < \frac{2}{3}(k_0 + 1)$ and in particular for d < 5. We now require $n_d \le b_d$ for $\frac{2}{3}(k_0 + 1) \le d \le k_0$ where $b_d = \frac{d-4}{d-3} \min\left\{2\binom{\Delta-5}{d-3}, \binom{\Delta-2}{d}\right\} - 2$. If $7 \leq k_0 \leq \Delta - 3$ and $5 \leq d \leq k_0$ then $b_d \geq \frac{1}{2} \min\left\{2\binom{k_0-2}{d-3}, \binom{k_0+1}{d}\right\} - 2$. Since $\binom{k_0-3}{d-4}, \binom{k_0}{d-1} \geq 4$, $b_d \geq c_d = \frac{1}{2} \min\left\{2\binom{k_0-3}{d-3}, \binom{k_0}{d}\right\}$. Now $\binom{k}{d} = \frac{d+1}{k-d}\binom{k}{d+1}$, so $\frac{c_d}{c_{d+1}} \geq \frac{d-2}{k_0-d} \geq 2$ provided $d \geq \frac{2}{3}(k_0+1)$. Hence, by induction, $c_{k_0-r} \geq c_{k_0}2^r = 2^{r-1}$ whenever $r \geq 0$ and $k_0 - r \in \mathcal{D}$. Thus $b_d \geq 2^{k_0-1-d}$ for $d \in \mathcal{D}$ and $d \leq k_0$. Therefore since E_3 fails we have $n_d \leq b_d$ for these values of d. Now all the conditions of Corollary 3 are satisfied. Thus $\chi'_s(G) = \Delta$ provided $E_1 - E_4$ all fail for some $k_0 \geq 7$.

Let $p_d = \binom{n-1}{d} p^d q^{n-d}$ be the probability of a vertex having degree d and let $p_{d,d'}$ be the probability of two distinct vertices having degrees d and d' respectively. Write $\frac{d}{n-1} = p + \alpha pq$ and $\frac{d'}{n-1} = p + \alpha' pq$. A simple calculation shows that

$$p_{d,d'} = p\binom{n-2}{d-1}p^{d-1}q^{n-d-1}\binom{n-2}{d'-1}p^{d'-1}q^{n-d'-1} + q\binom{n-2}{d}p^{d}q^{n-d-2}\binom{n-2}{d'}p^{d'}q^{n-d'-2}$$

$$= p_{d}p_{d'}\left(\frac{dd'}{p(n-1)^{2}} + \frac{(n-1-d)(n-1-d')}{q(n-1)^{2}}\right)$$

$$= p_{d}p_{d'}\left(p(1+\alpha q)(1+\alpha' q) + q(1+\alpha p)(1+\alpha' p)\right)$$

$$= p_{d}p_{d'}(1+\alpha \alpha' pq)$$

$$\leq p_{d}p_{d'}(1+\epsilon^{2}pq) \quad \text{if } d, d' \in \mathcal{D}$$
(3)

If $S \subset \mathbb{Z}$, let $n_S = \sum_{d \in S} n_d$ be the number of vertices with degree $d_v \in S$ and write $\mu_d = \mathbb{E}(n_d)$, $\mu_S = \mathbb{E}(n_S)$. Then if $S \subseteq \mathcal{D}$, we have

$$\begin{aligned}
\text{Var}(n_S) &= n(n-1) \sum_{d,d' \in S} p_{d,d'} + \sum_{d \in S} np_d - \left(\sum_{d \in S} np_d\right)^2 \\
&\leq n^2 \sum_{d,d' \in S} p_d p_{d'} (1 + \epsilon^2 pq) - n^2 \sum_{d,d' \in S} p_d p_{d'} + \sum_{d \in S} np_d \\
&= \epsilon^2 pq\mu_S^2 + \mu_S.
\end{aligned}$$
(4)

Also, if $d \in \mathcal{D}$ then

$$\frac{\mu_d}{\mu_{d+1}} = \frac{p_d}{p_{d+1}} = \frac{dq}{(n-1-d)p} \le \frac{(p+\epsilon pq)q}{(q-\epsilon pq)p} \le \frac{1+\epsilon}{1-\epsilon} \le \frac{3}{2}$$
(5)

Let $S = \{d \in \mathcal{D} : d \ge k_0 + 3\}$ and $\epsilon' = \mathbb{P}(d_v \notin \mathcal{D})$. For any random variable X with $\mathbb{E}(X) > t$ we have by Chebechev, $\mathbb{P}(X \le t) \le \operatorname{Var}(X)/(\mathbb{E}(X) - t)^2$. If $k_0 \ge p(n-1)$ then p_d and μ_d are decreasing functions of d for $d \ge k_0$. Hence we have the following estimates.

$$\mathbb{P}(E_{1}) = \mathbb{P}(n_{S} = 0) \leq (\epsilon^{2} p q \mu_{S}^{2} + \mu_{S}) / \mu_{S}^{2} = \epsilon^{2} p q + \mu_{S}^{-1}$$

$$\mathbb{P}(E_{2}) \leq n(n-1) \sum_{d \geq k_{0}, d \in \mathcal{D}} p_{d,d} + n(n-1) \sum_{d \geq k_{0}, d,d+1 \in \mathcal{D}} p_{d,d+1}$$

$$\leq n^{2} p_{k_{0}} 2 \sum_{d \geq k_{0}, d \in \mathcal{D}} p_{d} (1 + \epsilon^{2} p q)$$

$$\leq 3 \mu_{k_{0}} (\mu_{S} + 3 \mu_{k_{0}})$$

$$(7)$$

$$\mathbb{P}(E_3) \leq \sum_{r \ge 0, k_0 - r \in \mathcal{D}} \mathbb{P}(n_{k_0 - r} \ge 2^{r-1}) \leq \sum_{r \ge 0, k_0 - r \in \mathcal{D}} \frac{\epsilon \ pq\mu_{k_0 - r} + \mu_{k_0 - r}}{(2^{r-1} - \mu_{k_0 - r})^2} \\
\leq \sum_{r \ge 0} \frac{(3/2)^{2r} \mu_{k_0}^2 + (3/2)^r \mu_{k_0}}{(2^{r-1} - (3/2)^r \mu_{k_0})^2} \leq \frac{\mu_{k_0}^2 + \mu_{k_0}}{(\frac{1}{2} - \mu_{k_0})^2} \sum_{r \ge 0} (\frac{9}{16})^r \\
\leq \frac{16(\mu_{k_0}^2 + \mu_{k_0})}{7(\frac{1}{2} - \mu_{k_0})^2} \tag{8}$$

$$\mathbb{P}(E_4) \leq n\epsilon' \tag{9}$$

Therefore we need to show that for n sufficiently large, $n\epsilon'$ is small and we can choose $k_0 \ge p(n-1) \ge 7$ so that μ_S is large and $\mu_{k_0}\mu_S$ (and hence μ_{k_0}) is small.

First we shall show that if $\epsilon > 0$ is small enough, then for sufficiently large n we have $n\epsilon' < \epsilon$. For this we use the estimate

$$\mathbb{P}\left(\frac{d_v}{n-1} > p + \epsilon pq\right) \leq \mathbb{E}\left((1+\epsilon)^{d_v}\right)(1+\epsilon)^{-(n-1)(p+\epsilon pq)} \\
= (q+p(1+\epsilon))^{n-1}(1+\epsilon)^{-(n-1)(p+\epsilon pq)} \\
= \left((1+p\epsilon)(1+\epsilon)^{-(p+\epsilon pq)}\right)^{n-1}$$
(10)

It is an easy exercise to show that $(1 + p\epsilon)(1 + \epsilon)^{-(p+\epsilon pq)} = \exp(-\epsilon^2 pq(1 + O(\epsilon))/2)$. Hence for small enough ϵ we have $\mathbb{P}(\frac{d_v}{n-1} > p + \epsilon pq) \le \exp(-\epsilon^2 pqn/3)$. A similar argument shows that for small ϵ , $\mathbb{P}(\frac{d_v}{n-1} . Thus if <math>\frac{pn}{\log n}, \frac{qn}{\log n} \to \infty$, then $\frac{pqn}{\log n} \to \infty$ and $\epsilon' = \mathbb{P}(d_v \notin \mathcal{D}) = O(n^{-s})$ for any s > 0. In particular, for sufficiently large n we have $n\epsilon' < \epsilon$.

Now we need to choose k_0 . Define γ_d by $\gamma_d = \frac{1+\epsilon}{2\epsilon}\mu_d$ when $d = \max\{d : d \in \mathcal{D}\} + 1$ and inductively define $\gamma_d = \gamma_{d+1} + \mu_d$ for smaller values of d. Since $\frac{\mu_d}{\mu_{d+1}} \leq \frac{1+\epsilon}{1-\epsilon}$ for $d \in \mathcal{D}$, it is easy to check inductively that $\gamma_d \geq \frac{1+\epsilon}{2\epsilon}\mu_d$ and $\gamma_{d+1} \leq \gamma_d \leq \frac{1+\epsilon}{1-\epsilon}\gamma_{d+1}$ for all $d \in \mathcal{D}$. Also, $\mu_S \leq \gamma_{k_0} \leq \mu_S + 3\mu_{k_0} + n\epsilon'(1+\epsilon)/2\epsilon < \mu_S + 3\mu_{k_0} + 1$, so it is now sufficient to find k_0 with γ_{k_0} large and $\mu_{k_0}\gamma_{k_0}$ small.

When $k_0 = \lceil p(n-1) \rceil$, $\mu_{k_0} > 1$ and so $\gamma_{k_0} \ge 1/2\epsilon$. When $k_0 = \max\{d : d \in \mathcal{D}\} + 1$, $\mu_{k_0} \le n\epsilon' < \epsilon$ and so $\gamma_{k_0} \le \mu_{k_0}/2\epsilon < 1$. Therefore $\mu_{k_0}\gamma_{k_0}^2$ varies monotonically from a value greater than $\frac{1}{4\epsilon^2}$ when $k_0 = \lceil p(n-1) \rceil$ to a value less than ϵ when $k_0 = \max\{d : d \in \mathcal{D}\} + 1$. Take k_0 maximal so that $\mu_{k_0}\gamma_{k_0}^2 \ge 1$. Then $\mu_{k_0}\gamma_{k_0}^2 \le (\frac{1+\epsilon}{1-\epsilon})^3 \le 4$. Since $\mu_{k_0} < 2\epsilon\gamma_{k_0}$ we have $2\epsilon\gamma_{k_0}^3\mu_{k_0} \ge \mu_{k_0}$ and so $\gamma_{k_0} \ge (2\epsilon)^{-1/3}$. Also $\mu_{k_0}\gamma_{k_0} \le 4/\gamma_{k_0} \le 4(2\epsilon)^{1/3}$. Thus γ_{k_0} is large and $\mu_{k_0}\gamma_{k_0}$ is small as desired. \Box

References

- M. Aigner, E. Triesch, and Z. Tuza, Irregular Assignments and Vertex-Distinguishing Edge-Colorings of Graphs, *Combinatorics* 90, (A. Barlotti et al, eds.). Elsevier Science Pub., New York (1992) 1–9.
- [2] P.N. Balister, B. Bollobás and R.H. Schelp, Vertex-Distinguishing Colorings of Graphs with $\Delta(G) = 2$, submitted.
- [3] P.N. Balister, A. Kostochka, Hao Li and R.H. Schelp, Balanced edge colorings, submitted.
- [4] P.N. Balister, O.M. Riordan and R.H. Schelp, Vertex-distinguishing colorings of graphs, submitted.
- [5] C. Bazgan, A. Harkat-Benhamdine, Hao Li and M. Woźniak, On the Vertex-Distinguishing Proper Edge-Colorings of Graphs, J. Combin. Theory B 75 (1999) 288–301.
- [6] B. Bollobás, Degree sequences of random graphs. Discrete Math. 33 (1981), no. 1, 1–19.
- [7] B. Bollobás, Vertices of Given Degree in a Random Graph. J. Graph Theory, 6 (1982), no. 2, 147–155.
- [8] A.C. Burris and R.H. Schelp, Vertex-Distinguishing Proper Edge-Colourings, J. Graph Theory 26 (1997) no. 2, 70–82.
- [9] J. Cerńy, M. Hořnák, and R. Soták, Observability of a Graph, Math. Slovaca 46 (1996), 21–31.
- [10] P. Erdős and R.J. Wilson, On the Chromatic Index of Almost All Graphs, J. Combin. Theory Ser. B 23 (1977), 255–257.
- [11] M. Hořnák and R. Soták, Observability of Complete Multipartite Graphs with Equipotent Parts, ASR Comb. 41 (1995) 289–301.
- [12] M. Hořnák and R. Soták, Asymptotic Behaviour of the Observability of Q_n , preprint.
- [13] Z. Palka, On the number of vertices of given degree in a random graph. J. Graph Theory, 8 (1984), no. 1, 167–170.
- [14] V.G. Vizing, Critical graphs with a given chromatic class (Russian), Diskret. Analiz. 5 (1965), 9–17.