
Counting Regions With Bounded Surface Area

P.N. Balister B. Bollobás

June 7, 2008

Abstract

Define a cubical complex to be a collection of integer-aligned unit cubes in d di-
mensions. Lebowitz and Mazel (1998) proved that there are between (C1d)n/2d and
(C2d)64n/d complexes containing a fixed cube with connected boundary of (d − 1)-
volume n. In this paper we narrow these bounds to between (C3d)n/d and (C4d)2n/d.
We also show that there are nn/(2d(d−1))+o(1) connected complexes containing a fixed
cube with (not necessarily connected) boundary of volume n.

1 Introduction

Define an r-cube C to be an r-dimensional unit cube in Rd with vertices in Zd. In other
words, a set of the following form

C = C(a, I) = {x ∈ Rd : xi = ai for i /∈ I, ai ≤ xi ≤ ai + 1 for i ∈ I},

where a = (a1, . . . , ad) ∈ Zd and I is a subset of {1, . . . , d} of size r. Define an r-dimensional
cubical complex (or r-complex) B to be a finite union of r-cubes in Rd. We shall call a
complex rooted if it contains the cube Cr = C(0, {1, . . . , r}). Define the volume |B| of B to
be the number of r-cubes in B.

We shall define the boundary ∂C of a cube C to be the (r − 1)-complex which is the union
of the r pairs of faces C((a1, . . . , ai, . . . , ad), I \{i}) and C((a1, . . . , ai +1, . . . , ad), I \{i}) for
i ∈ I. We shall also define the boundary ∂B of the complex B =

⋃n
i=1 Ci to be the (r − 1)-

complex which contains each (r− 1)-cube that occurs in an odd number of boundaries ∂Ci.
(We shall avoid issues of orientation in this paper.) We say B is closed if ∂B = ∅. Define
the surface area of B to be the volume of the boundary |∂B|.
We say that an r-complex B is connected if it is connected via its (r− 1)-dimensional faces.
More formally, let G be the graph with vertices equal to the component r-cubes of B and
two vertices joined by an edge when these cubes share a common (r − 1)-dimensional face.
Then B is connected precisely when G is connected.
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B ∈ B2 B ∈ B′2 B ∈ B′2 B ∈ B′′2
B connected B connected B not connected B connected
∂B primitive ∂B not primitive ∂B not primitive ∂B not connected

Figure 1: Examples of contours in 2 dimensions.

The number of d-dimensional cubical complexes with a given volume or surface area is inter-
esting in its own right; however it also has applications to the Ising model in d dimensions,
where the convergence of the low temperature expansion is dependent on the number of
Peierls contours, i.e., the number of connected boundaries of rooted cubical complexes (see
Lebowitz and Mazel [3]).

Following the notation of [3], we define a contour to be the boundary of some rooted d-
complex, provided that this boundary is itself a connected (d − 1)-complex. A contour is
primitive if it is minimal, i.e., it is not a disjoint union of two non-empty contours. Note
that, in general, if ∂B is a contour, then the cubes of B need only be connected via (d− 2)-
dimensional cubes. On the other hand, if we insist that B is itself connected, it does not follow
that ∂B is a contour, since ∂B may not be connected, and even if it is, it is not necessarily
primitive (see Figure 1 for some examples with d = 2). However, if ∂B is primitive then B
must be connected (since ∂B is the disjoint union of the boundaries of the components of
B).

Let Bd be the set of rooted d-complexes in Rd with primitive boundaries, B′d the rooted
d-complexes (possibly disconnected) with connected boundary, and B′′d the connected rooted
d-complexes (possibly with disconnected boundary, see Figure 1). Write Sd(n) (respectively
S ′d(n), S ′′d (n)) for the number of elements of Bd (respectively B′d, B′′d) with surface area n.
Write Vd(n) for the number of connected rooted d-complexes with volume n. Note that all
these quantities are finite. In this note we shall give upper and lower bounds for all of these
quantities.

2 Preliminary results

For two r-complexes, B1 and B2, define B1 ⊕B2 to be the complex formed from all r-cubes
that are in either B1 or B2 but not both. Note that ∂(B1 ⊕ B2) = ∂B1 ⊕ ∂B2. Also, for
each complex B and for 1 ≤ i ≤ d, define B=

i to be the subcomplex of all r-cubes of B that
have zero extent in dimension i, i.e., that are contained in some hyperplane xi = c. Define
B⊥

i to be the subcomplex consisting of all the r-cubes of B which have positive extent in
dimension i, so that B = B⊥

i ⊕ B=
i . The cubes in B⊥ will be called vertical cubes, and the
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cubes in B= will be called horizontal cubes. The following slightly technical lemma will be
useful.

Lemma 1. Assume B = B⊥
d and ∂B ⊆ Rd−1, where Rd−1 is identified with the hyperplane

xd = 0 in Rd. Then B = ∅.

Proof. Assume B 6= ∅ and let a ∈ Z be the maximum integer such that B meets the
hyperplane xd = a. Then B contains some r-cube C × [a − 1, a] with C ⊆ Rd−1. The
face C × {a} of this r-cube is a face of precisely two r-cubes in Rd with positive extent in
dimension d. One of these is C × [a − 1, a], the other is C × [a, a + 1]. Only the first of
these is in B, so C × {a} ⊆ ∂B ⊆ Rd−1. Hence a = 0 and B ⊆ Rd−1 × (−∞, 0]. A similar
argument holds for the minimal a and shows that B ⊆ Rd−1× [0,∞). Thus B ⊆ Rd−1×{0},
contradicting the assumption that every cube of B has positive extent in dimension d.

Lemma 2. An r-complex B is closed if and only if B = ∂B′ for some B′.

Proof. Since each (r − 2)-dimensional subcube of an r-cube C is contained in precisely two
faces of C, ∂∂C = ∅. Hence ∂B is closed for all B. We now prove the converse. For each
cube C × {a} in B=

d with a 6= 0, construct the stack C × [0, a] (or C × [a, 0] if a < 0). The
⊕-sum of all these stacks is a complex E with (∂E)=

d agreeing with B=
d outside Rd−1. Let

F = B ⊕ ∂E. Then F=
d ⊆ Rd−1. Now F is closed so ∂(F⊥

d ) = ∂(F=
d ) ⊆ Rd−1. Hence, by

Lemma 1, F⊥
d = ∅ and F = F=

d ⊆ Rd−1 is a closed complex in Rd−1. By induction on d it is
equal to ∂F ′ for some F ′. Now B = ∂(E ⊕ F ′) as required.

Lemma 3. If B and B′ are two d-complexes and (∂B)=
d = (∂B′)=

d , then B = B′.

Proof. Let E = B ⊕ B′. Then (∂E)=
d = ∅, so ∂E = (∂E)⊥d . Also ∂∂E = ∅ ⊆ Rd−1, so by

Lemma 1, ∂E = ∅. But E⊥
d = E since every d-cube has positive extent in dimension d.

Hence by Lemma 1 again, E = ∅, and so B = B′.

Lemma 3 implies that the boundary ∂B of a d-complex determines the complex B. Hence
counting contours is equivalent to counting elements of B′, while counting primitive contours
is equivalent to counting elements of B.

Following [3], we construct a floor-stack (multi-)graph G of the boundary B of a d-complex
as follows. Decompose B=

d as a union of connected components or floors Fi. Decompose B⊥
d

into a union of complexes of the form Ej = C × [a, b] where C is an (d − 2)-cube in Rd−1

and a, b ∈ Z with b− a maximal. In other words, we group together the component cubes of
B⊥

d as maximal stacks of cubes in the dth dimension. Since ∂B = ∅, C × {a} and C × {b}
must lie in ∂(B=

d ) = ∂(B⊥
d ), and hence in some ∂Fi and ∂Fi′ . In other words, Ej joins Fi

and Fi′ . Let the vertices of G be the floors Fi and join Fi and Fi′ whenever there is a stack
Ej joining Fi and Fi′ .

Lemma 4. If B ∈ Bd then the floor-stack graph of ∂B is a connected graph.
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Figure 2: Example of contour with disconnected floor-stack graph.

Proof. Let E be the union of the floors Fi and stacks Ej in one component of the graph G.
Let C be a horizontal (d− 2)-cube of ∂E. Now C lies in the boundary of four (d− 1)-cubes,
two horizontal, and two vertical. If C lies in ∂Ej, then precisely one of these vertical (d−1)-
cubes lies in ∂B. But then one of the horizontal (d − 1)-cubes must also lie in ∂B, since
otherwise C would lie in ∂∂B = ∅. Thus C lies in the boundary of some Fi. But this Fi is
then an endvertex of Ej, so also lies in the chosen component of G. But then C /∈ ∂E, a
contradiction. Similarly, if C lies in the boundary of an Fi, then it lies at the end of a stack
Ej in the same component of G, once again leading to a contradiction. Hence (∂E)=

d = ∅,
and thus ∂E = (∂E)⊥d . Since ∂∂E = ∅ ⊆ Rd−1, Lemma 1 implies ∂E = ∅. Thus E is a
contour that is contained in ∂B. Since ∂B is primitive, E = ∂B and so G is connected.

Note that the floor-stack graph may be disconnected for non-primitive contours. See Figure 2
for an example in 3 dimensions.

3 Bounds for Vd(n)

We start with the easiest quantity to estimate, namely Vd(n), since this illustrates some of
the techniques that we shall use for the other quantities.

Theorem 5. For all n ≥ 1,

dn−1 ≤ Vd(n) ≤ 1
2d−1

(2ed)n.

Proof. The cube Cd is connected to 2d other d-cubes. For each of these choose an affine
transformation that maps Cd onto this d-cube. We can construct any connected rooted
d-complex by gluing smaller complexes onto Cd at some or all of the adjacent d-cubes via
their root cubes using the affine transformations defined above. If we define the polynomial
fL(X) inductively by f0(X) = X and

fL+1(X) = X(1 + fL(X))2d,

then the coefficient an,L of Xn in fL is an upper bound on the number of complexes of volume
n that can be constructed by the above process in at most L steps (i.e., complexes for which
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every cube is within graph-distance L of the root cube). As L increases an,L increases,
and for L ≥ n, an,L is constant, say an,L = an. Thus fL(X) increases monotonically to
f(X) =

∑
anXn provided X is within the radius of convergence of this limiting series. Hence

the number of these of volume n is bounded above by the coefficient an in the generating
function f(X) =

∑∞
n=1 anX

n where f(X) satisfies the equation

f(X) = X(1 + f(X))2d (1)

Rewrite equation (1) as X = f(1+f)−2d and maximize X. If the maximal X = Xc occurs at
f = fc then one sees inductively that fL(Xc) ≤ fc for all L. Hence the generating function
f(X) converges for all X ≤ Xc. By logarithmic differentiation,

1

X

dX

df
=

1

f
− 2d

1 + f

so at f = fc,
1
fc

= 2d
1+fc

. Thus fc = 1
2d−1

and

Xc = (2d− 1)2d−1(2d)−2d = (1 + 1
2d−1

)−(2d−1)(2d)−1 ≥ (2ed)−1.

Therefore

Vd(n) ≤
n∑

i=1

ai ≤ f(Xc)X
−n
c ≤ (2ed)n

2d− 1
.

For the lower bound, note that for each sequence (d2, . . . , dn) with di ∈ {1, 2, . . . , d} we can
construct a complex by taking a sequence of d-cubes with the ith cube located one step
in the positive dith direction from the (i − 1)st cube. This gives dn−1 distinct connected
complexes.

4 Bounds for Sd(n)

We start with an upper bound for the number of primitive contours with given (d − 1)-
dimensional volume. Note that this volume is always even since the surface area of each
cube is even.

Theorem 6. For all d ≥ 2 and even n ≥ 2d,

Sd(n) ≤ n
8d3 (8e

2d2)n/d ≤ (8d)2n/d.

Proof. Let B = ∂B′ be a primitive contour. Then, by Lemma 4, the floor-stack graph G of
B is connected. Fix a spanning tree of G. Then we can reconstruct the floors by specifying
each floor as a rooted (d − 1)-complex together with connecting stacks. We can obtain an
upper bound for the number of primitive contours containing the cube Cd−1 by alternately
growing floors and stacks. We shall define a generating function g(X,Y ) =

∑
ar,sX

rY s
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where ar,s will bound the number of possible spanning trees with total stack size s and total
floor volume r. We define g by

g(X, Y ) = X(1 + κg(X, Y ))2(d−1) (2)

where

κ = 4Y
1−Y

+ 1. (3)

To see that this gives an upper bound, consider growing a complex starting with Cd−1. For
each of the 2(d − 1) faces of Cd−1 we can either attach nothing, attach the neighboring
horizontal (d − 1)-cube (extending the current floor), or attach a stack, together with a
horizontal (d − 1)-cube at the other end of the stack. Note that we can never attach two
stacks (since together they would form a single stack) or a stack and a horizontal cube (since
then the stack would not lie in the boundary of the floor). In the cases when we attach cubes,
we continue building the complex from the new horizontal (d−1)-cube. If we attach a stack,
then the stack can go in one of two directions (up or down) and the horizonal (d− 1)-cube
at the other end of the stack can be attached in one of two positions. The stack can be
any positive integral length. Hence we get a factor of 4(Y + Y 2 + Y 3 + . . . ) = 4Y/(1− Y ).
Adding one to include the possibility of extending the floor, we get a factor of κg for each
face of Cd−1 that we add something to.

If we define g0(X, Y ) = 0 and gL+1 = X(1 + κgL)2(d−1) then gL is a polynomial in X with
each coefficient a polynomial in Y divided by some power of 1 − Y . If 0 < Y < 1 then the
coefficients increase and stabilize at the corresponding coefficients of g. Hence, as before,
g converges provided X ≤ Xc, where Xc is the maximum value of g/(1 + κg)2(d−1). This
maximum occurs at g = gc = 1/((2d− 3)κ) with

Xc = gc(1 + κgc)
−2(d−1) = κ−1(2d− 3)2d−3(2d− 2)−(2d−2) ≥ (2(d− 1)κe)−1. (4)

Next, we bound the number of contours containing a fixed vertical (d− 1)-cube as the root.
In this case, we grow the spanning tree of G starting with a stack. Since the root may lie in
the middle of a stack, and there are floors at each end of the stack, the generating function
for these is bounded by

g̃(X,Y ) = (Y + 2Y 2 + 3Y 3 + . . . )(2g(X,Y ))2 =
4Y g(X, Y )2

(1− Y )2
.

The term kY k(2g(X, Y ))2 comes from choosing the stack of length k (with k possible choices
for the root). We then grow the contour starting with two floors, each of which starts in one
of two directions.

Let h(X) be the generating function for the number of primitive contours containing the
cube Cd−1. Fix such a contour B. Then B contributes a term of the form XrY s to g(X, Y )
where r = |B=

d | and s is the sum of the stack lengths, in particular s ≤ n = |B|. Indeed,
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B contributes many such terms, one for each spanning tree of the floor-stack graph. Now
consider the above construction, except that instead of taking dimension d as vertical, take
dimension i as vertical for each i = 1, . . . , d. Then B contributes at least

∑d
i=1 XriY si to

the generating function g(X,Y ) + (d − 1)g̃(X,Y ). (The root Cd−1 is vertical in (d − 1)
dimensions and horizontal in only one.) Since ri = |B=

i |,
∑

ri = n and si ≤ n. Thus the
AM-GM inequality and the fact that Y < 1 gives

d∑
i=1

XriY si ≥ dXn/dY
∑

si/d ≥ dXn/dY n.

Hence, for any 0 < Y < 1 and 0 < X < Xc = Xc(Y ) we have

g(X,Y ) + (d− 1)g̃(X, Y ) ≥ d h(X1/dY ).

We wish to maximize X1/dY subject to remaining inside the domain of convergence of g
and g̃. A reasonably good choice is Y = Y0 = d

d+1
and X0 = 1

8ed2 . Then κ = 4d + 1,
Xc ≥ (2e(d− 1)(4d + 1))−1 ≥ X0, and

X0Y
d
0 ≥

1

8ed2(1 + 1/d)d
≥ X1 =

1

8e2d2
.

Now
(1 + κ

8d2 )
2(d−1) ≤ e2(4d+1)(d−1)/8d2 ≤ e,

so
1

8d2 (1 + κ
8d2 )

−2(d−1) ≥ 1
8ed2 = X0.

Hence g0 = g(X0, Y0) ≤ 1
8d2 . Also g̃0 = g̃(X0, Y0) = 4d3

d+1
g2
0 ≤ 1

8d2 . Thus the number of
primitive contours of size n containing Cd−1 is at most

h(X
1/d
1 )X

−n/d
1 ≤ 1

d
(g0 + (d− 1)g̃0)X

−n/d
1 ≤ 1

8d2 (8e
2d2)n/d.

Finally, each contour surrounding Cd must contain a vertical translate of Cd−1 at a vertical
distance less than n/(2(d− 1)) ≤ n/d below the hyperplane xd = 0. Thus

Sd(n) ≤ n
8d3 (8e

2d2)n/d.

Finally for d ≥ 2,
n

8d3 ≤ en/8d3 ≤ e0.04n/d,

so
n

8d3 (8e
2d2)n/d ≤ (8e2.04d2)n/d ≤ (8d)2n/d.

Now, we turn to a lower bound on Sd(n).
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Theorem 7. For all d ≥ 2 and all even n ≥ 4d2 we have

Sd(n) ≥ d
n−4d2

2(d−1) ≥ (Cd)n/2d

Proof. Let us use the procedure defined in Theorem 5 that for each sequence (d2, . . . , dk+1)
with di ∈ {1, 2, . . . , d} builds a complex by taking a sequence of d-cubes with the ith cube
located one step in the positive dith direction from the (i− 1)st cube. This gives dk distinct
connected complexes with surface area 2(k + 1)(d− 1) + 2. To get an arbitrary even surface
area, add a 2 × j × 1 × · · · × 1 block in one of the negative directions. This increases the
surface area by j(4d − 6) + 4 − 2 (the −2 is due to the loss of the joining face). Thus we
obtain a complex with surface area 2(k + 1 + 2j)(d − 1) + 4 − 2j. If we choose j so that
4− 2j ≡ n mod 2(d− 1) then one can solve n = 2(k + 1 + 2j)(d− 1) + 4− 2j for k. We can
choose j so that 1 ≤ j ≤ d − 1, so n ≤ 2k(d − 1) + 4(d − 1)2 + 4 ≤ 2k(d − 1) + 4d2. The
result follows.

Combining the upper and lower bounds we see that

(C1d)n/2d ≤ Sd(n) ≤ (C2d)2n/d

for sufficiently large even n.

5 Bounds for S ′d(n)

Now we extend the results of the previous section to count all contours, rather than just
primitive ones.

Theorem 8. For all d ≥ 2 and large even n,

S ′d(n) ≤ n
8d3 (8e

17/8d2)n/d ≤ (9d)2n/d

Proof. As in Theorem 6, let h(X) be the generating function for the number of primitive
contours of volume n containing Cd−1. Fix a primitive contour containing n (d − 1)-cubes.
Then there are a total of (at most) (d − 1)n common (d − 2)-cubes, since each (d − 2)
cube occurs as the face of (at least) two (d − 1)-cubes, and each (d − 1)-cube has 2(d − 1)
faces. An arbitrary contour can be obtained by attaching a contour to some of the (d− 2)-
cube boundaries of the component cubes of some primitive contour. The way in which this
attachment is done is essentially unique, since there are only two possible other (d−1)-cubes
that meet this (d−2)-cube, and both must be in the attached contour. By a suitable ordering
of all (d − 1)-cubes in Rd, we can fix one of these as the root of the added contour. Thus,
the number of contours with volume n is bounded above by the coefficient of Xn in

f(X) = h(X(1 + f(X))d−1).

8



From the previous section we know that h((8e2d2)−1/d) ≤ 1
8d2 . Since

(8e2d2)−1/d/(1 + 1
8d2 )

d−1 = (8e2d2(1 + 1
8d2 )

d(d−1))−1/d ≥ (8e17/8d2)−1/d,

if we set X2 = (8e17/8d2)−1/d then f(X2) converges and f(X2) ≤ 1
8d2 . Thus the number of

contours of surface area (at most) n containing Cd−1 is bounded by

f(X2)X
−n
2 ≤ 1

8d2 (8e
17/8d2)n/d.

As before, any contour surrounding Cd must contain one of n/d translates of Cd−1, so

S ′d(n) ≤ n
8d3 (8e

17/8d2)n/d.

Finally for d ≥ 2, n
8d3 ≤ e0.04n/d so n

8d3 (8e
17/8d2)n/d ≤ (8e2.165d2)n/d < (9d)2n/d.

Our lower bound on S ′d(n) is even easier to prove.

Theorem 9. For all d ≥ 2 and even n ≥ 2d2 we have

S ′d(n) ≥ (
d
2

)(n−d2)/2d ≥ (Cd)n/d

Proof. We can write n = 2dk + 2(d − j) for some k > j, 0 ≤ j ≤ d − 1. Fix a sequence
(d1, . . . , dj) with di ∈ {1, . . . , d} and a sequence (pj+1, . . . , pk), where each pi is an unordered
pair (di,1, di,2), di,s ∈ {1, . . . , d}. Construct a complex by starting with the root Cd and
adding cubes so that the (i + 1)st cube is located one step in the positive dith direction
from the ith cube when i ≤ j and is one step in both the positive di,1 and di,2 directions
when i > j. The boundary of this complex is a contour surrounding Cd with surface area

2d(k + 1)− 2j = n. There are dj
(

d
2

)k−j
such contours. Thus

S ′d(n) ≥ dj
(

d
2

)k−j ≥ (
d
2

)k−j/2 ≥ (
d
2

)(n−d2)/2d
.

Combining the upper and lower bounds we find that

(C ′
1d)n/d ≤ S ′d(n) ≤ (C ′

2d)2n/d

for sufficiently large even n. Note that these bounds are ‘closer’ than for Sd(n) since the
lower bound is much larger.
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6 Bounds for S ′′d (n)

It turns out that this quantity is much larger than Sd(n) or S ′d(n), i.e., there are many more
connected rooted complexes with a given surface area than there are contours.

Theorem 10. For fixed d ≥ 2 and all sufficiently large even n,

S ′′d (n) = n
n

2d(d−1)
(1+o(1)).

Proof. For a lower bound, consider the large cube [0, N + 2]d consisting of (N + 2)d d-cubes.
Remove k of the Nd central cubes which are of the form C((a1, . . . , ad)) with

∑d
i=1 ai ≡

s mod 3. For some choice of s ∈ {0, 1, 2} there will be at least Nd/3 choices for these cubes,

and hence at least
(

Nd/3
k

) ≥ (Nd/3ek)k possible resulting d-complexes. The restrictions on
the cubes that are removed ensures that the resulting complex will always be connected, and
will have surface area exactly 2d(N + 2)d−1 + 2dk. Assuming N > 2d, we can add cubes
of the form C((−1, i, 0, 0, . . . , 0), i = 2, 4, . . . 2j, increasing the surface area by (2d − 2)j.
Assume n is large and even. In particular, assume n ≥ 2d(N + 2)d−1 + 2d2. One can choose
j and k so that

2dk + (2d− 2)j = n− 2d(N + 2)d−1.

To do this, first choose j so that 2j ≡ −n mod 2d, 0 ≤ j < d. Then solve for k = k(N).
Finally, choose N so that n ≈ 2d(log N)Nd−1. Then k ≈ (log N − 1)Nd−1 and (Nd/3ek)k =

n
n

2d(d−1)
(1+o(1)). This shows that S ′′d (n) is at least as large as claimed.

It is somewhat harder to prove a good upper bound. Note that Rd \ B has precisely one
infinite component, and the boundary of this component is a contour ∂B′ with B ⊆ B′. Thus
∂B is obtained by fixing a contour ∂B′ and then adding some contours inside B′. Given
n0 = |∂B′| ≤ n, there are at most (9d)2n0/d choices for B′, and each such B′ has volume at
most v = (n0/2d)d/(d−1) with equality if B′ is a large cube. We shall add k contours, each
of which must surround some cube of B′. There are

(
v+k−1

k

)
choices for these root cubes

(we allow a root cube to be chosen more than once). The added contours will be of sizes
n1, . . . , nk where n1 + · · ·+nk = n−n0. Since each ni ≥ 2d, there are

(
n−n0−2dk+k−1

k−1

)
choices

for the ni, i > 0 (we need to partition the ‘excess’ r = n−n0−2dk as the sum of k numbers).
Now each contour can be chosen in at most (9d)2ni/d ways. Thus

S ′′d (n) ≤
∑

k,n0:2dk+n0≤n

(9d)2(n0+n1+···+nk)/d
(

v+k−1
k

)(
n−n0−2dk+k−1

k−1

)
.

Now (9d)2(n0+···+nk)/d = (9d)2n/d = no(n),
(

m
r

) ≤ (m/r)r, and there are at most n2 = no(n)

choices for (k, n0). Hence

S ′′d (n) ≤
∑

k,n0:2dk+n0≤n

(
v+k

k

)(
n−n0−2dk+k

k

)
no(n) ≤ max

2dk+n0≤n

(
(v+k)(n−n0−2dk+k)

k2

)k

no(n).
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We bound v = (n0/2d)d/(d−1) ≤ n1/(d−1)n0, and n0 ≤ n − 2dk. Thus v + k ≤ n1/(d−1)(n −
2dk) + k ≤ n1/(d−1)(n− 2dk + k) and so

(v + k)(n− n0 − 2dk + k) ≤ n1/(d−1)(n− 2dk + k)2.

This shows that

S ′′d (n) ≤ max
2dk≤n

(
n1/(d−1)(n−2dk+k)2

k2

)k

no(n).

Now we maximize over k. Taking logarithms, we need to maximize k log n
d−1

+ 2k log(n− 2dk +
k)− 2k log k. Differentiating with respect to k gives

log n
d−1

+ 2 log n−2dk+k
k

− 2(2d−1)k
n−2dk+k

− 2.

But k ≤ n− 2dk + k, so for sufficiently large n this is always positive. Hence the maximum
is attained for the maximum possible k = n/2d. Substituting this we get

S ′′d (n) ≤ nk/(d−1)+o(n) = nn/(2d(d−1))+o(n).

7 Polymer expansion for the Ising model

One application of our bounds is to the convergence of the low temperature expansion of
the d-dimensional Ising model in terms of Peierls contours (see [3]). The general result of
Kotecký and Preiss [2] (see also Dobrushin [1] and Scott and Sokal [4]) about the convergence
of cluster expansion implies the following assertion (see also Lemma 2.1 of [3]).

Lemma 11. The polymer expansion constructed for the Ising model in terms of Peierls
contours is convergent at inverse temperature β if there exists a positive function a(γ) such
that, for any contour γ, ∑

γ′
e−β|γ′|+a(γ′) ≤ a(γ),

where the sum is taken over all contours γ′ that intersect γ.

Using our results on S ′d(n) we can improve considerably the Lebowitz-Mazel bound on β
implying the convergence of the polymer expansion.

Theorem 12. The polymer expansion constructed for the Ising model in terms of Peierls
contours converges at inverse temperature β for all β ≥ 2

d
log(11d).
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Proof. Each γ′ that intersects γ must have some common (d − 2)-cube with γ. Fixing this
(d−2)-cube C, γ′ is forced to contain at least one of the four (d−1)-cubes meeting C. Since
there are (at most) (d− 1)|γ| (d− 2)-cubes in γ, it is enough to show

4(d− 1)
∑

γ

e(α−β)|γ| ≤ α,

where we have chosen a(γ) = α|γ| and the sum is over all contours containing a fixed
(d− 1)-cube. In other words, we need to show that

4(d− 1)
∞∑

n=1

cne(α−β)n ≤ α,

where cn is the number of rooted contours with surface area n. If eα−β ≤ X2, then from the
proof of Theorem 8,

∑∞
n=1 cne

(α−β)n ≤ 1
8d2 . Thus we can take α = 1

2d
, provided β is at least

α− log X2 = 1
2d

+ 1
d
log(8e17/8d2) = 1

d
log(8e21/8d2) ≤ 2

d
log(11d).
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