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Abstract

In a paper by Burris and Schelp [3], a conjecture was made concerning the number of colors
χ′s(G) required to proper edge-color G so that each vertex has a distinct set of colors incident
to it. We consider the case when ∆(G) = 2, so that G is a union of paths and cycles. In
particular we find the exact values of χ′s(G) and hence verify the conjecture when G consists
of just paths or just cycles. We also give good bounds on χ′s(G) when G contains both paths
and cycles.

1 Introduction

A proper edge-coloring of a simple graph G is called vertex-distinguishing if for any two distinct
vertices u and v in G, the set of colors assigned to the edges incident to u differs from the set of
colors incident to v. A vertex-distinguishing proper edge-coloring is also called a strong coloring.
A graph is vertex-distinguishing edge-colorable or a vdec-graph, if it contains no more than one
isolated vertex and no isolated edges. Clearly, a graph has a strong coloring if and only if it is
a vdec-graph. The minimal number of colors required for a strong coloring of G is denoted by
χ′s(G). This concept of strong coloring was introduced independently by Burris and Schelp [3],
and (for non-proper colorings) by Aigner, Triesch, and Tuza [1]. A similar concept was discussed
in [5]. Other articles involving such colorings appear in [4–9].

Let nd = nd(G) denote the number of vertices of degree d in a vdec-graph G. It is clear that(χ′s(G)
d

) ≥ nd for all d with δ(G) ≤ d ≤ ∆(G). The conjecture given by Burris and Schelp [3] is as
follows.

Conjecture 1 Let G be a vdec-graph and let k be the minimum integer such that
(
k
d

) ≥ nd for all
d such that δ(G) ≤ d ≤ ∆(G). Then χ′s(G) = k or k + 1.

The conjecture appears to be difficult even when the graph G is regular. It was shown by Aigner,
Triesch and Tuza [1] that if G is 2-regular of order n then it has a (not necessarily proper) vertex-
distinguishing edge-coloring with at most 9

2

√
2n colors. One of our aims in this paper is to improve

this bound to one that is close to best possible (see Corollary 6). Recently Černý, Horňák, and
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Soták [4] determined the exact value of χ′s(G) when G is a path or cycle; this had been done
independently by Burris [9].

In this paper we shall consider the case when ∆(G) = 2. The case of larger ∆ is much harder and
the methods described here do not seem to be applicable. For a graph of maximal degree 2, the
vertex-distinguishing coloring problem can be translated into a problem of packing the line graph
L(G) of G into a complete graph, so most of this paper is about such packings.

As usual, we write Kn for the complete graph, En for the empty graph and Cn for a cycle on n
vertices. If we have a specific set S of vertices in mind, we shall also use notations such as KS

and ES . Write Pn for a path of length n (on n + 1 vertices) and P (v1, v2, . . . , vr) for the trail of
length r− 1 on the vertices vi with edges vivi+1. We do not require the vi to be distinct. For any
two graphs G1 and G2, write G1 ∪G2 for the vertex disjoint union of G1 and G2.

If G1 and G2 are graphs, a packing of G1 into G2 is a map f : V (G1) → V (G2) such that xy ∈ E(G1)
implies f(x)f(y) ∈ E(G2) and the induced map on edges xy 7→ f(x)f(y) is a injection from E(G1)
to E(G2). We do not require f to be injective on vertices, so if G1 contains a cycle or path, its
image in G2 will be a circuit (closed trail) or trail. We shall call a packing exact if the packing
induces a bijection between E(G1) and E(G2). We shall write G1 7→ G2 to mean that an exact
packing of G1 into G2 exists.

In section 2 we shall consider the case when G is a union of cycles Cm1 ∪ . . . ∪ Cmt . In this case
the line graph L(G) is also of the form Cm1 ∪ . . .∪Cmt . If G is given a strong coloring by n colors,
then we get a packing of L(G) as t edge-disjoint circuits in Kn. Each edge of G corresponds to
a vertex of L(G) which is mapped to a color (vertex) of Kn. Conversely if we have a packing of
L(G) into Kn then we can color each edge of G with the image of the corresponding vertex of
L(G) in Kn. Since the edges of L(G) are mapped to distinct edges in Kn, the resulting coloring
on G is strong. Thus the exact value of χ′s(G) is just the smallest n such a packing of L(G) into
Kn exists. We have therefore reduced the problem to one of packing a union of cycles into Kn.

In section 3 we prove the conjecture in the case when G is a union of p paths Pl1+1 ∪ . . . ∪ Plp+1.
Since G is a vdec-graph, we can assume li ≥ 1. As before, a strong coloring of G is equivalent
to a certain packing of the line graph L(G) into Kn. The line graph is a disjoint union of paths
Pl1 ∪ Pl2 ∪ . . . ∪ Plp , where each path is of length one less than the corresponding path of G. In
this case the existence of a strong coloring of G with n colors is equivalent to the existence of a
packing of L(G) into Kn with the extra condition that we require the 2p endpoints of the paths
to be mapped to distinct vertices in Kn.

In section 4 we consider the general case when G is a vdec-graph with ∆(G) = 2. In this case
G is a union of paths (of lengths at least two), cycles, and possibly a single isolated vertex. The
presence or absence of an isolated vertex has no effect on the coloring, so we can ignore it. Once
again, the existence of a strong coloring of G with n colors is equivalent to the existence of a
packing of the line graph into Kn with the endpoints of the paths mapped to distinct vertices of
Kn. The result we prove is slightly weaker in this case and we do not obtain the exact values of
χ′s(G).
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Figure 1: Example of a linking of two graphs

2 Unions of Cycles

Write G1.G2 for an edge-disjoint union of two graphs which is not disjoint on vertices. In other
words, G1.G2 is the image of G1 ∪G2 under a packing which is injective on V (G1) and injective
on V (G2), but in which some vertices of G1 are identified with some vertices of G2. Whenever we
use the notation G1.G2, we shall make it clear which pairs of vertices are identified. Vertices of
Gi that are identified will sometimes be called a link of Gi, and we shall call the identification a
linking of G1 and G2.

Assume that Ca.Cb is obtained by linking cycles Ca and Cb at at least one vertex. We can pack
Ca+b into Ca.Cb by picking such a link vertex v and going round Ca starting at v, then going
round Cb. By induction, if we have a sequence of linked cycles Ca1 .Ca2 . . . Cat with each meeting
the next in at least one vertex, we can pack any cycle of length

∑t
i=1 ai into such a graph. We

shall use this observation many times in what follows.

For n ≡ 1, 3 mod 6, there exist Steiner triple systems that pack Kn with n
6 (n − 1) triangles. If

we have a such a packing, then each edge belongs to a unique triangle. We can define a trail of
triangles as a sequence of triangles determined by a trail (of edges) in which each edge belongs to
a distinct triangle. The existence of a trail of triangles is stronger than the existence of a linked
sequence of triangles T1.T2 . . . Tt. Indeed, for such a sequence to form a trail of triangles we need
V (Ti) ∩ V (Ti+1) = {vi} with vi 6= vi+1.

Lemma 1 If n ≡ 1 or 3 mod 6 then we can pack Kn with a trail of triangles of length at least
n
6 (n− 1)− 1.

Proof. Let S = {T1, . . . , TN} be a Steiner Triple System for Kn. Pick one triangle, T1, say. Let
T1 have vertex set V (T1) = {r1, r2, r3} and let M = V (Kn) \ V (T1) be the set of the remaining
n − 3 vertices of Kn. Let SM be the subset of triangles Ti ∈ S that have all their vertices in
M . Each vertex v ∈ M meets precisely three triangles that are not in SM , one for each edge vrj .
Hence each v ∈ M is incident to exactly n−7 edges that are in triangles in SM . Let S be a subset
of SM and let m be the number of vertices in M meeting some triangle in S. The number of edges
of triangles in S is 3|S| ≤ m

2 (n − 7) and so by Hall’s marriage theorem, we can assign triangles
Ti ∈ SM to vertices vi, such that vi ∈ V (Ti) and no more than dn−7

6 e triangles are assigned to
each vertex of M .

Construct a subgraph G of Kn consisting of one edge in M from each triangle Ti, i 6= 1. For each
triangle Ti ∈ SM we let G contain the unique edge of Ti that does not meet vi. For the other
triangles we let G contain the unique edge of Ti which lies in M . Each vertex v ∈ M has degree
in G of at least n−1

2 − dn−7
6 e ≥ n

3 since there are n−1
2 triangles of S that meet v and each triangle

that meets v other than those with vi = v contributes one to this degree.
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We will now modify G so as to make all the vertices have even degrees. Let Ij , j = 1, 2, 3 be the
graph containing the edges in M of the triangles meeting rj . Clearly Ij are 1-factors of G[M ].
Let C = C(u1, u2, . . . , ur) be a component cycle of I1 ∪ I2 in G. For each vertex ui in turn, if
the degree in G of ui is odd, replace the edge uiui+1 in G by the edge ui+1r1 or ui+1r2 of the
triangle containing it. Do this for each cycle in turn. The resulting graph G′ has even degree at
each vertex of M and contains one edge from each triangle Ti, i 6= 1. If the degree of r1 (and
hence r2) in G′ is odd, add the edge r1r2 of the triangle T1. Otherwise discard T1. The graph
now has even degree at all vertices. The degree in G′ of any vertex in M is at least n

3 − 1, so
any component of G′ meeting M must have at least n

3 vertices and does not meet r3. Hence the
graph G′ has at most two (non-singleton) components. If it has two components, then pick an
edge uv connecting them. Removing an edge from either component does not increase the number
of components (each component has an Eulerian circuit), hence adding uv and removing the edge
in G′ that belonged to its triangle gives a new graph G′ which is connected (apart from isolated
vertices) and has even degree at all except possibly two vertices. It therefore has an Eulerian trail.
This gives a trail of triangles in Kn which includes all except at most one triangle T1.

In fact with more work it is possible to improve Lemma 1 to include all the triangles of the Steiner
triple system, but we shall not need that here.

We shall define for some graphs initial and final links as (ordered) pairs of vertices, (possibly the
same pair). In these cases G1.G2 will identify the final link of G1 with the initial link of G2 (in the
same order). The graph G1.G2 will be undefined if an edge occurs in both these links. The initial
link of the resultant graph will be that of G1 and the final link will be that of G2. This makes .
into an associative operation on such graphs when defined. Similarly, the initial link of G1 ∪ G2

will be that of G1 and the final link will be that of G2. We shall also write G.n for G.G . . . G and
G∪n for G ∪ . . . ∪G where there are n copies of G.

Write G1 + G2 for the join of G1 and G2, i.e., the graph G1 ∪ G2 with all edges connecting G1

and G2 included. Define O to be the graph of an octahedron, so O = K2,2,2 = E2 + E2 + E2. The
first E2 will be the initial link and the last E2 will be the final link of O. In fact by symmetry it
does not matter which E2’s are chosen, or the order of the vertices in either link. We shall now
pack K2n with trails of octahedra.

Lemma 2 If n ≡ 1 or 3 mod 6, there is a packing of O.a into K2n with a ≥ n
6 (n− 1)− 1.

Proof. Pack Kn with a trail of triangles using Lemma 1. Now replace each vertex v of Kn by a
pair of vertices v0, v1, and each edge uv by four edges uivj . The resulting graph is just K2n with
a 1-factor removed. The triangles become octahedra and a trail of triangles becomes a packing of
linked octahedra O.a. The result follows.

For a path Pn of length n with endpoints u and v, make (u, v) both the initial and final link of Pn.
Write C ′

n = Cn ∪ E1 to denote a cycle of length n together with an extra independent vertex.
The pair (u, v) will be the initial and final link of C ′

n where u is the independent vertex and v is
any other vertex. The graph Pa1,...,ar = Pa1 .Pa2 . . . Par will be a graph with specified link vertices
(u, v) consisting of independent paths of length ai from u to v. In the special case when r = 0
we write P∅ for the empty graph E2 on {u, v}. We write Sa,b,c,d for a cycle with initial link (u, v),
final link (u′, v′) and four independent paths connecting them. A path of length a connects u and
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L0 = P∅ L3 = C ′
3 L5 = P2,3 P2,3.C

′
3 S4,1,2,2

Figure 2: Examples of Ln and Sa,b,c,d.

v, a path of length b connects u and u′, a path of length c connects v and v′, and a path of length
d connects u′ and v′.

Definition. The graphs Ln are defined as

L0 = P∅, L3 = C ′
3, L4 = P2,2, L5 = P2,3, and Ln = P4,n−4 for n ≥ 7.

L6 will be defined as either P3,3 or P4,2. Note that we can pack C ′
n exactly into Ln for all n > 0

with initial link matching.

Lemma 3 The following graphs can all be packed into O with initial and final links matching:

L3.C
′
3 ∪ C3.L3, P2,2,2,2 ∪ P2,2, P∅ ∪ P3,3,3,3, S4,1,1,3.C

′
3, S4,1,2,2.C

′
3,

Ln.C ′
3 ∪ L9−n, (4 ≤ n ≤ 6) and Ln ∪ L12−n, (3 ≤ n ≤ 9).

Proof. In each of the listed graphs all the links are uniquely specified by the rules given above
except for the link C3.L3 in the first graph. For this we just claim there is some linking that will
do. Number the vertices of O from 0 to 5 so that O = E{0,1}+E{2,3}+E{4,5} with (0, 1) the initial
link and (4, 5) the final link. We pack the paths as follows:

L3.C
′
3 ∪ C3.L3 7→ {P (1, 2, 4, 1);P (1, 3, 5, 1);P (4, 3, 0, 4);P (5, 2, 0, 5)}

P2,2,2,2 ∪ P2,2 7→ {P (0, 2, 1), P (0, 3, 1), P (0, 4, 1), P (0, 5, 1);P (4, 2, 5), P (4, 3, 5)}
P∅ ∪ P3,3,3,3 7→ {; P (4, 0, 2, 5), P (4, 2, 1, 5), P (4, 1, 3, 5), P (4, 3, 0, 5)}

S4,1,1,3.C
′
3 7→ {P (0, 2, 4, 3, 1), P (0, 4), P (1, 5), P (4, 1, 2, 5);P (5, 0, 3, 5)}

S4,1,2,2.C
′
3 7→ {P (0, 2, 4, 3, 1), P (0, 4), P (1, 2, 5), P (4, 1, 5);P (5, 0, 3, 5)}

P4,2.C
′
3 ∪ C ′

3 7→ {P (0, 2, 4, 3, 1), P (0, 4, 1);P (1, 2, 5, 1);P (5, 0, 3, 5)}
P3,3.C

′
3 ∪ C ′

3 7→ {P (0, 4, 3, 1), P (0, 2, 4, 1);P (1, 2, 5, 1);P (5, 0, 3, 5)}
P2,3.C

′
3 ∪ P2,2 7→ {P (0, 3, 1), P (0, 2, 4, 1);P (1, 2, 5, 1);P (4, 3, 5), P (4, 0, 5)}

P2,2.C
′
3 ∪ P2,3 7→ {P (0, 3, 1), P (0, 4, 1);P (1, 2, 5, 1);P (4, 3, 5), P (4, 2, 0, 5)}

P4,5 ∪ C ′
3 7→ {P (0, 2, 4, 3, 1), P (0, 4, 1, 2, 5, 1);P (5, 0, 3, 5)}

P4,4 ∪ P2,2 7→ {P (0, 2, 4, 3, 1), P (0, 3, 5, 2, 1);P (4, 1, 5), P (4, 0, 5)}
P4,3 ∪ P3,2 7→ {P (0, 2, 4, 3, 1), P (0, 3, 5, 1);P (4, 1, 2, 5), P (4, 0, 5)}
P4,2 ∪ P4,2 7→ {P (0, 4, 2, 5, 1), P (0, 2, 1);P (4, 1, 3, 0, 5), P (4, 3, 5)}
P3,3 ∪ P4,2 7→ {P (0, 2, 4, 1), P (0, 3, 5, 1);P (4, 3, 1, 2, 5), P (4, 0, 5)}
P3,3 ∪ P3,3 7→ {P (0, 4, 3, 1), P (0, 3, 5, 1);P (4, 1, 2, 5), P (4, 2, 0, 5)}
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Table 1: Packings used in Lemma 4.

(A) (B) (C) Conditions
Lm S4,1,2,2.C

′
3.C

′
m−12 O.Lm−12 m ≥ 15

L14 ∪ Cn S4,1,2,2.C ′
3.P4,n−2 O.Ln+2 n ≥ 8

L13 ∪ Cn S4,1,1,3.C ′
3.P4,n−3 O.Ln+1 n ≥ 8

L12 S4,1,2,2.C
′
3 O.L0

L11 ∪ Cn S4,1,2,2.C ′
3.P4,n−5 O.Ln−1 n ≥ 8

L10 ∪ Cn S4,1,1,3.C ′
3.P4,n−6 O.Ln−2 n ≥ 8

Lm ∪ Cn Lm ∪ L12−m.C ′
n+m−12 O.Lm+n−12 3 ≤ m ≤ 9,m + n ≥ 15

Lm ∪ Cn Lm ∪ Ln O.L0 3 ≤ m ≤ 9,m + n = 12
L6 ∪ C8 ∪ Cn L6 ∪ P4,2.P4,n−2 O.Ln+2 n ≥ 8
L5 ∪ C9 ∪ Cn L5 ∪ C ′

3.P2,2.P4,n−2 O.Ln+2 n ≥ 8
L5 ∪ C8 ∪ Cn L5 ∪ P4,3.P4,n−3 O.Ln+1 n ≥ 8
L4 ∪ C10 ∪ Cn L4 ∪ P2,2,2,2.P4,n−2 O.Ln+2 n ≥ 8
L4 ∪ C9 ∪ Cn L4 ∪ C ′

3.P2,3.P4,n−3 O.Ln+1 n ≥ 8
L3 ∪ C11 ∪ Cn L3 ∪ C ′

3.P4,2.P4,n−2 O.Ln+2 n ≥ 8
L3 ∪ C10 ∪ Cn L3 ∪ C ′

3.P3,3.P4,n−3 O.Ln+1 n ≥ 8
L3 ∪ C8 ∪ Cn L3 ∪ C ′

3.P4,2.P4,n−5 O.Ln−1 n ≥ 8

In each case the union of the paths on the right is O and the initial and final links of the left hand
expressions (defined before Lemma 2) are mapped to the initial and final links of O. In most cases,
the decomposition into paths is a minor variant of a preceding one, so can be checked easily. Note
that a packing of L4 ∪ L8 follows from a packing of L8 ∪ L4, and similarly in other cases. Also
note that whenever L6 was used, both versions have been checked.

Lemma 4 Suppose m +
∑

mi ≥ 15 or m +
∑

mi = 12 with m 6= 1, 2, mi ≥ 8. For some subset
S and some m′ we can pack Lm ∪ (∪i∈SCmi) into O.Lm′ exactly with initial link matching.

Proof. The packings shown in Table 1 are available. In each case we can pack graph (A) into
(B) by linking up suitable paths, with the link of Ln identified with the initial link. The cycles
in bold in (A) pack into the paths and cycles in bold in (B). We can then pack (B) into (C) by
Lemma 3. It is easy to check that if m > 0 then we must have a subset of one of the forms shown.
If m = 0, pack some Cmi0

into Lmi0
first and then use the result with m > 0.

Theorem 5 If
∑t

i=1 mi ≤ 1
2(n− 7)(n− 9)− 164 then we can pack ∪t

i=1Cmi into Kn.

Proof. By reducing n by at most 7, we can assume that n ≡ 2 or 6 mod 12 and
∑

mi ≤ n
2 (n −

2) − 164. By Lemma 2 we have a packing of O.a into Kn with 12a ≥ n
2 (n − 2) − 12 and so∑

mi ≤ 12a − 152. We will now show that whenever
∑

mi ≤ 12a − 152, we have a packing of
∪Cmi into O.a.
We can pack four C3’s or two C6’s or C6∪C3∪C3 into O (using L3.C

′
3∪C3.L3 7→ O from Lemma 3),

and three C4’s into O (using P2,2,2,2 ∪ P2,2 7→ O). Therefore by adding cycles of total length at
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most 3 × 3 + 2 × 4 = 17, we can pack all Cn with n = 3, 4, 6 into some octahedra. We can also
pack C5’s and C7’s as follows:

(C5)∪6 7→ P∅ ∪ P3,3,3,3.P2,2,2,2 ∪ P2,2.P3,3 7→ O.O.L6

(C7)∪6 7→ L7 ∪ P3,2.P4,5 ∪ L3.L4 ∪ P4,4.P3,3 7→ O.O.O.L6

Since we can pack L6 ∪ L6 as O, we see that twelve C5’s pack exactly into O.5, and twelve C7’s
pack exactly into O.7. If we don’t have twelve C5’s or C7’s, then we add cycles of total length at
most 11× 5 + 11× 7 = 132 to pack all the C5’s and C7’s into trails of octahedra.
Packing all cycles of length less than 8 into some initial segment of O.a = O.O . . . O and removing
this segment, we can now assume that

∑
mi ≤ 12a− 152+17+132 = 12a− 3 and all the mi ≥ 8.

Let m = 12a − ∑
mi ≥ 3 and pack Lm and all the Cmi into O.a inductively using Lemma 4.

Either m +
∑

mi = 12a is 12 or at least 15 and we can pack Lm and some cycles into O.Lm′

by Lemma 4. The sum of m′ and the remaining mi is 12(a − 1), so we can pack Lm′ and the
remaining cycles into O.a−1 by induction. The initial link of Lm′ is packed into the initial link of
O.a−1. We therefore have a packing of Lm and all the cycles into O.O.a−1 = O.a with the initial
link of Lm packed into the initial link of O.a.
Discarding Lm and any added cycles from the final packing gives the result.

Since χ′s(G) is just the minimum value of n for which we can pack L(G) into Kn, the following
result is immediate.

Corollary 6 Let G be a 2-regular graph of order n. Then χ′s(G) ≤ √
2n + 24.

If C(G) is the minimum number of colors needed in a not necessarily proper vertex-distinguishing
edge-coloring of G then for 2-regular graphs

√
2n− 1

2
≤ C(G) ≤ χ′s(G) ≤

√
2n + 24.

Hence we have determined both C(G) and χ′s(G) up to the addition of a constant.

The methods above can be refined to prove the following much stronger result (see [2]).

Theorem 7 (Corollary 2 of [2]) Let L =
∑t

i=1 mi with mi ≥ 3. Then we can write some
subgraph of Kn as an edge disjoint union of circuits of length m1, . . . , mt if and only if either

1. n is odd, L =
(
n
2

)
or L ≤ (

n
2

)− 3, or

2. n is even, L ≤ (
n
2

)− n
2 .

This stronger result gives the exact values of χ′s(G) for all 2-regular G, and in particular implies
the Burris and Schelp conjecture for these graphs.

Corollary 8 Let G be a vertex-disjoint union of cycles, and let n2(G) = |V (G)| ≤ (
k
2

)
, with k

chosen as small as possible. Then χ′s(G) = k or k + 1.

The proof of Theorem 7 is much longer and more technical than Theorem 5, but is based on the
same ideas as the proof of Theorem 5. Note that Corollary 6 only differs from Corollary 8 in the
additive constant in the bound.
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3 Unions of Paths

In this section we prove the conjecture in the case when G is a vertex-disjoint union of p paths
Pl1+1 ∪ . . . ∪ Plp+1 where li ≥ 1. As described in the introduction, this is equivalent to packing
the line graph L(G) = Pl1 ∪ Pl2 ∪ . . . ∪ Plp into Kn with the 2p endpoints of the paths mapped to
distinct vertices in Kn. Note in particular that we must have n ≥ 2p. Write L =

∑p
i=1 li and note

that n1(G) = 2p and n2(G) = L.

Theorem 9 The following conditions are both necessary and sufficient for packing ∪p
i=1Pli into

Kn with endpoints mapped to distinct vertices:

L =
(
n
2

)
or L ≤ (

n
2

)− 3 if r = 0,
L ≤ (

n
2

)− r
2 if r > 0 and r (or n) is even,

L ≤ (
n
2

)− p if r (or n) is odd.

where n = 2p + r and L =
∑t

i=1 li. In particular, L ≤ (
n−1

2

)
is always sufficient.

Proof.
1. Proof that the conditions are necessary.
Consider the image G of the packing in Kn. The degrees of 2p of the vertices must be odd and
the remaining r vertices must have even degree. Now consider the edge complement Gc of G in
Kn. If r (and hence n) is odd, Gc will have 2p odd degree vertices. Hence Gc will have at least p
edges. If r is even then Gc will have r odd degree vertices and at least r/2 edges. If r = 0 then
every vertex of Gc has even degree and so Gc has either no edges or at least three edges.

2. Proof that the conditions are sufficient.
Order the paths Pli so that l1 ≥ l2 ≥ . . . ≥ lp. Since Kn contains a set of bn

2 c ≥ p independent
edges, we are done in the case when all li = 1, so we may assume l1 ≥ 2.

Now consider the case p = 1. If n is odd and l1 =
(
n
2

) − 1, remove one edge from an Eulerian
circuit of Kn. Otherwise, if l1 ≥ 4 we can pack a cycle of length l1−1 into some subgraph G of Kn

using Theorem 7 (l1− 1 ≤ (
n
2

)− n
2 if n even and l1− 1 ≤ (

n
2

)− 3 if n odd). Since Kn is connected,
there must be some unused edge uv ∈ E(Gc) with u meeting G. Adding this edge to the circuit
gives a trail of length l1 with distinct endpoints as required. If l1 ≤ 3 the result is trivial.

Now assume p ≥ 2, l1 ≥ 2, so n ≥ 4. Let λ = l1 + l2−2, so that λ ≥ l2. We shall try to pack paths
of lengths λ, l3, . . . into Kn−2 by induction. This may fail due to the fact that the total length is
too large, so we will reduce the lengths. If λ ≥ 4 and n is even, reduce λ by three. Now reduce
each λ or li, i ≥ 3 by multiples of four until we have removed a total length of 2n− 5 (n even), or
2n− 6 (n odd) or until we have reduced all the lengths to at most four, (if λ < 4 then li < 4 for
all i ≥ 3). Call these reduced lengths λ′, l′3, . . . , l

′
p and pack trails of these lengths into Kn−2. We

will show that this will succeed in almost all cases.

If we have removed a total of 2n− 5 or 2n− 6 from the lengths, the total reduced length L′ will
be at most L − (2n − 3) (n even) or L − (2n − 4) (n odd). If L =

(
n
2

) − δ then L′ =
(
n−2

2

) − δ′

where δ′ = δ when n even and δ′ = δ − 1 when n is odd. Since p has been reduced by one and r
is the same, this L′ satisfies the conditions for n − 2 and we can pack the paths by induction. If
we cannot reduce the path lengths this much, the remaining paths must all be of length at most
four. In this case L′ ≤ 4(p− 1) ≤ 4bn−2

2 c which also satisfies the conditions when n ≥ 7.
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The cases when n ≤ 6 must be verified by a case by case analysis. In fact, the above algorithm
works except in some cases when n = 6, p = 3 and l1 + l2 ≤ 9 and in some cases when n = 5,
p = 2 and l1 + l2 ≤ 6. For each of these cases the theorem can be checked directly.

We now add back the two remaining vertices a and b of Kn and construct trails of the original
lengths. Let the trail of length λ′ go from vertex u to v in Kn−2. Let u′ be any vertex on
this trail which is a distance at most l1 − 1 along the trail from u and distance at most l2 − 1
from v and so that the distance from v is equivalent to l2 − 1 mod 2. Such a vertex exists since
λ′ ≤ (l1 − 1) + (l2 − 1) and λ′ ≥ 1. For each of the Pli , i ≥ 3 that have been shortened, pick an
endvertex vi of the trail of length l′i in Kn−2 not equal to u′. Pick (li − l′i − 2)/2 paths of length
two of the form P (a, x, b) where x is not any vi or u′. Linking up these paths (there are an odd
number of them) together with the edges via and vib and the trail of length l′i gives a trail of
length li in Kn with the same endvertices as the trail of length l′i in Kn−2. We now construct trails
corresponding to Pl1 and Pl2 . Construct a trail from v to u′ (using part of the trail of length λ′) to
a (via the edge u′a) and then some number of paths of length two between a and b until we have
a trail of length l2 from v to either a or b. The remaining trail of length l1 can be made up from
the other part of the trail of length λ′ from u to u′ to b (via u′b) and then using the remaining
trails of length one or two between a and b. (The edge ab is used if n is even and λ ≥ 4). The
resulting trail of length l1 goes from u to either b or a (distinct from the endpoints of the trail of
length l2). Since the original paths were shortened by at most 2n− 5, we do not run out of paths
P (a, x, b) of length two from a to b.

As a consequence, the exact value of χ′s(G) when G is a union of paths is just the smallest
n satisfying the conditions of Theorem 9 where L = n2(G) and 2p = n1(G). In particular,
Conjecture 1 now follows when G is a union of paths.

Corollary 10 Let G be the vertex-disjoint union of paths with each path of length at least two.
Let n1(G) ≤ k and n2(G) ≤ (

k
2

)
, with k chosen as small as possible. Then χ′s(G) = k or k + 1.

It is worth noting that in both the cases when G is a union of cycles and when G is a union of
paths, the cases when χ′s(G) = k + 1 occur only when forced by parity considerations.

4 Unions of Cycles and Paths

In this section we shall consider the case when G is a general vdec-graph with ∆(G) = 2. Such a G
is a vertex-disjoint union of paths Pli+1, i = 1, . . . , p (of length at least two), cycles Cmi , i = 1, . . . , t
and possibly a single isolated vertex. As before, we translate the problem into a packing problem
on the line graph L(G). In this case, we need to pack both paths Pli (of lengths one less than
those of G) and cycles Cmi into Kn with the endpoints of the paths mapped to 2p distinct vertices
in Kn. In terms of the original graph G, n1(G) = 2p and n2(G) = L =

∑t
i=1 mi +

∑p
i=1 li.

For such general graphs we do not have an exact result. However we will show that if n1 ≤ k and
n2 ≤

(
k
2

)
then we can strongly color G with at most k + 5 colors.

Lemma 11 If all but at most one of the paths Pli has length one or two, n ≥ p and the total
length L of all paths and cycles is at most 2n(n − 1) − 3 then we can pack the paths and cycles
into some subgraph of K2n+1 with the endpoints of the paths mapped to 2p distinct vertices.
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Proof. Let l1 be the length of a longest path. Let m = l1− 1 if l1 ≥ 4, m = 1 if l1 = 3 and m = 0
otherwise (including the case when there are no paths). Add an additional cycle so that the total
length of all cycles is exactly 2n(n− 1)−m. This cycle will have length at least 3 + l1 −m ≥ 3.
By Theorem 7, we can pack these cycles (and an additional Cm when m > 1) into K2n with n
edges remaining (n + 1 edges if m = 1). These missing edges must form a 1-factor of K2n (or a
K1,3 and a set of independent edges if m = 1). If m = 1, add a path of length l1 = 3 by taking a
path of length two in K1,3 and adding an edge to the 2n + 1’th vertex a. If m > 1 pick an edge of
the missing 1-factor which meets Cm in the packing of K2n and combine to get a trail of length
m + 1 = l1. We now match up the remaining paths with the remaining unused independent edges
of K2n. To pack a path of length one, just use the corresponding edge uv. For paths of length two
use P (u, a, v). We now have a packing as desired.

Note, that if we only use the weaker result for cycle packing given in Theorem 5, the proof still
holds (with some minor modifications) if the total length L is at most 2(n− 3)(n− 4)− 167. (The
construction in Theorem 5 leaves out a 1-factor in K2n and if l1 = 3 pack Pl1 in the missing O of
Lemma 2.)

Theorem 12 If n + 1 ≥ p and L ≤ 2n(n− 1)− 3, then we can pack all the paths and cycles into
K2n+3 with the endpoints of the paths mapped to 2p distinct vertices.

Proof. We use a similar strategy to the case when we have only paths. We may assume the paths
are of lengths li with l1 ≥ l2 ≥ · · · ≥ lp. If p < 2 or l2 < 3 then we are done by Lemma 11, so
assume l1, l2 ≥ 3. Now let λ = l1 + l2 − 2 and consider packing the cycles and paths of lengths
λ, l3, . . . , lp into K2n+1. As before, the total length may be too large, so we shorten the paths by
multiples of two with the restriction that the total reduction in length must be a multiple of four
and be at most 4n. In other words, write λ′ = λ − 2k2 and l′i = li − 2ki, i ≥ 3 with λ′, l′i ≥ 1,∑

ki even, and
∑

2ki ≤ 4n. If we run out of paths to shorten, at most one path can have length
more than two (and even this path has length at most four). We can therefore pack the paths and
cycles into K2n+1 by the previous lemma. Otherwise the total length of paths and cycles is now
at most 2n(n− 1)− 3− 4n− 2 ≤ 2(n− 1)(n− 2)− 3 so we can pack them into K2n+1 by induction
on n.

We now put back the two remaining vertices a and b and construct trails of the correct lengths.
Let the trail of length λ′ go from vertex u to v in K2n+1. Let u′ be any vertex on the trail from
u to v which is a distance at most l1 − 1 along the trail from u and distance at most l2 − 1 from
v and so that these distances are equivalent to l1 − 1 or l2 − 1 mod 2. For each of the Pli , i ≥ 3
that have been shortened, pick an endvertex vi of the path in K2n+1 not equal to u′. Connect vi

to a and b and then add in ki − 1 paths of length two of the form P (a, x, b) where x is not any vi

or u′. If an even multiple of two has been removed from the length, we can link up the paths to
give a path of length li as before. If an odd multiple of two has been removed, pick another path
lj which also has had an odd multiple of two removed. We now let Pli go along the ith trail in
K2n+1 to vi, then to a, along an even number of length two paths from a to b and then from a to
vj . We let Plj go along the jth trail in K2n+1 to vj , then to b, along an even number of length
two paths from a to b and then from b to vi. We now have trails of lengths li and lj with distinct
endpoints. Two of the endpoints have been swapped, however this is of no importance.

The path Pl1 is packed into the trail from u to u′ to a and some number of paths of length two
between a and b. The result is a trail of length l1 from u to either a or b. The path Pl2 is packed
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along the trail in K2n+1 from v to u′, then to b, along some paths of length two between a and b.
If we reduced λ by an even multiple of two, then we are done as before.

Now assume we reduced λ by an odd multiple of two so we have one other unpacked path Plj with
j ≥ 3 and lj ≥ 3. Since λ′ < λ, either the distance from u′ to u along the trail of length λ′ is
less than l1 − 1, or the distance from u′ to v is less than l2 − 1. We can assume without loss of
generality that the first case holds and the distance from u to u′ is at most l1 − 3.

The trail of length lj will go along ua, an even number of paths of the form P (a, x, b), then avj

and along the trail of length l′j in K2n+1. The trail of length l2 will go along the trail from v to u′,
along u′b, and then along some paths P (a, x, b) to either a or b. If u′ 6= u then the trail of length
l1 will go from vj , along vjb, along bu, then along the trail to u′, along u′a and some paths of the
form P (a, x, b) ending at either b or a. If u′ = u then the trail of length l1 will just go from vj

along vjb and some paths of the form P (a, x, b).

Corollary 13 Let G be any vdec-graph with ∆(G) = 2. Let n1(G) ≤ k and n2(G) ≤ (
k
2

)
, with k

chosen as small as possible. Then k ≤ χ′s(G) ≤ k + 5.

Proof. Set n = dk+1
2 e in Theorem 12. Then n + 1 ≥ k

2 ≥ n1
2 = p and 2n(n − 1) − 3 ≥

1
2(k + 1)(k− 1)− 3 ≥ (

k
2

) ≥ n2 = L for k ≥ 6. The result follows when k ≥ 6 since 2n + 3 ≤ k + 5.
The cases when k < 6 can be checked easily. Indeed, there are more colors available than edges
when k < 5.

Note that if we use Theorem 5 instead of Theorem 7 throughout, we get the slightly weaker bound
k ≤ χ′s(G) ≤ k + 25.
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