
Bond percolation with attenuation
in high dimensional Voronŏı tilings
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Abstract

Let P be the set of points in a realization of a uniform Poisson process in Rn. The
set P determines a Voronŏı tiling of Rn. Construct an infinite graph G with vertex set
P and edges joining vertices when the corresponding Voronŏı cells share a (n − 1)-
dimensional boundary face. We consider bond percolation models on G obtained
by declaring each edge xy of G open independently with probability p(‖x − y‖),
depending only on the Euclidean distance ‖x − y‖ between the vertices. We give
some sufficient conditions on p(t) that ensures that an infinite connected component
(i.e., percolation) occurs, or does not occur. In particular, we show that for p(t) = p
is a constant, there is a phase transition at a critical probability p = pc(n), where
2−n(5n log n)−1 ≤ pc(n) ≤ C2−n√n log n. We also show that if p(t) = e−λt then
there is a phase transition at a critical parameter λ = λc(n), where λc(n) = (loge 2+
o(1))n/2rn, where rn is the radius of the n-dimensional sphere that, on average,
contains a single point of P.

1 Introduction

Take a Poisson process on Rn with constant density. A realization of the process consists
(almost surely) of a countably infinite subset P ⊆ Rn. For a given realization, the points
in it will be called Poisson points. Corresponding to each Poisson point x, we construct
its Voronŏı cell which consists of those points of Rn that are closer to x than to any other
Poisson point. We note that almost surely P is discrete, so that the Voronŏı cells are
convex open sets. Since P is countable, it is clear that the points that are equidistant
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from two or more Poisson points have Lebesgue measure 0 so that the Voronŏı cells form
a partition of Rn up to sets of measure 0, the Voronŏı tessellation associated to P . This
random tessellation is said to be a random Voronŏı tessellation of Rn. Random Voronŏı
tessellations have been studied for over a century and a half, first in crystallography and
then in mathematics (see §8.3 of [4], and the references therein). In particular, Delesse [5]
estimated the volume of a crystal, and Gilbert [6] studied the expectations of the surface
area, the number of faces, and other parameters.

It is easily seen that for almost every realization of the Poisson process, the Voronŏı
cells are all of finite volume and all have finitely many (n − 1)-dimensional faces. Two
Voronŏı cells are said to be neighbors if they share a (n − 1)-dimensional face. Define a
graph G with vertex set P and points adjacent iff their Voronŏı cells are neighbors. Note
that almost surely, G is locally finite, i.e., every vertex of G has finite degree.

Percolation on this graph G is said to be a random Voronŏı percolation . In 1963, Frisch
and Hammersley called for the study of percolation on geometric graphs, including Voronŏı
percolation. This challenge was first taken up by physicists, who performed numerous
computer experiments to estimate the critical probabilities (see [8], [9], [13] among many
others).

The mathematical study of random Voronŏı percolation started much later: first, in
a series of papers, Vahidi-Asl and Wierman [10, 11, 12] studied first-passage percolation
on random Voronŏı percolation, and then Gravner and Griffeath [7] investigated cellular
automata on random colourings of a random Voronŏı tessellation. Balister, Bollobás and
Quas [1] gave bounds on the critical probability of site percolation in high dimensions, and
Bollobás and Riordan [2, 3] proved that the critical probability of site percolation in the
plane is 1/2, and so is the critical probability of the so-called Johnson–Mehl tessellation
in the plane.

Our aim in this paper is to study bond percolation in random Voronŏı percolation in
high dimensions, i.e., bond percolation on the random graph G in Rn we defined above.
In fact, we shall consider two cases of a rather general bond percolation model. Fix a
function p : [0,∞) → [0, 1] and declare an edge xy of G open with probability p(‖x− y‖),
independently of the state of all other edges. Here ‖x− y‖ is the Euclidean (`2) distance
between the points x, y ∈ P . Write Gopen for the subgraph consisting of the open edges
in G. We shall be particularly interested in two cases.

1. Constant p ∈ [0, 1]. This corresponds to the usual concept of independent bond
percolation on an infinite graph.

2. Exponential attenuation, p(t) = e−λt, λ > 0.

The model is said to percolate if Gopen has an infinite component. The existence of an
infinite component in Gopen is unaffected by the state of any finite set of edges, so is a
tail event. Thus by the Kolmogorov 0-1 law, for any choice of p(t), the probability of
percolation is either 0 or 1. It is a common situation when studying percolation that when
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varying a parameter of the model, there exists a critical value of the parameter where the
probability of percolation jumps from 0 to 1. In this case we say the model has a phase
transition at this value of the parameter.

Define rn to be the radius of the n-dimensional sphere which contains on average one
Poisson point. By a uniform scaling of Rn we may, and shall, assume that the Poisson
process has intensity one, so that rn is the radius of the n-dimensional sphere with unit
volume. In this case rn = (n/2)!1/n/

√
π ∼

√
n/2πe. We shall prove the following two

results.

Theorem 1. If n is sufficiently large and

∫ 2n(4n log n)

0

p(t1/nrn) dt < 0.9

then there is almost surely no percolation.

Theorem 2. There exists an absolute constant C such that if p(t) > C 2−n
√

n log n for
all t < 2rn, then there is almost surely percolation.

From these we can deduce the following.

Corollary 3. If p(t) = p is a constant, then a phase transition occurs at p = pc(n) where
for sufficiently large n,

2−n(5n log n)−1 ≤ pc(n) ≤ C2−n
√

n log n.

Proof. A simple coupling argument shows that if there is percolation at a given value of p
then there is percolation at all larger values of p. Thus there is a critical pc(n) ∈ [0, 1] such
that percolation occurs for all p > pc(n) and does not occur for all p < pc(n). Theorem 1
shows that there is no percolation when p < 2−n(5n log n)−1 and Theorem 2 shows that
there is percolation for p > C 2−n

√
n log n. The result follows.

Corollary 4. If p(t) = e−λt, then a phase transition occurs at λ = λc(n) where

λc(n) = (log 2 + o(1))n/2rn.

Proof. As above, monotonicity of p(t) as λ varies implies that there is a critical λc(n) ∈
[0,∞]. Setting λ = (n/2rn) log(2 + ε), ε > 0, and t = xn,

∫ 2n(4n log n)

0

p(t1/nrn) dt =

∫ 2+o(1)

0

nxn−1(2 + ε)−nx/2 dx

≤
∫ 2+o(1)

0

n(x(2 + ε)−x/2)n−1 dx

≤ (2 + o(1))ncn−1,
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where c = supx∈[0,2+o(1)] x(2 + ε)−x/2 = 2/(2 + ε) + o(1) < 1 (for 2 + ε < e). Thus for large
n percolation almost surely does not occur by Theorem 1.

Setting λ = (n/2rn) log(2 − ε), ε > 0, gives that for t ≤ 2rn, p(t) ≥ (2 − ε)−n >
C 2−n

√
n log n for large n. Thus by Theorem 2 percolation almost surely does occur.

Thus for any ε > 0, (n/2rn) log(2 − ε) ≤ λc(n) ≤ (n/2rn) log(2 + ε) for sufficiently
large n. The result follows.

2 The Lower Bound

We follow the proof of the lower bound for site percolation given in [1]. Starting from a
Voronŏı percolation process on Rn, we introduce a site percolation process on Zn, which
we use to prove the absence of percolation in the original Voronŏı process. The Zn process
fails to have the usual independence between sites, but has instead a dependence that is
of finite range.

To construct the site percolation process on Zn, we start off with a realization of the
Voronŏı process and divide Rn into cubes of side length R, where R = n1.1rn. Note that
R = Θ(n1.6). Each cube corresponds to a vertex in Zn and two such cubes are adjacent if
their closures intersect, which is equivalent to sites being diagonally adjacent (`∞-distance
1 apart) in Zn. For a set C, Br(C) will denote {x : infy∈C ‖x − y‖ < r}. We will write
Br(x) for Br({x}).

A cube C in Rn (or the corresponding vertex in Zn) is said to be open if either

(1) there exists a point x ∈ BR/4(C) such that BR/4(x) contains no point of the under-
lying Poisson process; or

(2) there exists a curve γ in BR/4(C) such that γ(0) ∈ ∂C, γ(1) ∈ ∂BR/4(C), and for all
t ∈ [0, 1], γ(t) either lies in the interior of a Voronŏı cell, or in the (n−1)-dimensional
interior a face joining two cells that are adjacent in Gopen.

Lemma 5. The openness of a cube C is determined by the restriction of the the Pois-
son process to BR/2(C) together with the openness of any edge joining Poisson points in
BR/2(C).

Proof. The cube C is open if (1) holds or if (2′) holds, where (2′) is the condition that (1)
fails but (2) holds.

Clearly whether or not condition (1) is satisfied is determined by the restriction of the
Poisson process to BR/2(C). It is sufficient to show that (2′) is determined by the restriction
of the Poisson process to BR/2(C). Given that (1) fails, every point of BR/4(C) is within
R/4 of a point of the Poisson process. The Voronŏı cells restricted to BR/4(C) are therefore
determined by the restriction of the Poisson process to BR/2(C). The information in the
subgraph of Gopen induced by the Poisson points in BR/2(C) is thus sufficient to determine
whether or not (2′) holds.

4



It follows from Lemma 5 that openness of two sites in the Zn process are independent
provided that they are not (diagonally) adjacent.

Lemma 6. The probability of percolation in the Zn process defined above is bounded below
by the probability of percolation in the Voronŏı process.

Proof. If Gopen contains an infinite component, then as G is locally finite and by compact-
ness, there must be an infinite path in Gopen. Thus there is an unbounded curve γ in
Rn such that for all t, γ(t) either lies in the interior of a Voronŏı cell, or in the (n − 1)-
dimensional interior of a face joining two cells that are adjacent in Gopen. For any cube C
that intersects γ, one can take a subpath of γ satisfying (2) above, so C is open in the Zn

process. The set of all cubes C meeting γ then gives an infinite open component in the Zn

process.

Hence to show that the Voronŏı process does not percolate, it is sufficient to show that
the site process does not percolate. Before proving this, we state three lemmas from [1].

Lemma 7 (Lemma 4 of [1]). Let p be the probability that a given cube is open. If p < 9−n

then there is almost surely no percolation in the Zn process.

Lemma 8 (Lemma 5 of [1]). Let R = rnn
1.1 and write A1 for the event that each point in

BR/2(C) has a Poisson point within distance rn(4n log n)1/n. Then P(Ac
1) = o(9−n).

Lemma 9 (Lemma 6 of [1]). Let R = rnn1.1 and write A3 for the event that there are at
most 2(2R)n Voronŏı cells intersecting ∂C. Then P(Ac

3) = o(9−n).

Lemma 10. Let A be the event that the cube C of side R = rnn
1.1 is open. Then under

the assumptions of Theorem 1, P(A) = o(9−n).

Proof. By the previous two lemmas, we may restrict our attention to configurations be-
longing to A1 ∩ A3. Since R/4 > rn(4n log n)1/n for large n, condition (1) fails automat-
ically. We note that by A1, any pair of Poisson points in BR/2(C) whose Voronŏı cells
meet within BR/4(C) must be within distance 2rn(4n log n)1/n of each other, otherwise
the point where the cells meet would contradict A1. Thus the path γ in (2) must pass
through cells corresponding to Poisson points within 2rn(4n log n)1/n of each other. Thus
for condition (2) to hold, there needs to be a path of open Voronŏı cells consisting of at
least (R/4)/(2rn(4n log n)1/n) cells. But for sufficiently large n, (R/4)/(2rn(4n log n)1/n) >
n1.1/10. It follows that P(A ∩ A1 ∩ A3) is bounded above by the probability that there
exists an open path of tiles of length n1.1/10 starting from ∂C.

Write G ′ for the graph with the same vertex set as G, but vertices joined when they
are within distance 2rn(4n log n)1/n. Let G ′open be defined similarly. (We couple Gopen and
G ′open so that when an edge exists in both then they are either both open or both closed.)
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Then by the above, P(A ∩A1 ∩A3) is bounded above by the probability that there exists
an open path of tiles in G ′open of length n1.1/10 starting from ∂C. Write

E =

∫ 2n(4n log n)

0

p(t1/nrn) dt.

Then E is the expected number of neighbours in G ′open of a vertex. (The integration is

over volume in consecutive spherical shells of radius t1/nrn about the vertex. Such a shell
encloses a volume of t.) If we condition on the existence of a path P = v1 . . . vk in G ′open,
then the expected number of neighbours of vk other than the vi, i < k, is exactly E. This
is because (unlike in Gopen) the existence of v1, . . . , vk−1 does not affect whether or not any
other Poisson point is a neighbour of vk, and conditioned on the existence of v1, . . . , vk the
remaining Poisson points are still distributed according to a Poisson process. Thus if we
write Ek for the expected number of paths of edge length k in G ′open starting at a fixed
vertex v1, then E0 = 1 and Ek+1 = EkE for all k ≥ 0. Hence Ek = Ek.

Writing Eo for the expected value of the number of paths of length n1.1/10 in Gopen

starting from ∂C times the indicator function of A1 ∩ A3,

Eo ≤ 2(2R)nEn1.1/10 = 2(2R)nEn1.1/10 = O(n2n0.9n1.1/10) = o(9−n).

Since the expected value is an upper bound for the probability of existence, we see that
P(A ∩ A1 ∩ A3) = o(9−n) and hence P(A) = o(9−n) as required.

Theorem 1 now follows from Lemmas 6, 7, and 10.

3 The Upper Bound

We shall bound the probability of the Voronŏı process percolating by comparing it with
site percolation on the cells. For this we use the following result from [1].

Theorem 11. There exists a constant C such that for p > C 2−n
√

n log n the site percola-
tion on the Voronŏı cells obtained by declaring each cell independently open with probability
p, has infinite clusters with probability 1. Moreover, this result remains true if we delete
edges of length more than 2ηrn where ηn = (1− pc)/(32rn) and pc is the critical probability
for oriented site percolation in Z2.

Proof of Theorem 2. We note that η < 1. Let G ′ be G with all edges that are longer than
2rn deleted. Then Theorem 11 implies that we have site percolation on G ′ when vertices
are open with probability p > C 2−n

√
n log n. However, in general, site percolation on any

graph with a given value of p implies bond percolation on the same graph with the same
p (see [4]). Thus we have bond percolation on G ′ with this value of p, and hence we have
an infinite component in Gopen provided p(t) ≥ p for t ≤ 2rn.
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(Poznań, 1989), 247–262, Wiley-Intersci. Publ., Wiley, New York, 1992.

[12] M. Q. Vahidi-Asl and J. C. Wierman, Upper and lower bounds for the route length of
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