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Abstract

We consider lower bounds on the the vertex-distinguishing edge chromatic number of graphs
and prove that these are compatible with a conjecture of Burris and Schelp [8]. We also find
upper bounds on this number for certain regular graphs G of low degree and hence verify the
conjecture for a reasonably large class of such graphs.

1 Introduction

Let G be a simple graph with n vertices. For d ≥ 0 write nd for the number of vertices in G of
degree d. Let χ′(G) be the minimum number of colors required in a proper edge-coloring of G.
By Vizing’s Theorem, ∆(G) ≤ χ′(G) ≤ ∆(G) + 1. If we have such a proper coloring with colors
{1, . . . , k} and v is a vertex of G, denote by S(v) the set of colors used to color the edges incident
to v.

A proper edge coloring of a graph is said to be vertex-distinguishing if each pair of vertices is
incident to a different set of colors. In other words, S(u) 6= S(v) whenever u 6= v. A vertex-
distinguishing proper edge coloring will also be called a strong coloring. A graph has a strong
coloring if and only if it has no more than one isolated vertex and no isolated edges. Such a graph
will be referred to as a vdec-graph. The minimum number of colors required for a strong coloring
of a vdec-graph G will be denoted χ′

s(G).

The concept of vertex-distinguishing colorings has been considered in several papers [1,3–5,8–11].
In [8] Burris and Schelp made the following conjecture:

Conjecture 1 Let G be a (simple) vdec-graph and let k = k(G) be the minimum integer such that(
k
d

)
≥ nd for all d with δ(G) ≤ d ≤ ∆(G). Then χ′

s(G) = k or k + 1.

Conjecture 1 is known for a number of particular graphs, including complete graphs, complete
bipartite graphs and many trees [8]. Recently Conjecture 1 has been proved for graphs of large
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maximum degree [4] and for G a union of cycles or a union of paths [3]. The most difficult cases
therefore seem to occur when G has small maximum degree which is at least three.

If a strong coloring of a graph G exists with k colors then clearly
(
k
d

)
≥ nd for all d. Hence in

Conjecture 1 we certainly have χ′
s(G) ≥ k(G). In fact we can make a stronger assertion. If a

strong k-coloring exists then each color meets an even number of vertices, and hence occurs in an
even number of the sets S(v). Since the symmetric difference

⊕
v∈V (G) S(v) consists precisely of

the elements that occur in an odd number of S(v), this is equivalent to
⊕

v∈V (G) S(v) = ∅.

Definition 1 Let k′(G) be the minimum k such that there exist distinct sets Sv ⊆ {1, . . . , k} for
v ∈ V (G) with |Sv| = degG(v) and

⊕
v Sv = ∅.

Note that k′(G) and k(G) both depend only on the degree sequence of G. It is clear from the
above argument that χ′

s(G) ≥ k′(G) ≥ k(G).

There are many examples where k′(G) > k(G) even for regular graphs (see Theorem 6 below).
Hence in Conjecture 1 we can have χ′

s(G) > k(G). For regular graphs we know of no examples
for which χ′

s(G) > k′(G). In particular, we know of no cases where two d-regular graphs with the
same number of vertices have different strong chromatic numbers. The situation for non-regular
graphs is different. Indeed, it is possible for two non-regular graphs with the same degree sequence
to have different strong chromatic numbers. As an example, consider the following graphs.
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1 2

G1 : χ′
s > k′ = 4 G2 : χ′

s = k′ = 4

Looking at G1, we see that it is possible to find distinct subsets Sv ⊆ {1, 2, 3, 4}, one for each
vertex v, with |Sv| = deg(v) and with each color occurring in an even number of subsets. Hence
k′(G1) = 4. Indeed, for each vertex v we can find a matching f of Sv to the neighbors of v with
c ∈ Sf(c). However, G1 cannot be strongly colored with 4 colors. To see this, consider the four
vertices to the left of the edge e. The choice of sets Sv shown above is essentially unique in that
the set {1, 2, 3, 4} and all but one of the 3-sets must occur to the left of e. Hence there will always
be exactly three colors occurring in an odd number of sets Sv with v on the left of e. But if
Sv = S(v) for some strong coloring, then the only color which can occur in an odd number of Sv

for v on the left of e must be the color of e. Hence χ′
s(G1) > 4. On the other hand, the graph

G2 has the same degree sequence as G1 but has a strong 4-coloring. This example motivates the
following.

Definition 2 Let k′′(G) be the smallest k such that for any set of vertices X ⊆ V (G) there exist
distinct sets Sv ⊆ {1, . . . , k}, v ∈ X, such that |Sv| = degG(v) and |

⊕
v∈X Sv| ≤ |E(X, Xc)|,

where E(X, Xc) is the set of edges between X and Xc = V (G) \X.
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Arguing as for the example above, if Sv = S(v) for some strong coloring of G then |
⊕

v∈X Sv| ≤
|E(X, Xc)| for all X. Hence χ′

s(G) ≥ k′′(G). In the next section we shall prove in general that
for simple graphs k′′(G) ≤ k(G) + 1, which is at least consistent with Conjecture 1. By taking
X = V (G) we see that k′′(G) ≥ k′(G), hence

χ′
s(G) ≥ k′′(G) ≥ k′(G) ≥ k(G). (1)

The definitions of χ′
s, k, k′ and k′′ all have natural generalizations to multigraphs. In particular,

a vdec-multigraph is a multigraph without loops which has at most one isolated vertex and no
component consisting of exactly two vertices. The inequalities (1) still hold, however Conjecture 1
fails in general for multigraphs.

While the second and third inequalities in (1) may sometimes be strict, we know of no example
where χ′

s(G) > k′′(G) even for multigraphs. Indeed, we have the following results, obtained by
exhaustive computer search.

Result 1 There is equality χ′
s(G) = k′′(G) for all simple vdec-graphs with |V (G)| ≤ 11, all 3-

regular vdec-multigraphs with |V (G)| ≤ 22 and all vdec-multigraphs with |V (G)|+ ∆(G) ≤ 15.

In particular Conjecture 1 holds for all simple graphs with |V (G)| ≤ 11 and all 3-regular graphs
with |V (G)| ≤ 22. Result 1 suggests the following strengthening of Conjecture 1.

Conjecture 2 For any vdec-multigraph G, χ′
s(G) = k′′(G).

For simple regular graphs we shall show (Theorem 6) that k′(G) = k′′(G) and give the exact value
of this number. As a consequence we show that χ′

s(G) can be strictly bigger than k(G) even for
regular graphs. For non-regular graphs, the formulae for k′(G) and k′′(G) are more complicated
and these values may differ as shown by the example above.

For 2-regular graphs the results of [2] or [3] imply that the conditions in Theorem 6 are also
sufficient for the existence of a strong k-coloring. Thus χ′

s(G) = k′′(G) = k′(G) and Conjecture 2
holds. In this case we give a slightly simpler expression for χ′

s(G):

Theorem 2 A simple 2-regular graph can be strongly colored with k colors if and only if

1. k is odd and either n =
(
k
2

)
or n ≤

(
k
2

)
− 3, or

2. k is even and n ≤
(
k
2

)
− k

2 .

In Section 2 we prove the results for k′(G) and k′′(G) mentioned above. In Sections 3 and 4 we
shall restrict attention to d-regular graphs and consider the case when n = nd = |V (G)| is much
larger than d. In Section 3 we give upper bounds on χ′

s(G) when G is regular and has many
components and many 1-factors. In Section 4 we investigate the case of 3-regular graphs.
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2 The values of k′(G) and k′′(G)

The following key lemma determines the possible symmetric differences of n distinct d-sets of
{1, . . . , k}.

Lemma 3 Let 1 ≤ d ≤ k − 1, 0 ≤ t ≤ k and n ≥ 0. There exist subsets S1, . . . , Sn ⊆ {1, . . . , k},
each of size d, with |

⊕n
i=1 Si| = t if and only if the following conditions hold:

1 nd ≡ t mod 2,

2 n ≥ max( t
d , tc

k−d), where tc = t if n is even and tc = k − t if n is odd.

Furthermore, the Si can be chosen as distinct sets if and only if in addition

3 if n = 2 then t > 0,

4 if d = 1 then n = t and if d = k− 1 then n = tc, where tc = t if n is even and tc = k− t if
n is odd.

5 Conditions 2 and 3 also hold when n is replaced by
(
k
d

)
− n and t is replaced by t′, where

t′ = t if
(
k−1
d−1

)
is even and t′ = k − t if

(
k−1
d−1

)
is odd.

Proof. We first show that these conditions are necessary.
1. This follows since t = |

⊕n
i=1 Si| ≡

∑n
i=1 |Si| = nd mod 2.

2. Write Sc
i = {1, . . . , k} \ Si for the complement of Si. Condition 2 holds since t = |

⊕n
i=1 Si| ≤∑n

i=1 |Si| = nd and tc = |
⊕n

i=1 Sc
i | ≤

∑n
i=1 |Sc

i | = n(k − d).
3. If S1 6= S2 then t = |S1 ⊕ S2| > 0.
4. If d = 1 (resp. d = k − 1) then equality holds in the first (resp. second) part of the proof of
Condition 2 since the sets Si (resp. Sc

i ) are disjoint.
5. Replace S = {S1, . . . , Sn} with the d-sets S ′ = {S′

1, . . . , S
′
n′} that are not in S. Then n′ =(

k
d

)
− n and

⊕
S′

i = (
⊕

Si)⊕X where X is the symmetric difference of all d-sets. However each
c ∈ {1, . . . , k} occurs in

(
k−1
d−1

)
d-sets, so X = ∅ if this is even and X = {1, . . . , k} if this is odd.

Hence |
⊕

S′
i| = t′ and the result follows.

We now show that the conditions given above are sufficient. Note that there are two symmetries
involved. The first changes (n, d, t) to (n, k − d, tc) and corresponds to replacing the sets Si with
their complements Sc

i . The second changes (n, d, t) to (
(
k
d

)
− n, d, t′) and corresponds to replacing

S with the collection S ′ of d-sets not in S. Using the fact that
(
k
d

)
=

(
k−1
d−1

)
+

(
k−1

d

)
it can be shown

that (tc)′ = (t′)c and so these symmetries commute. It can also be checked that all the conditions
are symmetric under the first symmetry, (for Condition 5 we need the fact that the symmetries
commute). Hence without loss of generality we may assume d ≤ k/2. The case when d = 1 is
trivial, so we may also assume d ≥ 2. To avoid special cases in the proof we also exclude the
case k = 4, d = 2 which may easily be checked by hand. Thus we may assume k ≥ 5. We shall
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prove the case when the Si are required to be distinct. The case when they are not required to be
distinct is much easier, so we shall just indicate the differences in the proof when they occur.

Pick any collection of (distinct) sets S = {S1, . . . , Sn} with |
⊕

Si| as close to t as possible. Let
X =

⊕
Si. If |X| = t then we are done. Otherwise |X| must differ from t by at least two by

Condition 1. Hence we can find a, b ∈ {1, . . . , k} such that |X ⊕ {a, b}| is closer to t than |X|.
Let α be the number of sets Si ∈ S with a ∈ Si, b /∈ Si. If P ⊆ {1, . . . , k} and a, b /∈ P then
P ∪{a} ∈ S if and only if P ∪{b} ∈ S since if precisely one of these sets was in S we could replace
it with the other. This would change X to X ⊕ {a, b} contradicting the choice of S. Hence α is
also the number of sets with a /∈ Si, b ∈ Si and the symmetric difference of the sets containing
exactly one of a and b is just {a, b} or ∅ depending on whether α is odd or even. In particular, we
may change these sets to any collection {Pi ∪ {a}, Pi ∪ {b} : i = 1, . . . , α} without changing X or
violating the condition that the Si be distinct. If the sets Si are not required to be distinct, we
can always replace P1 ∪{a}, say, with P1 ∪{b}, so in this case α = 0. If the sets Si are required to
be distinct then it can be checked that Conditions 1–5 are symmetric under the second symmetry,
and that |X ⊕ {a, b}| is still better than |X|. This symmetry replaces α by

(
k−2
d−1

)
− α. Hence, as(

k−2
d−1

)
≥ 3, we may assume that α ≤

(
k−2
d−1

)
− 2.

Suppose there exist c ∈ {1, . . . , k} with c 6= a, b and sets P,Q ⊆ {1, . . . , k} with a, b, c /∈ P,Q such
that P ∪ {c}, Q ∪ {c} ∈ S and P ∪ {a}, Q ∪ {b} /∈ S. Then replacing the sets P ∪ {c} and Q ∪ {c}
by P ∪ {a} and Q ∪ {b} will change X to X ⊕ {a, b}, contradicting the choice of S. Similarly
if P ∪ {c}, Q ∪ {c} /∈ S and P ∪ {a}, Q ∪ {b} ∈ S then we can replace P ∪ {a} and Q ∪ {b} by
P ∪ {c} and Q ∪ {c} to obtain a contradiction. Assume S, S′ ∈ S are two sets with a, b /∈ S, S′

and S ∩ S′ 6= ∅. Let c ∈ S, S′ and set P = S \ {c}, Q = S′ \ {c}. If α ≤
(
k−2
d−1

)
− 2, then by

changing the sets Pi as above we may assume P and Q are not equal to any of the Pi. We then
get a contradiction by the argument above, since P ∪ {c}, Q ∪ {c} ∈ S and P ∪ {a}, Q ∪ {b} /∈ S.
Hence the sets S ∈ S with a, b /∈ S are disjoint and there are therefore at most k−2

d of them. A
similar argument shows that the sets S ∈ S with a, b ∈ S must have disjoint complements Sc, so
there are at most k−2

k−d such sets. In fact, since we have assumed d ≤ k/2, there must be at most
one of these sets. If α ≥ 2 we can apply the same arguments to the complement of S to show that
there can be at most k−2

d sets S′ with a, b /∈ S′ and S′ /∈ S and at most 1 set S′ with a, b ∈ S′ and
S′ /∈ S. Hence there are at most 2(k−2)

d d-sets in total not containing a and b, and at most 2 d-sets
containing a and b. Hence

(
k−2

d

)
≤ 2(k−2)

d and
(
k−2
d−2

)
≤ 2, but as 2 ≤ α ≤

(
k−2
d−1

)
− 2,

(
k−2
d−1

)
≥ 4.

These conditions are inconsistent, so we may assume α ≤ 1.

Now assume α = 1 (and Si are distinct). Assume first that there are d-sets S ∈ S, S′ /∈ S with
either a, b ∈ S, S′ or a, b /∈ S, S′. We can change S into S′ by successively swapping elements
in S \ S′ with those in S′ \ S. Moreover, no such change involves the elements a or b. Hence
there must be elements c, c′ distinct from a and b and sets S′′ ∪ {c} ∈ S, S′′ ∪ {c′} /∈ S with
either a, b ∈ S′′ or a, b /∈ S′′. Choosing P1 appropriately we can assume c ∈ P1, c′ /∈ P1 (since
2 ≤ d ≤ k − 2). Replacing S′′ ∪ {c} with S′′ ∪ {c′} and P1 ∪ {a} with P1 ∪ {b, c′} \ {c} changes X
to X⊕{a, b} contradicting the choice of S. (The condition that the Si are distinct is still satisfied
since α = 1.) Hence S must contain either all or none of the d-sets S with a, b ∈ S and either
all or none of the d-sets S with a, b /∈ S. However, if S contains all sets S with a, b /∈ S then(
k−2

d

)
≤ (k−2)

d contradicting the assumptions on d and k. Similarly, if S contains all sets S with
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a, b ∈ S then
(
k−2
d−2

)
≤ 1 so d = 2, S = {{a, c}, {b, c}, {a, b}} and t ≥ 2. Since k ≥ 5 this S can be

changed to S = {{a, c}, {b, c′}, {c, c′}} increasing |X| and contradicting the choice of S. Finally
if S contains no set S with either a, b ∈ S or a, b /∈ S then S = {P1 ∪ {a}, P1 ∪ {b}}, n = 2, and
t = 0 which is excluded by Condition 3.

Now assume α = 0. Since α ≤
(
k−2
d−1

)
− 2, the collection S now consists of disjoint sets Si which do

not contain a or b together with possibly one more set Sn that contains both. If all the sets in S
do not contain a or b then |X| = nd. But t > |X| since |X ⊕ {a, b}| is closer to t than |X|. This
contradicts Condition 2. If S contains a unique set Sn with a, b ∈ Sn then t < |X|. In this case,
a and b could have been chosen as any two distinct elements of X. Hence any two elements of X
must lie in one and the same set Si ∈ S. By fixing a and varying b, say, we see that X ⊆ Sn. Since
the Si, i < n, do not contain a and b we have from above that they are disjoint. But

⊕
Si = X,

so Si ⊆ Sn for all i < n. Since the sets Si are all d-sets and Si 6= Sn for i < n, this implies n = 1
and the result is then clear.

The next lemma is a minor extension of Vizing’s Theorem which gives us a coloring which is
“vertex-distinguishing in degree 1”. Recall that nd(G) is the number of vertices of G of degree d.

Lemma 4 If G is a simple graph which contains no isolated edges and k = max(∆(G), n1(G))+1
then there exists a proper edge k-coloring of G in which each degree 1 vertex sees a distinct color.

Proof. Let G′ be the multigraph obtained by identifying the degree 1 vertices of G. All multiple
edges of G′ must meet the vertex v corresponding to the degree 1 vertices of G and since G
contains no isolated edges, G′ will have no loops. Also ∆(G′) = max(∆(G), n1(G)), so a proper
(∆(G′) + 1)-coloring of G′ would give us the required coloring of G. Thus it is enough to prove
Vizing’s Theorem for multigraphs G′ in which there are no loops and all multiple edges meet a
specified vertex v. Indeed, by considering the algorithm used in the proof of Vizing’s Theorem [6],
it is enough to give a proper coloring on the subgraph induced by N(v)∪{v} since any such coloring
can be extended inductively to one on G′ using exactly the same algorithm. Hence we are reduced
to the problem of finding a proper (∆(G′)+1)-coloring of G′ when all multiple edges meet v and all
other vertices are adjacent to v. Let e1, . . . , er be a minimal set of edges which on removal make G′

into a simple graph G′′. Now |N(v)| = degG′′(v) = degG′(v)−r, so ∆(G′′) ≤ ∆(G′)−r = k−1−r.
Hence G′′ has a proper (k− r)-coloring. Coloring e1, . . . , er with r distinct additional colors gives
a proper k-coloring of G′ as required.

Theorem 5 For any simple vdec-graph, k′′(G) ≤ k(G) + 1.

Proof. Fix X ⊆ V (G). Since k(G) ≥ max(∆(G), n1(G)), Lemma 4 gives a proper edge coloring
of G using at most k = k(G) + 1 colors in which the vertices of degree 1 see distinct colors. Hence
we have (not necessarily distinct) sets Sv = S(v) with the property that |

⊕
v∈X Sv| ≤ |E(X, Xc)|.

We now require that the Sv be made distinct. Fix d and let Xd be the set of vertices of degree d
that lie in X. We shall modify the Sv for v ∈ Xd so as to make the sets distinct while preserving
their symmetric difference. Doing this in each degree separately will give the result. Since nk−1 =
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nk(G) ≤ 1, the sets Sv are already distinct in degrees 1 and k− 1 so we may assume 2 ≤ d ≤ k− 2.
Assume that |Xd| 6= 2. Then by Lemma 3 it is sufficient that |Xd| ≤

(
k
d

)
− max(k

d , k
k−d , 3) since

t, tc ≤ k. But |Xd| ≤ nd ≤
(
k−1

d

)
, so it is sufficient that

(
k
d

)
−

(
k−1

d

)
=

(
k−1
d−1

)
≥ max(k

d , k
k−d , 3).

This holds for all d and k with 2 ≤ d ≤ k − 2. It therefore remains to deal with the case when
X contains precisely two vertices of degree d and these two vertices have the same value of Sv. If
X contains any other vertex of degree d′ 6= d then 0 < |Xd′ | <

(
k
d′

)
(since k = k(G) + 1). If we

let S = {Sv : v ∈ X}, then there must be colors a, b and a set P with P ∪ {a} ∈ S, P ∪ {b} /∈ S
and |P ∪ {a}| = d′ 6= d. By changing P ∪ {a} to P ∪ {b} and by choosing the two d-sets to be
of the form P ′ ∪ {a} and P ′ ∪ {b} for some P ′, we can make the d-sets distinct and still have
|
⊕

v∈X Sv| ≤ |E(X, Xc)|. Hence we may assume X consists of just two vertices v, v′, both of
degree d. However, it is clear in this case that |E(X, Xc)| ≥ 2(d− 1), so we are done provided we
ensure that Sv and Sv′ have nonempty intersection.

We now calculate the exact values of k′(G) and k′′(G) for regular graphs.

Theorem 6 If G is a simple d-regular graph on n vertices with d ≥ 2 then k′′(G) = k′(G) and
both are equal to the smallest k such that

(a) if 2d ≤ k and
(
k−1
d−1

)
is even then either n =

(
k
d

)
or n ≤

(
k
d

)
− 3,

(b) if 2d ≤ k and
(
k−1
d−1

)
is odd then n ≤

(
k
d

)
− k

d ,

(c) if 2d ≥ k and n ≡
(
k−1

d

)
mod 2 then either n =

(
k
d

)
or n ≤

(
k
d

)
− 3,

(d) if 2d ≥ k and n 6≡
(
k−1

d

)
mod 2 then n ≤

(
k
d

)
− k

k−d ,

Proof. We first show that Conditions (a)–(d) hold for k = k′(G) by setting t = 0 in Lemma 3.
(a) If

(
k−1
d−1

)
is even then t′ = t = 0 and Conditions 5 and 3 imply that n 6=

(
k
d

)
−2. Also Conditions

5 and 2 imply that n 6=
(
k
d

)
− 1 since Condition 2 holds with n = 1 and tc = k.

(b) If
(
k−1
d−1

)
is odd, then t′ = k and Conditions 5 and 2 imply that n ≤

(
k
d

)
− k

d .
(c) Since

(
k
d

)
=

(
k−1

d

)
+

(
k−1
d−1

)
, we have

(
k
d

)
− n ≡

(
k−1
d−1

)
mod 2. Part (a) implies n 6=

(
k
d

)
− 2 (since(

k−1
d−1

)
would be even) and part (b) implies n 6=

(
k
d

)
− 1 (since

(
k−1
d−1

)
would be odd and k > d).

(d) If
(
k
d

)
− n 6≡

(
k−1
d−1

)
mod 2 then Conditions 5 and 2 imply (t′)c = k and n ≤

(
k
d

)
− k

k−d .
Note that the assumptions 2d ≤ k and 2d ≥ k are not required in this part of the proof.

Now let k be the smallest k satisfying the conditions above. It is enough to show k′′(G) ≤ k since
we already know that k′′(G) ≥ k′(G) ≥ k. It can be checked that χ′

s(Kr) = k(Kr) = r when r is
odd [8], so the theorem is true in this case. For all other graphs G, k ≥ d + 2, so we can assume
2 ≤ d ≤ k − 2. (If k ≤ d then n ≤

(
k
d

)
≤ 1 and if k = d + 1 then n ≤ d + 1 so G is a complete

graph Kd+1. But then
(
k−1

d

)
= 1, so by (d) n = d + 1 must be odd.) Fix d and k and let tr be

the smallest value of t that satisfies the conditions of Lemma 3 when n = r. To show k ≥ k′′(G)
it is enough that tr ≤ |E(X, Xc)| for all r and X with X ⊆ V (G) and |X| = r. We therefore
need to show that tr ≤ |E(X, Xc)| for all such r and X under Conditions (a)–(d) of the theorem.
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Translating the conditions of Lemma 3 and observing that tr is well defined for 0 ≤ r ≤
(
k
d

)
we

obtain that tr is the smallest non-negative integer t such that

1. t ≡ rd mod 2,

2. t ≥ k − r(k − d) if r is odd,

3. t > 0 if r = 2,

2′. t ≥ k − r′d if
(
k−1
d−1

)
is odd,

2′′. t ≥ k − r′(k − d) if r 6≡
(
k−1

d

)
mod 2,

3′. t > 0 if r′ = 2 and
(
k−1
d−1

)
is even,

where r′ =
(
k
d

)
−r. All the other conditions on t give upper bounds which we are not interested in.

Condition 5 of Lemma 3 followed by Conditions 2 and 3 gives rise to 2′, 2′′ and 3′. In Condition 2′′,
r 6≡

(
k−1

d

)
mod 2 is equivalent to either

(
k−1
d−1

)
odd or r′ odd but not both, so (t′)c = k − t. We

shall show that t = |E(X, Xc)| satisfies all of these conditions. This will imply tr ≤ |E(X, Xc)| as
required. Recall that k is the smallest integer satisfying (a)–(d) and that k ≥ d + 2 and |X| = r.
Condition 1 — |E(X, Xc)| ≡ rd mod 2.
This follows since the sum of the degrees of the vertices in X is 2|E(X)|+ |E(X, Xc)| = |X|d = rd.
Condition 2 — |E(X, Xc)| ≥ k − r(k − d) if r is odd.
Indeed, if r > k then k−r(k−d) < 0 and if 1 ≤ r ≤ k then |E(X, Xc)| ≥ r(d−r+1) ≥ k−r(k−d).
Condition 3 — |E(X, Xc)| > 0 if r = 2.
Once again, |E(X, Xc)| ≥ r(d− r + 1) = 2(d− 1) > 0 since d ≥ 2.
Condition 2′ — |E(X, Xc)| ≥ k − r′d if

(
k−1
d−1

)
is odd.

If 2d ≤ k then we are in case (b), so r′ ≥ k
d and 2′ holds. Otherwise 2d ≥ k and so k − r′d

is only positive when r′ = 0 or 1. In these cases n ≥
(
k
d

)
− 1, so we must be in case (c) and

n =
(
k
d

)
≡

(
k−1

d

)
mod 2 contradicting the fact that

(
k−1
d−1

)
is odd.

Condition 2′′ — |E(X, Xc)| ≥ k − r′(k − d) if r 6≡
(
k−1

d

)
mod 2.

If 2d ≥ k then we are in case (d), so r′ ≥ k
k−d and 2′′ holds. Otherwise 2d ≤ k and so k− r′(k− d)

is only positive when r′ = 0 or 1. In these cases n ≥
(
k
d

)
− 1, so we must be in case (a),

(
k−1
d−1

)
is

even, n =
(
k
d

)
, r = n− 1 (by parity) and r′ = 1. But then |E(X, Xc)| = d = k − r′(k − d).

Condition 3′ — |E(X, Xc)| > 0 if r′ = 2 and
(
k−1
d−1

)
is even.

If r′ = 2 then either n =
(
k
d

)
or k = 2d, n =

(
k
d

)
− 2. In the first case |E(X, Xc)| ≥ 2(d− 1) > 0.

The second case contradicts (a).

3 Regular graphs with small components

Define an integer valued function f(k, d,M) inductively for all k > d ≥ 2 and M ≥ 0 by
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f(k, d,M) =



(
k
2

)
− 3 if d = 2, k is odd,(

k
2

)
− k

2 if d = 2, k is even,
k − 1 if k = d + 1 > 3,
f(k − 1, d,M) + f(k − 1, d− 1,M)− (M − 1) if k > d + 1 > 3.

Theorem 7 Let d ≥ 2 and assume G is a simple d-regular graph which contains d − 2 disjoint
1-factors. Let G =

⋃s
i=1 Gi be the decomposition of G into components. If maxi |V (Gi)| ≤ M and

|V (G)| ≤ f(k, d,M) then G can be strongly colored with k colors.

Proof. The proof is by induction on d. The case d = 2 follows immediately from Theorem 2.
Now assume d > 2 and prove the result by induction on k. If k = d + 1 then |V (G)| ≤ k − 1 = d.
However, this is impossible since G is d-regular and so contains at least d + 1 vertices. Hence the
result holds vacuously for k = d + 1. Now assume k > d + 1 > 3 and the result holds for smaller
values of k or d.

Pick a maximal subset of components,
⋃r

i=1 Gi say, with total number of vertices at most f(k −
1, d − 1,M). Pick one of the 1-factors I of G. Removing the edges of I from

⋃r
i=1 Gi will give

a (d − 1)-regular graph G′ satisfying the conditions of the lemma with k − 1 colors. Hence we
can strongly color it with k − 1 colors. Coloring the edges of I that lie in

⋃r
i=1 Gi with the k’th

color gives a strong coloring of
⋃r

i=1 Gi in which color k meets every vertex. Now inductively
color the rest of the graph with the first k − 1 colors. This succeeds since either

⋃r
i=1 Gi = G or∑r

i=1 |V (Gi)| ≥ f(k−1, d−1,M)−(M−1) and so the remaining graph has at most f(k−1, d,M)
vertices. Also, no vertex outside

⋃r
i=1 Gi meets color k so the coloring on the whole of G is strong.

Corollary 8 Let d ≥ 3 and assume G is a simple d-regular graph which contains d − 2 disjoint
1-factors. As before write G =

⋃s
i=1 Gi as a union of components Gi. If |V (G)| ≤

(
k
d

)
and

|V (Gi)| ≤ 3(k−1)
4(d−1) for all i then G can be strongly colored with k + 1 colors.

Proof. Since |V (Gi)| ≥ d + 1, we may assume k ≥ 4(d2 − 1)/3 + 1 ≥ d + 1. By Theorem 7 it
is sufficient to prove f(k + 1, d,M) ≥

(
k
d

)
for M ≤ 3(k−1)

4(d−1) . Indeed, since f(k, d,M) (extended to

non-integral M) is a decreasing function of M we can assume M = 3(k−1)
4(d−1) . First we shall give a

general bound for f(k, d,M). Define δk,d by the formula

f(k, d,M) =
(

k

d

)
− 1

4

(
k − 1
d− 1

)
−

(
M +

3
4

) (
k − 3
d− 2

)
+ δk,d + (M − 1).

The definition of f(k, d,M) above then implies

δk,d =


(k − 6)/4 if d = 2, k odd,
(6− k)/4 if d = 2, k even,
(k + 2)/4 if k = d + 1 > 3,
δk−1,d + δk−1,d−1 if k > d + 1 > 3.
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In particular, δk,d is independent of M . For d = 3, it can be proved by induction that δk,3 = 21−k
8

if k is odd and k+8
8 if k is even. Similarly δk,4 = 15k−61

8 if k is odd and 7k−27
4 if k is even. In

particular, δk,4 ≥ 1 for all k ≥ 5. Hence by induction δk,d ≥ 1 for all k > d ≥ 4. Thus if M = 3(k−1)
4(d−1)

then δk+1,d + (M − 1) ≥ 0 for all k ≥ d ≥ 3 where for d = 3 we have used the explicit formulae for
δk,3. It is therefore enough to show(

k + 1
d

)
− 1

4

(
k

d− 1

)
−

(
M +

3
4

) (
k − 2
d− 2

)
≥

(
k

d

)
.

Since
(
k+1

d

)
=

(
k
d

)
+

(
k

d−1

)
, this is equivalent to(

M +
3
4

) (
k − 2
d− 2

)
≤ 3

4

(
k

d− 1

)
or equivalently

3(k + d− 2)
4(d− 1)

≤ 3k(k − 1)
4(d− 1)(k − d + 1)

.

Since (k + d− 2)(k− d+1) = k(k− 1)− (d− 1)(d− 2) ≤ k(k− 1), this is true for all k. The result
follows.

In particular, Corollary 8 proves Conjecture 1 for d-regular graphs with d− 2 1-factors and suffi-
ciently small components.

4 3-regular graphs

For this section we shall assume that G is a 3-regular multigraph. Note that for a 3-regular
multigraph to be a vdec-multigraph it is necessary and sufficient that G contains no triple edges
and no loops. Although Conjecture 1 is false in general for arbitrary multigraphs, it can be
extended to 3-regular multigraphs, and we still know of no counterexamples.

If S is a set of independent edges of G, define HS = (G \ S)[2] to be the subgraph of G induced
by the degree 2 vertices of G \ S, i.e., the endvertices of the edges in S. The graph HS is then a
union of paths and cycles (and double edges). Define GS to be the graph obtained by contracting
the degree 2 vertices of G \S. If G \S contains a cycle, we remove this cycle completely. In other
words, we contract the paths of HS in G \ S to a single edge and remove the cycles. The graph
GS is then a 3-regular multigraph on n− 2|S| vertices which may contain loops or multiple edges
even if G did not.

Theorem 9 Assume we can find a set S of independent edges of G such that HS = (G \ S)[2]
contains no component with fewer than 3 vertices. Assume also that HS either consists of exactly
two paths (and no cycles), or contains at most one path (and any number of cycles). Assume
further that GS can be strongly colored with k colors and 2|S| ≤ f(k, 2, 0). Then G can be strongly
colored with k + 1 colors.
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Proof. Assume we are given a strong k-coloring of GS . The graph G can be obtained by
subdividing at most two of the edges in GS and inserting the vertices and edges of S and HS .
Write HS as a union of paths P1, . . . , Ps and cycles Cs+1, . . . , Cr where either s ≤ 1 or r = s = 2.
Let xiyi be the edge in GS that is to be replaced by path xiPiyi for i = 1, . . . , s. Color the edges
of S with color k + 1. It just remains to color the paths xiPiyi and cycles Ci. The edges meeting
xi and yi will receive the same color that xiyi received in GS . The edges in Pi and Ci must now
be colored with colors 1, . . . , k so that each vertex of HS = P1 ∪ . . . ∪ Ps ∪ Cs+1 ∪ . . . ∪ Cr sees
a distinct pair of colors. This is equivalent to finding a strong k-coloring of H ′ = C1 ∪ . . . ∪ Cr

where C1, . . . , Cs are the cycles obtained by joining the two endvertices of Pi with an edge ei and
assuming the colors of ei are forced to be the same as those of the edges xiyi of GS . The condition
on the size of the components of HS ensures that all the Ci are cycles of length at least 3. By
Theorem 2 we can strongly k-color H ′ provided |V (H ′)| = 2|S| ≤ f(k, 2, 0). It remains to show
that we can choose the coloring so that e1, . . . , es are colored correctly.

If s = 1 we can clearly permute the colors {1, . . . , k} to ensure e1 receives the correct color.
Hence we may assume r = s = 2. Assume the colors of x1y1 and x2y2 are distinct. By cyclically
permuting the vertices of C2, we can assume e1 and e2 have distinct colors. Now by permuting
the colors {1, . . . , k} on H ′ we can assume they have the correct colors.

Now assume the colors on x1y1 and x2y2 are the same. If any edge on C1 is colored the same as
some edge on C2, then by permuting vertices and colors we can arrange it so that e1 and e2 receive
the correct color. If C1 and C2 have no color in common, change the color of e2 to that of e1.
This new coloring is still strong and by permuting the colors we can assume e1 and e2 receive the
correct color. Hence in all cases we are done.

Unfortunately, a typical 3-regular graph will not have a suitable S. Even so, there are many
graphs that the above algorithm will color in k + 1 colors when |V (G)| ≤

(
k
d

)
. For example, the

graph Gn obtained by adding the n longest diagonals to C2n can be colored.

Corollary 10 If Gn is the 3-regular graph on 2n vertices obtained by adding all longest diagonals
to C2n and if 2n ≤

(
k
3

)
then χ′

s(Gn) ≤ k + 1.

Proof. We shall prove this for 2n ≤ f(k + 1, 3, 2). The result will follow from the proof of
Corollary 8 since f(k + 1, 3, 2) ≥

(
k
3

)
for k ≥ 5. The proof is by induction on n. The cases Gn

for n ≤ 3 can be checked easily. For larger n let S be r consecutive diagonals where 4 ≤ 2r ≤
f(k, 2, 0) = f(k, 2, 2). As 8 ≤ 2n ≤ f(k + 1, 3, 2) we can choose such an r with 4 ≤ 2(n − r) ≤
f(k, 3, 2). The result follows by induction from the case GS = Gn−r.

We finish by giving a rough estimate of the number of 3-regular graphs for which Conjecture 1
can now be proved.

Lemma 11 Let R(n) be the number of 3-regular graphs up to isomorphism on 2n vertices and let
R′(n) be the number of these for which Conjecture 1 holds. Then

log R(n) = n log n + O(n)
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log R′(n) ≥ 2n

3
log n + O(n)

Proof. It is known [7] that

R(n) =
(6n)!

23n62n(3n)!(2n)!
(c + o(1))

for some constant c > 0. Using Stirling’s formula gives

log R(n) = 6n log 6n− 3n log 3n− 2n log 2n + O(n) = n log n + O(n).

Now let us construct a large class of labeled graphs for which Theorem 9 can inductively color G.
Start with a (Hamiltonian) cycle x1, . . . , x2n and partition these vertices into sets Vi, 4 ≤ i ≤ k,
with each Vi consisting of 2si consecutive vertices. Assume that 4 ≤ 2si ≤ f(i − 1, 2, 0) for
each i > 4 and s4 ≤ 3. Fill in chords in each Vi. The number of ways of doing this is at least
(2si − 1)(2si − 3) . . . 1 = (2si)!

si!2si for each i. The total number of graphs we can obtain is therefore

at least N =
∏ (2si)!

si!2si . Estimating using Stirling’s formula gives

log N =
∑

(si log si + O(si)) =
2n

3
log n + O(n).

The maximum number of these that can be isomorphic to a given one is at most 2n.3.22n−2 since
this is the maximum number of directed Hamiltonian paths in these graphs. Hence

log R′(n) ≥ log N −O(n) =
2n

3
log n + O(n)

Although Theorem 9 does not apply to most 3-regular graphs, the idea of removing edges and
coloring the resulting graph with k− 1 colors was used extensively in Result 1 where Conjecture 2
was checked for all 3-regular graphs of degree at most 22.
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