A **Ring** (with 1) is a set \(R \) with two binary operations \(+\) and \(\times \) such that

- **R1.** \((R, +) \) is an Abelian group under \(+ \).
- **R2.** \((R, \times) \) is a Monoid under \(\times \), (so \(\times \) is associative and has an identity 1).
- **R3.** The distributive laws hold: \(a(b + c) = ab + ac, \ (b + c)a = ba + ca \).

Many of the standard facts from algebra follow from these axioms. In particular, \(0a = a0 = 0, \ a(−b) = (−1)a, \ (\sum a_i)(\sum b_j) = \sum a_i b_j \).

The ring \(R \) is **commutative** if \(\times \) is commutative.

An element of \(R \) is a **unit** if it has a (2-sided) multiplicative inverse.

The set of units \(R \times \) (or \(U(R) \)) is a group under \(\times \).

Examples

1. \(\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C} \) are all rings under the usual \(+\) and \(\times \). \(\mathbb{Q}, \mathbb{R}, \mathbb{C} \) are fields. \(\mathbb{Z} \) is an ID.
2. \(\mathbb{Z}/n\mathbb{Z} \) is a ring under \(+\) and \(\times \) mod \(n \). This ring is an ID iff \(n \) is prime. In fact, if \(n \) is prime then \(\mathbb{Z}/n\mathbb{Z} \) is a field.
3. If \(R \) is a ring then the set \(M_n(R) \) of \(n \times n \) matrices with entries in \(R \) is a ring under matrix addition and multiplication. \(M_n(R) \) is non-commutative in general.
4. Let \((A, +) \) be an abelian group and let \(\text{End}(A) \) be the set of group homomorphisms \(A \to A \). Define addition pointwise, \((f + g)(a) = f(a) + g(a) \), and multiplication by composition, \(fg(a) = f(g(a)) \). Then \(\text{End}(A) \) is a (usually non-commutative) ring.
5. If \(A = \prod_{i \in \mathbb{N}} \mathbb{Z} = \{(a_0, a_1, \ldots) : a_i \in \mathbb{Z} \} \) then the maps \(R((a_0, \ldots)) = (0, a_0, a_1, \ldots) \) and \(L((a_0, a_1, \ldots)) = (a_1, a_2, \ldots) \) lie in \(\text{End}(A) \) and \(LR = 1 \neq RL \). Hence \(R \) has a left, but not a right inverse. [Recall that left and right inverses must be equal if they both exist.]
6. Let \(C[0, 1] \) be the set of continuous functions from \([0, 1] \) to \(\mathbb{R} \) with addition and multiplication defined pointwise. Then \(C[0, 1] \) is a ring. It is not an ID (why?).

A subset \(S \) of \(R \) is a **subring** iff \((S, +) \) is a subgroup of \((R, +) \) and \((S, \times) \) is a submonoid of \((R, \times) \). Equivalently, \(1_R \in S \) and \(a, b \in S \) implies \(a - b, ab \in S \).

A subset \(I \) of \(R \) is a **left ideal** iff \((I, +) \) is a subgroup of \((I, +) \) such that for all \(r \in R, \ a \in I \), we have \(ra \in I \). A subset \(I \) of \(R \) is a **right ideal** iff \((I, +) \) is a subgroup of \((I, +) \)
such that for all \(r \in R, a \in I \), we have \(ar \in I \). An **ideal** is a subset that is both a left ideal and a right ideal. Equivalently, \(I \neq \emptyset \) and \(a, b \in I, r \in R \), implies \(a - b, ra, ar \in I \). The sets \(\{0\} \) and \(R \) are ideals of \(R \). An ideal \(I \) is **proper** if \(I \neq R \), and **non-trivial** if \(I \neq \{0\} \).

Examples

1. \(n\mathbb{Z} \) is an ideal of \(\mathbb{Z} \) but not a subring (unless \(n = \pm 1 \)).
2. \(\mathbb{Z} \) is a subring of \(\mathbb{R} \) but not an ideal.
3. The set of the matrices \(I = \left\{ \begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix} \mid b, d \in \mathbb{R} \right\} \) is a left ideal, but not a right ideal of \(M_2(\mathbb{R}) \). But \(I \) is a 2-sided ideal of the subring \(T = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mid a, b, d \in \mathbb{R} \right\} \) of \(M_2(\mathbb{R}) \).
4. The **quaternions** \(\mathbb{H} = \left\{ \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix} \mid \alpha, \beta \in \mathbb{C} \right\} \) form a subring of \(M_2(\mathbb{C}) \). Any \(x \in \mathbb{H} \) can be written uniquely as \(x = a + bi + cj + dk \) where \(i = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, j = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, k = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \). Then \(i^2 = j^2 = k^2 = -1, ij = k, ji = -k, \) and \((a + bi + cj + dk)^{-1} = (a/r) - (b/r)i - (c/r)j - (d/r)k \) where \(r = a^2 + b^2 + c^2 + d^2 \). Thus \(\mathbb{H} \) is a noncommutative division ring.

Lemma 1.1 If \(S_\alpha, \alpha \in A \), are subrings of \(R \) then \(\bigcap_{\alpha \in A} S_\alpha \) is a subring of \(R \).

If \(I_\alpha \) are ideals of \(R \) then \(\bigcap_{\alpha \in A} I_\alpha \) is an ideal of \(R \).

The ideal \((S) \) generated by a subset \(S \subseteq R \) is the smallest ideal of \(R \) containing \(S \). It can be defined as the intersection \(\bigcap_{J \supseteq S} J \) of all ideals containing \(S \).

An ideal \(I \) is **principal** if it is generated by a single element, \(I = (a) \) for some \(a \in R \). An ideal is **finitely generated** if it is generated by a finite set, \(I = (S), |S| < \infty \).

We can also define the subring generated by a subset. More generally, if \(R \) is a subring of \(R' \) and \(S \subseteq R' \), then \(R[S] \) is the smallest subring of \(R' \) containing \(R \) and \(S \) (= the intersection of all subrings of \(R' \) containing \(R \) and \(S \)).

Exercises

1. Show that an ideal is proper iff it does not contain a unit.
2. Show that \((S) = \{ \sum_{i=1}^n r_is_ir'_i \mid r_i, r'_i \in R, s_i \in S, n \in \mathbb{N} \} \).
3. Show that if \(R \) is commutative then the principal ideal \((a) \) is \(\{ ra \mid r \in R \} \).
4. Show that \(R[\alpha] \) is the set of all polynomial expressions \(\sum_{i=0}^n a_i \alpha^i \) with coefficients \(a_i \in R \).
5. Deduce that \(\mathbb{Z}[i] = \{ a + bi \mid a, b \in \mathbb{Z} \} \) as a subring of \(\mathbb{C} \) and \(\mathbb{Q}[\sqrt{2}] = \{ a + b\sqrt{2} + c\sqrt{4} \mid a, b, c \in \mathbb{Q} \} \) as a subring of \(\mathbb{R} \).
6. Describe \(\mathbb{Z}[1/2] \) as a subring of \(\mathbb{Q} \).
7. Let \(I \) be the set of continuous functions \(f \in C[0, 1] \) such that \(f(0.5) = 0 \). Show that \(I \) is an ideal of \(C[0, 1] \) that is not principal (or even finitely generated).
A (ring) homomorphism from the ring R to the ring S is a function $f : R \to S$ that is a group homomorphism $(R, +) \to (S, +)$ and a monoid homomorphism $(R, \times) \to (S, \times)$. Equivalently $f(a + b) = f(a) + f(b), f(ab) = f(a)f(b), f(1_R) = 1_S$.

Examples

1. The map $f : \mathbb{T} \to \mathbb{R}$ given by $f(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) = a$ where $T = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{R} \right\}$.

2. If S is a subring of R then the inclusion map $i : S \to R, i(r) = r$, is a homomorphism.

A (ring) isomorphism is a homomorphism $R \to S$ that has a 2-sided inverse map $g : S \to R$ which is also a homomorphism. It is sufficient for f to be a bijective homomorphism.

If I is an ideal of R then the quotient ring R/I is the quotient group $(R/I, +)$ with multiplication defined by $(a + I)(b + I) = ab + I$.

Lemma 2.1 The quotient ring R/I is indeed a ring and the projection map $\pi : R \to R/I$ given by $\pi(a) = a + I$ is a surjective ring homomorphism.

Example $R = \mathbb{Z}$, $I = (n)$, then $R/I = \mathbb{Z}/n\mathbb{Z}$ is the integers mod n with addition and multiplication mod n.

Theorem (1st Isomorphism Theorem) If $f : R \to S$ then $\text{Ker} \, f = \{ r \mid f(r) = 0 \}$ is an ideal of R, $\text{Im} \, f = \{ f(r) \mid r \in R \}$ is a subring of S and $f = i \circ \tilde{f} \circ \pi$ where

- $\pi : R \to R/\text{Ker} \, f$ is the (surjective) projection homomorphism.
- $\tilde{f} : R/\text{Ker} \, f \to \text{Im} \, f$ is a (bijective) ring isomorphism.
- $i : \text{Im} \, f \to S$ is the (injective) inclusion homomorphism.

Theorem (2nd Isomorphism Theorem) If I is an ideal of R then there is a bijection

> $\{\text{subgroups } H \text{ of } (R, +) \text{ with } I \leq H \leq R\} \leftrightarrow \{\text{subgroups of } (R/I, +)\}$,

where H corresponds to H/I. In this correspondence subrings correspond to subrings and ideals correspond to ideals. Moreover, if J is an ideal with $I \leq J \leq R$ then there is an isomorphism $R/J \cong (R/I)/(J/I)$.

Theorem (3rd Isomorphism Theorem) If I is an ideal of R and S is a subring of R then $S + I$ is a subring of R, $S \cap I$ is an ideal of S, and $(S + I)/I \cong S/(S \cap I)$.

Example For any ring R define $f : \mathbb{Z} \to R$ by $f(n) = n.1_R$ ($1_R + \cdots + 1_R$ defined as for additive groups). Then f is a ring homomorphism. The kernel is a subgroup of $(\mathbb{Z}, +)$ so is $n\mathbb{Z}$ for some $n \geq 0$. The image $S = \{ n.1_R \mid n \in \mathbb{Z} \}$ is called the prime subring of R and is isomorphic to $\mathbb{Z}/n\mathbb{Z}$. The characteristic of R, $\text{char}(R)$, is the integer n. E.g., $\text{char}(\mathbb{R}) = 0$, $\text{char}(\mathbb{Z}/n\mathbb{Z}) = n$, $\text{char}(\{0\}) = 1$.

3
A **maximal ideal** is a proper ideal M of R such that for any ideal I, $M \subseteq I \subseteq R$ implies $I = M$ or $I = R$.

Example The ideal (n) is a maximal ideal of \mathbb{Z} iff n is prime.

A non-trivial ring is **simple** if the only ideals of R are (0) and R. Equivalently, (0) is maximal.

Lemma 2.2 Let R be a commutative ring. Then R is simple iff R is a field.

Proof. If R is a field and $I \neq (0)$ is an ideal then $u \in I$ for some $u \neq 0$. But u is a unit so $(ru^{-1})u = r \in I$ for all $r \in R$. Thus $I = R$. Conversely, if $a \neq 0$ and a is not a unit then $(a) = \{ra \mid r \in R\}$ is a non-trivial proper ideal of R. \hfill \Box

Note that if R is a division ring then R is simple. However the converse fails:

Lemma 2.3 Let D be a division ring. Then $M_n(D)$ is a simple ring for any $n \geq 1$.

Proof. Let I be a non-zero ideal of $M_n(D)$ and let $A = (a_{ij}) \in I$, $A \neq 0$. In particular $a_{kl} \neq 0$ for some k, l. Let E_{ij} be the matrix with 1 in entry (i,j) and zeros elsewhere. Then $E_{ik}AE_{lj} = a_{kl}E_{ij} \in I$. Since $a_{kl} \in D$ and D is a division ring, $a_{kl}^{-1} \in D$, so $a_{kl}^{-1}I \subseteq M_n(D)$. Now $(a_{kl}^{-1}I)(a_{kl}E_{ij}) = E_{ij} \in I$. But any matrix $B = (b_{ij})$ is a linear combination $\sum(b_{ij}I)E_{ij}$, so $B \in I$ and $I = M_n(D)$. \hfill \Box

So by the 2nd Isomorphism Theorem, for commutative R, M is maximal iff R/M is a field, but for non-commutative R, M may be maximal without R/M being a division ring.

Exercises

1. Show that any finite ID is a field.

2. An element a of a ring is **nilpotent** if $a^n = 0$ for some $n \in \mathbb{N}$. Show that if a is nilpotent then $1 + a$ is a unit.

3. Show that if R is commutative then the set of nilpotent elements forms an ideal of R. [Hint: make sure you check that a, b nilpotent implies $a - b$ is nilpotent.]

4. Show that if $r \in R$ lies in the intersection of all maximal ideals of R then $1 + r$ is a unit.

5. Show that any homomorphism $f: F \rightarrow R$ from a field F to a non-trivial ring R is injective, so in particular R contains a subring isomorphic to F.
A partial ordering on a set \mathcal{X} is a relation \leq satisfying the properties:

O1. $\forall x: x \leq x$,
O2. $\forall x, y$: if $x \leq y$ and $y \leq x$ then $x = y$,
O3. $\forall x, y, z$: if $x \leq y$ and $y \leq z$ then $x \leq z$.

A total ordering is a partial ordering which also satisfies:

O4. $\forall x, y$: either $x \leq y$ or $y \leq x$.

Example Any collection of sets with \subseteq as the ordering forms a partially ordered set that is not in general totally ordered.

If (\mathcal{X}, \leq) is a partially ordered set, a **chain** in \mathcal{X} is a non-empty subset $\mathcal{C} \subseteq \mathcal{X}$ that is totally ordered by \leq.

If $\mathcal{S} \subseteq \mathcal{X}$, and $x \in \mathcal{X}$, we say x is an **upper bound** for \mathcal{S} if $y \leq x$ for all $y \in \mathcal{S}$. [Note that we do not require x to be an element of \mathcal{S}.]

A maximal element of \mathcal{X} is an element x such that for any $y \in \mathcal{X}$, $x \leq y$ implies $x = y$. [Note: This does not imply that $y \leq x$ for all y since \leq is only a partial order. In particular there may be many maximal elements.]

Theorem (Zorn’s Lemma) If (\mathcal{X}, \leq) is a non-empty partially ordered set for which every chain has an upper bound then \mathcal{X} has a maximal element.

This result follows from (and is equivalent to) the Axiom of choice, which states that if X_i are non-empty sets then $\prod_{i \in I} X_i$ is non-empty. [I will not give the proof here as it is rather long.]

Note: If we had defined things so that \emptyset were a chain, we would not need the condition that $\mathcal{X} \neq \emptyset$ in Zorn’s Lemma since the existence of an upper bound for \emptyset is just the condition that an element of \mathcal{X} exists. However, in practice it is easier to check $\mathcal{X} \neq \emptyset$ and then check separately that each non-empty totally ordered subset has an upper bound.

Theorem 3.1 If I is a proper ideal of a ring R (with 1) then there exists a maximal ideal M such that $I \subseteq M$.

Proof. If an ideal J contains 1 then $J = R$, so an ideal is proper iff it does not contain 1. Let \mathcal{X} be the set of proper ideals J of R with $I \subseteq J$. The partial order on \mathcal{X} will be \subseteq. Since $I \in \mathcal{X}$, $\mathcal{X} \neq \emptyset$. Now let \mathcal{C} be a chain in \mathcal{X}, i.e., a set of ideals $\{J_\alpha\}$ such that for every $J_\alpha, J_\beta \in \mathcal{C}$ either $J_\alpha \subseteq J_\beta$ or $J_\beta \subseteq J_\alpha$. Let $K = \bigcup_{J_\alpha \in \mathcal{C}} J_\alpha$. We shall show that K is an upper bound for \mathcal{C}.
Firstly $C \neq \emptyset$, so some ideal J_α lies in C and $I \subseteq J_\alpha \subseteq K$. In particular $K \neq \emptyset$. If $x, y \in K$ then $x \in J_\alpha$, $y \in J_\beta$, say. Since C is totally ordered, we can assume without loss of generality that $J_\alpha \subseteq J_\beta$. Thus $x, y \in J_\beta$, and $x - y \in J_\beta \subseteq K$. If $x \in K$, $r \in R$, then $x \in J_\alpha$, say, so $xr, rx \in J_\alpha \subseteq K$. Hence K is an ideal with $I \subseteq K$. However $1 \notin J_\alpha$ for each $J_\alpha \in C$, so $1 \notin K$. Hence K is proper. Therefore $K \in \mathcal{X}$ and is clearly an upper bound for C.

The conditions of Zorn’s Lemma apply, so \mathcal{X} has a maximal element M, say. Now M is a proper ideal containing I and is maximal, since if $M \subset J \subset R$ then $J \in \mathcal{X}$ and M would not be maximal in \mathcal{X}. \qed

We now give an example from linear algebra. Let V be a vector space (possibly infinite dimensional).

A set $S \subseteq V$ is called linearly independent if there are no non-trivial finite linear combinations that give 0. In other words if $\sum_{i=1}^{n} \lambda_i s_i = 0$ and the s_i are distinct elements of S then $\lambda_i = 0$ for each i.

A set $S \subseteq V$ is called spanning if every element $v \in V$ can be written as a finite linear combinations of elements of S, $v = \sum_{i=1}^{n} \lambda_i s_i$.

A set $S \subseteq V$ is called a basis if it is a linearly independent spanning set. Note that every element $v \in V$ can be written as a linear combination of elements of a basis in a unique way. [Spanning implies existence, linear independence implies uniqueness.]

Theorem 3.2 Every vector space has a basis.

Proof. Let \mathcal{X} be the set of all linearly independent sets in V partially ordered by \subseteq. Since \emptyset is linearly independent, $\mathcal{X} \neq \emptyset$. Let \mathcal{C} be a chain in \mathcal{X} and let $S = \bigcup_{S_\alpha \in \mathcal{C}} S_\alpha$. We shall show that S is linearly independent.

Suppose $\sum_{i=1}^{n} \lambda_i s_i = 0$ and $s_i \in S_{\alpha_i} \in C$ (the s_i are distinct but the α_i need not be). Then by total ordering of the S_{α_i}, there must be one S_{α_j} that contains all the others (use induction on n). But then $\sum_{i=1}^{n} \lambda_i s_i = 0$ is a linear relation in S_{α_j} which is linearly independent. Thus $\lambda_i = 0$ for all i. Hence S is linearly independent, so $S \in \mathcal{X}$ and is an upper bound for \mathcal{C}.

Now apply Zorn’s Lemma to give a maximal linearly independent set M. We shall show that M spans V and so is a basis. Clearly any element of M is a linear combination of elements of M, so pick any $v \notin M$ and consider $M \cup \{v\}$. By maximality of M this cannot be linearly independent. Hence there is a linear combination $\lambda v + \sum_{i=1}^{n} \lambda_i s_i = 0$, $s_i \in M$, with not all the λ’s zero. If $\lambda = 0$ this gives a linear relation in M, contradicting linear independence of M. Hence $\lambda \neq 0$ and $v = \sum_{i=1}^{n} (-\lambda_i / \lambda) s_i$ is a linear combination of elements of M. \qed
Anti-isomorphisms

An anti-homomorphism is a map \(f : R \rightarrow S \) such that \(f(a + b) = f(a) + f(b) \), \(f(1) = 1 \), and \(f(ab) = f(b)f(a) \). An anti-isomorphism is an invertible anti-homomorphism.

Examples The transpose map \(T : M_n(\mathbb{R}) \rightarrow M_n(\mathbb{R}) \).
The map \(\mathbb{H} \rightarrow \mathbb{H} \) given by \(f(a + bi + cj + dk) = a - bi - cj - dk \).

The opposite ring \(R^o \) of \(R \) is the ring \(R \) with multiplication defined by \(a \times_{R^o} b = b \times_R a \).

Note that \(R^{oo} = R \).

Lemma 4.1 A map \(f : R \rightarrow S \) is an anti-homomorphism iff it is a homomorphism viewed as a map \(R \rightarrow S^o \) (or \(R^o \rightarrow S \)).

Example \(M_n(\mathbb{R})^o \) is isomorphic to \(M_n(\mathbb{R}) \), one isomorphism being the transpose map \(T \).

Rngs (Rings without 1s)

A Rng (or “ring which does not necessarily have a 1”) is a set \(R \) with + and \(\times \) defined so that \((R,+)\) is an abelian group, \((R,\times)\) is a semigroup (\(\times \) is associative), and the distributive laws hold. However, \(R \) need not contain a multiplicative identity.

Subrings, rng-homomorphisms etc., can be defined without the conditions involving 1. The definition of an ideal is the same, and an ideal is a special case of a subring. The theory of rngs is similar to that of rings, although they are more awkward to deal with later on. The following lemma shows that we can regard a rng as an ideal of a bigger ring.

Lemma 4.2 Let \(R \) be a rng and define \(R_1 = \mathbb{Z} \times R \) with addition \((n,r) + (m,s) = (n+m,r+s)\) and multiplication \((n,r)(m,s) = (nm,n.s+m.r+rs)\), where \(n.s = s + \cdots + s \) etc.. Then \(R_1 \) is a ring containing an ideal \(\{0\} \times R \) isomorphic to \(R \).

Direct sums and the Chinese Remainder Theorem

If \(R_1 \) and \(R_2 \) are rings, define the ring \(R_1 \oplus R_2 \) as the set \(R_1 \times R_2 \) with addition \((a_1,a_2) + (b_1,b_2) = (a_1+b_1,a_2+b_2)\) and multiplication \((a_1,a_2)(b_1,b_2) = (a_1b_1,a_2b_2)\). The identity is \((1,1)\). The direct sum \(R_1 \oplus \cdots \oplus R_n \) is defined similarly. Note that even if \(R_1 \) and \(R_2 \) are IDS, \(R_1 \oplus R_2 \) will not be since \((1,0)(0,1) = (0,0)\).

If \(R \) is a ring and \(I \) and \(J \) are ideals of \(R \), we can define the following ideals.

- \(I + J = \{a + b \mid a \in I, \ b \in J\} \)
- \(I \cap J = \{c \mid c \in I, \ c \in J\} \)
- \(IJ = \{\sum_{i=1}^{n} a_ib_i \mid a_i \in I, \ b_i \in J, \ n \in \mathbb{N}\} \)
It is easily checked that each of these is indeed an ideal. Note that in general $IJ \neq \{ab \mid a \in I, b \in J\}$, but IJ is the ideal generated by all the products $ab, a \in I, b \in J$.

Example For $R = \mathbb{Z}$, $I = (x) = \{ax \mid a \in \mathbb{Z}\}$, $J = (y) = \{by \mid b \in \mathbb{Z}\}$

1. $I + J = (\gcd(x, y))$.
 Note $\gcd(x, y) = ax + by$ for some $a, b \in \mathbb{Z}$, so $\gcd(x, y) \in I + J$. Conversely $I + J = \{ax + by \mid a, b \in \mathbb{Z}\}$ and $ax + by$ is always a multiple of $\gcd(x, y)$.

2. $I \cap J = (\lcm(x, y))$.
 $m \in I \iff x \mid m$ and $m \in J \iff y \mid m$. Hence if $m \in I \cap J$ then m must be a common multiple of x and y. Thus $m \in (\lcm(x, y))$ Conversely $\lcm(x, y)$ is a common multiple of x and y so lies in $I \cap J$. Hence $I \cap J = (\lcm(x, y))$.

3. $IJ = (xy)$.
 $IJ = \{\sum a_i x b_i y \mid a_i, b_i \in \mathbb{Z}\} \subseteq (xy)$. Conversely $xy \in IJ$, so $(xy) \subseteq IJ$.

Ideals I and J are relatively prime if $I + J = R$. Equivalently $\exists a \in I, b \in J$: $a + b = 1$ (recall that an ideal equals R iff it contains 1).

Lemma 4.3 $IJ \subseteq I \cap J$. Moreover, if R is commutative and $I + J = R$ then $IJ = I \cap J$.

Proof If $a_i \in I$ then $\sum a_ib_i \in I$. If $b_i \in J$ then $\sum a_i b_i \in J$. Hence $IJ \subseteq I \cap J$. Now let $I + J = R$ so that $a + b = 1$ for some $a \in I, b \in J$. Then if $c \in I \cap J, ac + cb \in IJ$. But $ac + cb = c(a + b) = c, so c \in IJ$. Thus $I \cap J \subseteq IJ$ and so $IJ = I \cap J$.

Theorem (Chinese Remainder Theorem) If I and J are ideals of a commutative ring R and $I + J = R$ then $R/IJ \cong R/I \oplus R/J$.

Proof Let $f: R \to R/I \oplus R/J$ be defined by $f(r) = (r + I, r + J)$. Then $f(r + s) = (r + s + I, r + s + J) = (r + I, r + J) + (s + I, s + J) = f(r) + f(s), f(rs) = (rs + I, rs + J) = (r + I, r + J)(s + I, s + J) = f(r)f(s)$, and $f(1) = (1 + I, 1 + J)$ is the identity in $R/I \oplus R/J$. Now Ker $f = \{r \mid r + I = r + J = 0\} = I \cap J$ so Ker $f = IJ$ by Lemma 4.3. For the image of f, write $1 = a + b$ with $a \in I, b \in J$. Then $f(sa + rb) = (sa + r(1-a) + I, s(1-b) + rb + J) = (r + I, s + J)$. Thus f is surjective. Hence $R/IJ \cong R/I \oplus R/J$.

Example If $\gcd(n, m) = 1$ then $\mathbb{Z}/nm\mathbb{Z} \cong \mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}/m\mathbb{Z}$.

Exercises

1. Show that composing two anti-homomorphisms gives a homomorphism and composing an anti-homomorphism with a homomorphism gives an anti-homomorphism.

2. Define $\phi(n) = |(\mathbb{Z}/n\mathbb{Z})^\times|$. Show that if $\gcd(n, m) = 1$ then $\phi(nm) = \phi(n)\phi(m)$. If $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ is the prime factorization of n, deduce that $\phi(n) = \prod_i p_i^{\alpha_i-1}(p_i - 1)$.

3. Generalize the CRT: if I_1, \ldots, I_n are ideals of a commutative ring R and for each i and $j, I_i + I_j = R$, show that $R/I_1I_2 \cdots I_n \cong I_1 \oplus I_2 \oplus \cdots \oplus I_n$.
Throughout this section we shall assume R is a commutative ring.

Recall: An Integral Domain (ID) is a non-trivial ring in which $ab = 0$ implies either $a = 0$ or $b = 0$.

A prime ideal of a commutative ring R is a proper ideal such that $ab \in P$ implies either $a \in P$ or $b \in P$.

Lemma 5.1 An ideal P is prime iff R/P is an ID.

Proof. Assume P is prime. Then R/P is non-trivial since P is proper. If $(a+P)(b+P) = 0+P$ then $ab+P = P$ and so $ab \in P$. Thus either $a \in P$ or $b \in P$, so either $a+P = P$ or $b+P = P$. Thus R/P is an ID. Conversely, if R/P is an ID then P is proper since R/P is non-trivial. If $a,b \notin P$, then $a+P,b+P \neq 0+P$, so $(a+P)(b+P) = ab+P \neq 0+P$, so $ab \notin P$. Thus P is a prime ideal. \qed

Corollary 5.2 Any maximal ideal of a commutative ring is also a prime ideal.

Proof. M maximal $\Rightarrow R/M$ is a field $\Rightarrow R/M$ is an ID $\Rightarrow M$ is prime. \qed

The converse does not hold: (0) is prime but not maximal in \mathbb{Z}.

Examples of prime ideals: (p) in \mathbb{Z}, (0) in any ID. The ideal (X) in the ring $\mathbb{Z}[X]$ of polynomials in X with coefficients in \mathbb{Z}. This last example is also not maximal.

Every field is an ID. Furthermore, every subring of a field is an ID (e.g., $\mathbb{Z} \subseteq \mathbb{Q}$). We shall show that conversely, every ID can be embedded as a subring of a field.

Assume R is a commutative ring and $S \subseteq R$ is a submonoid of (R, \times). In other words, $1 \in S$ and $a,b \in S$ implies $ab \in S$. For example, set $S = R \setminus P$ for any prime P. One particularly important case is when R is an ID and $S = R \setminus \{0\}$.

Definition $S^{-1}R$ is defined as $(R \times S)/\sim$, where $(r,s) \sim (r',s')$ iff $\exists u \in S$: $urs' = ur's$. We write r/s for the equivalence class $(r,s) \in S^{-1}R$.

Note: if S contains no zero-divisors then $(r,s) \sim (r',s')$ iff $rs' = r's$.

Lemma 5.3 The relation \sim defined above is an equivalence relation and $S^{-1}R$ can be made into a ring so that the map $i: R \to S^{-1}R$, $i(r) = r/1$ is a homomorphism. Also $i(S) \subseteq (S^{-1}R)^\times$ and the map i is injective iff S contains no zero-divisors.

Proof. Reflexivity and symmetry of \sim are immediate. For transitivity, if $(r,s) \sim (r',s') \sim (r'',s'')$ then $\exists u,u': urs' = ur's$, $u'r's'' = u'r''s'$. Hence $(uu's')(rs'') = u's''u'sr = u's''u'sr' = usu'r's'' = usu'rs'' = (uu's')(r''s)$. But $uu's' \in S$, so $(r,s) \sim (r'',s'')$.

Define addition by $r_1/s_1 + r_2/s_2 = (r_1s_2 + r_2s_1)/(s_1s_2)$ and multiplication by $(r_1/s_1)(r_2/s_2) = (r_1r_2)/(s_1s_2)$. A long and rather tedious check shows that under these operations $S^{-1}R$
becomes a commutative ring with identity $1/1$. The map $i(r) = r/1$ is a ring homomorphism since $i(r) + i(r') = r/1 + r'/1 = (r + r')/1 = i(r + r')$, $i(r)i(r') = (r/1)(r'/1) = (rr')/1 = i(rr')$, and $i(1) = 1/1$. The element $1/s \in S^{-1}R$ is the inverse of $i(s) = s/1$, so $i(S) \subseteq (S^{-1}R)\times$.
The kernel of i is $\{r \in R : r/1 = 0/1\} = \{r \in R : \exists u \in S : ur = 0\}$. Thus $\text{Ker } i = \{0\}$ iff S contains no zero-divisors.

Lemma 5.4 $S^{-1}R$ satisfies the following universal property: If $f : R \rightarrow R'$ is a homomorphism with $f(S) \subseteq (R')\times$ then f factors uniquely as $f = h \circ i$ where $h : S^{-1}R \rightarrow R'$ is a homomorphism.

Proof. Any such \tilde{f} must satisfy $\tilde{f}(r/s)\tilde{f}(s/1) = \tilde{f}(r/1)$ and $\tilde{f}(t/1) = f(t)$. Hence $\tilde{f}(r/s)f(s) = f(r)$ and $\tilde{f}(r/s) = f(r)f(s)^{-1}$. Conversely, defining $\tilde{f}(r/s) = f(r)f(s)^{-1}$ gives a homomorphism $S^{-1}R \rightarrow R'$ (check this!).

Notation: If $S = R \setminus P$ for some prime ideal P, we also write $S^{-1}R$ as R_P and call it the **localization of R at P**.

Lemma 5.5 If R is an ID then $(R \setminus \{0\})^{-1}R = R_{(0)}$ is a field containing a subring isomorphic to R.

Proof. Let $S = R \setminus \{0\}$. If $r/s \neq 0/1$ then $r \neq 0$, so $s/r \in S^{-1}R$ and $(s/r)(r/s) = 1/1$. Hence any non-zero element of $S^{-1}R$ is invertible. The map i is injective, so $\text{Im } i$ is a subring of $S^{-1}R$ isomorphic to R.

In this case we call $R_{(0)} = S^{-1}R$ the **field of fractions** of R, or Frac R. For example Frac$\{\mathbb{Z}\} = \mathbb{Q}$.

Exercises

1. Show that the units of R_P consists of the elements r/s where $r \notin P$ and there is a unique maximal ideal of R_P consisting of all the non-unit elements. [Rings that have a unique maximal ideal are called **local rings**.]

2. Show that if R is an ID, then for any prime ideal P, R_P is isomorphic to a subring of Frac R.

3. Describe $\mathbb{Z}_{(2)}$ explicitly as a subring of \mathbb{Q}.

4. What is the field of fractions of a field?

5. What is the field of fractions of the ring of entire functions (holomorphic functions $f : \mathbb{C} \rightarrow \mathbb{C}$).

6. What is the field of fraction of the ring of polynomial functions $\mathbb{C}[X] = \{\sum_{i=0}^{n} a_i X^i : a_i \in \mathbb{C}, \ n \in \mathbb{N}\}$.
Assume that R is a commutative ring. We wish to construct the ring $R[X]$ of polynomials in X with coefficients in R.

Define $R[X]$ as the set of sequences (a_0, a_1, \ldots) with the property that all but finitely many of the a_is are zero. Define $(a_0, \ldots) + (b_0, \ldots) = (a_0 + b_0, a_1 + b_1, \ldots)$ (so $R[X] = \bigoplus_{i \in \mathbb{N}} R$ as group under $+$) and define $R[X] \cdot R[X] = (c_0, c_1, \ldots)$ where $c_i = \sum_{0 \leq j \leq i} a_j b_{i-j}$. We call $R[X]$ the ring of polynomials in X over R. Let $i: R \rightarrow R[X]$ be defined by $i(a) = (a, 0, 0, \ldots)$ and let $X \in R[X]$ be the element $X = (0, 1, 0, 0, \ldots)$. Note that $X(a_0, a_1, \ldots) = (a_0, a_0, a_1, \ldots)$ and $i(a)(a_0, a_1, \ldots) = (aa_0, aa_1, \ldots)$.

Lemma 6.1 $R[X]$ is a ring, $i: R \rightarrow R[X]$ is an injective ring homomorphism, and if $a_i = 0$ for all $i > n$ then $(a_0, a_1, \ldots) = \sum_{i=0}^n a_i X^i$.

We shall normally identify $i(a)$ with a and write polynomials $f(X) \in R[X]$ in the form $\sum_{i=0}^n a_i X^i$. The degree $\deg f(X)$ of a polynomial is the largest n such that $a_n \neq 0$, (or $-\infty$ if $f = 0$). The leading coefficient of $f(X)$ is a_n where $n = \deg f$, (or 0 if $f = 0$). A polynomial is monic if the leading coefficient is 1.

Lemma 6.2 If $f, g \in R[X]$ then

1. $\deg(f + g) \leq \max\{\deg f, \deg g\}$,
2. $\deg(fg) \leq \deg f + \deg g$, with equality holding if R is an ID.

Lemma 6.3 If R is an ID then $R[X]$ is an ID and $(R[X])^\times = R^\times$.

Proof. If $f, g \in R[X]$ and $f, g \neq 0$ then $\deg(fg) = \deg f + \deg g \geq 0$, so $fg \neq 0$. If $fg = 1$ then $0 = \deg(fg) = \deg f + \deg g$ so $\deg f = \deg g = 0$ and $f, g \in R$. Hence $f \in (R[X])^\times$ implies $f \in R^\times$. Conversely $f \in R^\times$ clearly implies $f \in (R[X])^\times$. \qed

Theorem (Universal property of polynomial rings) If $\phi: R \rightarrow R'$ is a ring homomorphism and $\alpha \in R'$ then there exists a unique homomorphism $ev_{\phi, \alpha} : R[X] \rightarrow R'$ such that $ev_{\phi, \alpha}(a) \quad (= ev_{\phi, \alpha}(i(a))) = \phi(a)$ for all $a \in R$ and $ev_{\phi, \alpha}(X) = \alpha$.

If R is a subring of R' and ϕ is the inclusion map we write $f(\alpha)$ for $ev_{\phi, \alpha}(f)$. More generally, if just R is a subring of R' we write $\phi(f)(\alpha)$ for $ev_{\phi, \alpha}(f)$.

Lemma 6.4 If R is a subring of R' and $\alpha \in R'$ then $R[\alpha]$ is isomorphic to a quotient $R[X]/I$ where I is an ideal of $R[X]$ containing no non-zero constants: $I \cap R = \{0\}$.

Proof. Apply 1st Isomorphism Theorem to $ev_{\alpha}: R[X] \rightarrow R'$. \qed

We say $\alpha \in R'$ is transcendental over $R \subseteq R'$ if the map ev_{α} is injective. In other words, if $f(\alpha) = 0$ implies $f(X) = 0$. Otherwise we say that α is algebraic over R.

Examples The element $\pi \in \mathbb{R}$ is transcendental over \mathbb{Z}, so $\mathbb{Z}[\pi] \cong \mathbb{Z}[X]$. The elements $i, \sqrt{2}, \sqrt{3} \in \mathbb{C}$ are all algebraic over \mathbb{Z}. However π is algebraic over \mathbb{R} (since it is a root of $X - \pi \in \mathbb{R}[X]$).

Theorem (Division Algorithm) If $f, g \in R[X]$ and the leading coefficient of g is a unit in R, then there exist unique $q, r \in R[X]$ such that $f = qg + r$ and $\deg r < \deg g$ (or $r = 0$).

If $a, b \in R$, we say a divides b, $a \mid b$, if there exists $c \in R$ such that $b = ca$.

Examples In any ring, $u \mid 1$ if and only if $u \in R^\times$, $a \mid 0$ for all a. In \mathbb{Z}, $7 \mid 21$. In \mathbb{Q}, $21 \mid 7$.

Lemma 6.5 If $\alpha \in R$ and $f \in R[X]$ then $f(X) = (X - \alpha)q(X) + f(\alpha)$ for some $q \in R[X]$. In particular, $X - \alpha \mid f$ if and only if $f(\alpha) = 0$.

Lemma 6.6 If R is an integral domain and $f \in R[X]$, $f \neq 0$, then $|\{\alpha \in R : f(\alpha) = 0\}| \leq \deg f$.

Lemma 6.7 If R is an integral domain and G is a finite subgroup of R^\times then G is cyclic.

Proof. G is a finite abelian group, so $G \cong C_{d_1} \times \cdots \times C_{d_r}$. But then $x^{d_1} = 1$ for all $x \in G$. Thus the polynomial $X^{d_1} - 1$ has $|G|$ zeros. Thus $|G| = d_1d_2\ldots d_r \leq d_1$, so $d_2 = \cdots = d_r = 1$ and $G \cong C_{d_1}$ is cyclic.

We can generalize polynomial rings to polynomials in many variables. If $\{X_i\}_{i \in I}$ is a set (possibly infinite) of indeterminates, define a term t to be a function $I \to \mathbb{N}$ which is non-zero for only finitely many $i \in I$. We think of t as corresponding to a finite product $\prod_{i \in I} X_i^{t_i}$. Let T be the set of terms. Now define the ring

$$R[\{X_i\}_{i \in I}] = \bigoplus_{t \in T} R = \{(a_t)_{t \in T} \mid a_t = 0 \text{ for all but finitely many } t\},$$

with addition of coefficients componentwise $(a_t) + (b_t) = (a_t + b_t)$ and multiplication defined by $(a_t)(b_t) = (c_t)$ where $c_t = \sum_{r+s=t} a_rb_s$ (note that this is a finite sum). As for $R[X]$, we can identify R as a subring of $R[\{X_i\}_{i \in I}]$ and define elements X_i so that $(a_t)_{t \in T}$ is equal to the (finite) sum $\sum_{t \in T} a_t \prod_{i \in I} X_i^{t_i}$.

Theorem (Universal property of polynomial rings) If $\phi: R \to R'$ is a ring homomorphism and $\alpha_i \in R'$ for all $i \in I$ then there exists a unique homomorphism $ev_{\phi, (\alpha_i)}: R[\{X_i\}_{i \in I}] \to R'$ such that $ev_{\phi, (\alpha_i)}(a) = \phi(a)$ for all $a \in R$ and $ev_{\phi, (\alpha_i)}(X_i) = \alpha_i$ for all $i \in I$.

If I is finite then we can also identify $R[X_1, \ldots, X_n]$ with $R[X_1, \ldots, X_{n-1}][X_n]$ (use universal properties to define the isomorphism).
A Euclidean Domain (ED) is an ID for which there is a function \(d: R \setminus \{0\} \to \mathbb{N} \) such that if \(a, b \in R, b \neq 0 \) then there exists \(q, r \in R \) such that \(a = qb + r \) with either \(d(r) < d(b) \) or \(r = 0 \).

Examples

1. \(\mathbb{Z} \) with \(d(a) = |a| \).
2. \(F[X] \), where \(F \) is a field, \(d(f) = \deg f \).
3. \(\mathbb{F} \), where \(F \) is a field, \(d(a) = 0 \).
4. \(\mathbb{Z}[i] \), with \(d(a + ib) = |a + ib|^2 = a^2 + b^2 \). Write \(a/b = x + iy \) and let \(q = x' + iy' \) with \(|x-x'|, |y-y'| \leq \frac{1}{2} \). Then \(d(r) = |q - a| = |q - a/b|^2|b|^2 = ((x-x')^2 + (y-y')^2)d(b) \leq \frac{1}{2}d(b) \).

A Principal Ideal Domain (PID) is an ID in which every ideal \(I \) is principal, i.e., \(I = (a) \) for some \(a \in R \).

Theorem 7.1 Every ED is a PID.

Proof. If \(R \) is an ED then \(R \) is an ID, so it is enough to show that any ideal \(I \) is principal. Let \(I \) be an ideal of \(R \) and assume \(I \neq \{0\} \). Pick \(b \in I \setminus \{0\} \) with minimal value of \(d(b) \) (by well ordering of \(\mathbb{N} \)). If \(a \in I \) then \(a = qb + r \) with \(d(r) < d(b) \) or \(r = 0 \). But \(r = a - qb \in I \), so by choice of \(b \) we must have \(r = 0 \). Thus \(a = qb \in (b) \). Thus \(I \subseteq (b) \). But \(b \in I \), so \((b) \subseteq I \). Thus \(I = (b) \) is principal. \(\square \)

Note: PID \(\neq \) ED.

If \(I = (a) \) is a principal ideal then \(b \in I \) implies there exists \(a \in R \) with \(b = ca \). Thus \(b \in I \) is equivalent to \(a \mid b \). In particular \((b) \subseteq (a) \iff a \mid b \). If \((a) = (b) \) then \(b = ua \) and \(a = vb \). Thus either \(a = b = 0 \) or \(uv = 1 \) and \(u, v \in R^\times \). Conversely, if \(a = ub \) with \(u \in R^\times \) then \((a) = (b) \).

The elements \(a, b \in R \) are called **associates** if \(b = ua \) for some \(u \in R^\times \). Equivalently, \(a \mid b \) and \(b \mid a \) both hold, or \((a) = (b) \). Write \(a \sim b \) if \(a \) and \(b \) are associates.

A **greatest common divisor** (gcd) of a set of elements \(S \subseteq R \) is an element \(d \in R \) such that

G1. \(d \mid a \) for all \(a \in S \), and

G2. if \(c \mid a \) for all \(a \in S \) then \(c \mid d \).

Greatest common divisors are unique up to multiplication by units. To see this, let \(d, d' \) be two gcds. Then condition G2 with \(c = d' \) and G1 with \(d = d' \) imply \(d' \mid d \). Similarly \(d \mid d' \), so \(d' = ud \) for some unit \(u \in R^\times \).
Lemma 7.2 If R is a PID then gcds of any $S \subseteq R$ exist. Indeed, if $(S) = (d)$ then d is a gcd of S and hence can be written in the form $d = \sum_{i=1}^{r} c_i a_i$, for some $a_i \in S$, $c_i \in R$.

Proof. Since R is a PID, $(S) = (d)$ for some d. If $a \in S$ then $a \in (S) = (d)$, so $d \mid a$. If $c \mid a$ for all $a \in S$, then $a \in (c)$ for all $a \in S$, so $(S) = (d) \subseteq (c)$. Hence $c \mid d$. Thus d is a gcd of S. \[\square\]

Note: In an arbitrary ID, gcds may not exist, and even if they do, they may not be a linear combination of elements of S. For example the elements 2 and X in $\mathbb{Z}[X]$ have 1 as a gcd, but 1 is not of the form $2c_1 + Xc_2$, $c_1, c_2 \in \mathbb{Z}[X]$. For an example where the gcd does not exist, consider $R = \mathbb{Z}[\sqrt{-5}]$. If $a \in R$ then $|a|^2 \in \mathbb{Z}$. Hence if $a \mid b$ in R then $|a|^2 \mid |b|^2$ in \mathbb{Z}. Now let $x = -3(3 - \sqrt{-5}) = (1 + 2\sqrt{-5})(1 + \sqrt{-5})$ and $y = -7(1 + \sqrt{-5}) = (1 - 2\sqrt{-5})(3 - \sqrt{-5})$. Then $1 + \sqrt{-5}$ and $3 - \sqrt{-5}$ are two common factors of x and y. If d is a gcd of x and y, then $|d|^2$ must be a factor of $|x|^2 = 2.3^2.7$ and $|y|^2 = 2.3.7^2$. On the other hand, $|d|^2$ must be a multiple of $|1 + \sqrt{-5}|^2 = 2.3$ and $|3 - \sqrt{-5}|^2 = 2.7$. Thus $|d|^2 = 2.3.7 = 42$. However, if $d = \alpha + \beta \sqrt{-5}$ then $|d|^2 = \alpha^2 + 5\beta^2$, which is never equal to 42.

The Euclidean Algorithm

We can turn Lemma 1 into an algorithm in the case when R is a ED. Assume we need to find the gcd of $a_0 = a$ and $a_1 = b$. Inductively define a_{n+1} for $n \geq 1$ and $a_n \neq 0$ by

$$a_{n-1} = q_na_n + a_{n+1}, \quad d(a_{n+1}) < d(a_n) \text{ or } a_{n+1} = 0$$

Since the $d(a_n)$ are a sequence of decreasing non-negative integers, eventually $a_{n+1} = 0$. However $a_{i+1} \in (a_i, a_{i-1})$ and $a_{i-1} \in (a_i, a_{i+1})$ imply the two ideals (a_{i-1}, a_i) and (a_i, a_{i+1}) are equal. Hence $(a_0, a_1) = (a_n, a_{n+1}) = (a_n)$ and a_n is a gcd of a_0 and a_1.

This algorithm is called the Euclidean Algorithm. For more than two elements, one can calculate the gcd inductively by using $\text{gcd}(c_1, c_2, \ldots, c_r) = \text{gcd}(c_1, \text{gcd}(c_2, \ldots, c_r))$.

Exercises

1. Prove that $\text{gcd}(c_1, \ldots, c_r) = \text{gcd}(c_1, \text{gcd}(c_2, \ldots, c_r))$ provided the gcds on the RHS exist. What is $\text{gcd}()$?

2. Let $R = \mathbb{Z}[\omega]$ where $\omega = \frac{1}{2}(1 + \sqrt{-3})$. Show that $R = \{a + b\omega : a, b \in \mathbb{Z}\}$ and that R is a ED.

3. Use the Euclidean algorithm to find the gcd of $7 - 3i$ and $5 + 3i$ in $\mathbb{Z}[i]$.

4. Determine $((\mathbb{Z}/n\mathbb{Z})[X])^\times$. [Hint: Consider the case $n = p^r$ first.]

5. Solve the congruences

$$x \equiv i \mod 1 + i \quad x \equiv 1 \mod 2 - i$$

in $\mathbb{Z}[i]$ (use Chinese Remainder Theorem).
An element \(a \in R \) is **irreducible** if \(a \neq 0 \), \(a \notin R^\times \), and \(a = bc \) implies \(b \in R^\times \) or \(c \in R^\times \).

An element \(a \in R \) is a **prime** if \(a \neq 0 \), \(a \notin R^\times \) and \(a \mid bc \) implies \(a \mid b \) or \(a \mid c \).

Lemma 8.1 Let \(R \) be an ID, and \(a \in R \). Then
1. \(a \) is a prime element iff \((a)\) is a non-zero prime ideal,
2. \(a \) is irreducible iff \((a)\) is maximal among proper principal ideals (i.e., \((a) \subseteq (b) \) implies \((b) = (a)\) or \((b) = R\)),
3. if \(a \) is prime then \(a \) is irreducible,
4. if \(a \) is irreducible and \(R \) is a PID then \(a \) is prime.

Proof.
1. If \(a \) is prime and \(bc \in (a) \) then \(a \mid bc \). Hence \(a \mid b \) or \(a \mid c \), so either \(b \in (a) \) or \(c \in (a) \). Also, \(a \neq 0 \), \(a \notin R^\times \) implies \((a) \neq (0), R\). Conversely, if \((a)\) is a prime ideal and \(a \mid bc \), then \(bc \in (a) \), so either \(b \in (a) \) or \(c \in (a) \), so either \(a \mid b \) or \(a \mid c \) and \((a) \neq (0), R\) implies \(a \neq 0 \), \(a \notin R^\times \).
2. If \(a \in R \) is irreducible and \((a) \subseteq (b) \) then \(a = bc \), so either \(c \in R^\times \) and \((b) = (a)\) or \(b \in R^\times \) and \((b) = R\). Conversely if \((a)\) is maximal among all proper principal ideals and \(a = bc \) then \((a) \subseteq (b) \), so either \((a) = (b)\) and \(c \) is a unit or \((b) = R\) and \(b \) is a unit.
3. If \(a \) is a prime and \(a = bc \) then \(a \mid bc \). Thus either \(a \mid b \) and \(c \in R^\times \), or \(a \mid c \) and \(b \in R^\times \).
4. By part 2, \((a)\) is a maximal ideal. Hence \((a)\) is prime and so \(a \) is prime.

A ring \(R \) is a **Unique Factorization Domain** (UFD) if \(R \) is an ID such that

U1. Every \(a \in R \setminus \{0\} \) can be written in the form \(a = up_1 \ldots p_r \) where \(u \in R^\times \) and the \(p_i \) are irreducible.

U2. Any two such factorizations are unique in the sense that if \(up_1 \ldots p_r = vq_1 \ldots q_s \) then \(r = s \) and there is a permutation \(\pi \in S_r \) such that \(p_i \sim q_{\pi(i)} \) for all \(i \).

Lemma 8.2 \(R \) is a UFD iff \(R \) is an ID satisfying

A. there is no infinite sequence \((a_i)_{i \in \mathbb{N}} \) with \(a_{i+1} \mid a_i \) and \(a_{i+1} \not\sim a_i \), and

B. every irreducible is prime.

Proof.
A \(\Rightarrow \) U1. Suppose \(a_1 \in R \) has no such factorization. Then \(a_1 \) is neither a unit nor irreducible, so \(a_1 = bc \), \(b, c \notin R^\times \), and either \(b \) or \(c \) also has no factorization into irreducibles. Assume \(b \) has no factorization into irreducibles and set \(a_2 = b \). Repeating this process we get a sequence \(a_i \) with \(a_{i+1} \mid a_i \) and \(a_{i+1} \not\sim a_i \).

B \(\Rightarrow \) U2. Since \(p_1 \) is prime and \(p_1 \mid vq_1 \ldots q_s \), we must have \(p_1 \mid q_i \) for some \(i \). But \(q_i \) is irreducible, so \(p_1 \sim q_i \). Cancelling a factor of \(p_1 \) from both sides (\(R \) is an ID) and using induction on \(r \) gives the result.

U1 and U2 \(\Rightarrow \) A and B is clear.

15
A ring is Noetherian if every sequence of ideals \(I_i \) with \(I_i \subseteq I_{i+1} \) is eventually constant, \(I_n = I_{n+1} = \ldots \), for some \(n \).

Lemma 8.3 \(R \) is Noetherian iff every ideal is finitely generated.

Proof. \(\Leftarrow \): Let \(I = \bigcup I_n \). Then \(I \) is an ideal, so \(I = (d_1, \ldots, d_r) \) for some \(d_i \in R \). But then there is an \(n_i \) with \(d_i \in I_n \). Let \(n = \max n_i \), so that \(I = (d_1, \ldots, d_r) \subseteq I_n \subseteq I_{n+1} \subseteq \cdots \subseteq I \), and so \(I_n = I_{n+1} = \ldots \).

\(\Rightarrow \): Assume \(I \) is not finitely generated. Then (using Axiom of choice), pick inductively \(d_n \in I \setminus (d_1, \ldots, d_{n-1}) \). Then \(I_n = (d_1, \ldots, d_n) \) is a strictly increasing sequence of ideals. \(\square \)

Theorem Every PID is a UFD.

Proof. Every ideal in a PID is finitely generated (by one element), so PID \(\Rightarrow \) Noetherian. By considering the ideals \((a_i) \), Noetherian rings satisfy condition A of Lemma 8.2. Lemma 8.1 part 4 implies condition B of Lemma 8.2, so PID \(\Rightarrow \) UFD. \(\square \)

GCDs and factorizations

Lemma 8.4 If \(R \) is a UFD and \(S \subseteq R \) then a gcd of \(S \) exists.

Proof. The relation \(\sim \) is an equivalence relation on the set of irreducibles in \(R \). So by choosing a representative irreducible from each equivalence class we can construct a set \(P \) of pairwise non-associate irreducible elements of \(R \). We can write any element \(a \in R \) as \(u \prod_{p \in P} p^{n_p} \) and if \(b = v \prod_{p \in S} p^{m_p} \) then U2 implies \(a \mid b \) iff \(n_p \leq m_p \) for all \(p \). Write each \(a_i \in S \) as \(a_i = u_i \prod_{p \in P} p^{n_i,p} \). If we let \(d = \prod_{p \in P} p^{m_p} \) with \(m_p = \min_{i \in S} n_{i,p} \) then it is clear that \(d \) is a gcd for \(S \).

A partial converse to Lemma 8.4 is true.

Lemma 8.5 If \(R \) is an ID in which the gcd of any pair of elements exists then every irreducible is prime.

Proof. First we prove that if gcds exist then \(\gcd(ab, ac) \sim a \gcd(b, c) \). Let \(e = \gcd(ab, ac) \) and \(d = \gcd(b, c) \). Then \(d \mid b, c \), so \(ad \mid ab, ac \), so \(ad \mid e \). Writing \(e = adu \) then \(e \mid ab, ac \), so \(du \mid b, c \), so \(du \mid d \). Thus \(u \in R^\times \) and \(e \sim ad \) (or \(d = 0 = e \)).

Now let \(p \) be an irreducible and assume \(p \nmid a, b \). Then \(\gcd(p, b) \sim 1 \) since the gcd must be a factor or \(p \) and \(p \nmid b \). Hence \(\gcd(p, ab) \mid \gcd(ap, ab) \sim a \). But \(\gcd(p, ab) \mid p \), so \(\gcd(p, ab) \mid \gcd(a, p) \sim 1 \). Hence \(\gcd(p, ab) \sim 1 \) and \(p \nmid ab \). Hence \(p \) is prime. \(\square \)

Lemma 8.6 If \(R \) is an ID in which every set \(S \) has a gcd which can be written in the form \(\sum r_i a_i \) for some \(a_i \in S, r_i \in R \), then \(R \) is a PID.

Proof. Let \(I \) be an ideal and write \(I = (S) \) for some \(S \) (e.g., \(S = I \)). Let \(d = \sum r_i a_i \) be a gcd of \(S \). Then \(d \mid a \) for all \(a \in S \). Hence \(a \in (d) \), so \(S \subseteq (d) \). Thus \(I \subseteq (d) \). However \(d = \sum r_i a_i \in I \). Then \((d) \subseteq I \). Hence \(I = (d) \) is principal. \(\square \)
Assume throughout this section that R is a UFD.

Let $f(X) = \sum_{i=0}^{n} a_i X^i \in R[X]$. Define the content of $f(X)$ to be $c(f) = \gcd\{a_0, a_1, \ldots, a_n\}$. Note that if $f \neq 0$ then $c(f) \neq 0$. We call f primitive iff $c(f) \sim 1$.

Note that monic polynomials are primitive, but not conversely, e.g. $2X + 3 \in \mathbb{Z}[X]$.

Lemma (Gauss) If R is a UFD and $f, g \in R[X]$ are primitive, then so is fg.

Proof. Assume otherwise and let p be a prime dividing $c(fg)$. Reducing the polynomials mod p we get $\bar{f}, \bar{g} \in (R/(p))[X]$ with $\bar{f}, \bar{g} \neq 0$, but $\bar{f}\bar{g} = \bar{f\bar{g}} = 0$ (the map $f \mapsto \bar{f}$ $R[X] \to (R/(p))[X]$ is a special case of the evaluation homomorphism $ev_{\pi, X}$ where X is sent to X and $ev_{\pi, X}$ acts as the projection map $\pi : \mathbb{R} \to \mathbb{R}/(p)$ on constants). Now p is prime, so (p) is a prime ideal and $R/(p)$ is an ID. Hence $f, \bar{g} \neq 0$ implies $\bar{f}\bar{g} \neq 0$, a contradiction. \hfill \square

Corollary 9.1 If R is a UFD then $c(fg) \sim c(f)c(g)$.

Proof. The result clearly holds if f or g is zero, so assume $f, g \neq 0$ and hence $c(f) \neq 0$. Since $\gcd\{a_0\} \sim a \gcd\{a_i\}$, $c(af) \sim ac(f)$ for all $a \in R$. But $f/c(f) \in R[X]$, so $c(f)c(f/c(f)) = c(f)$ and so $f/c(f)$ is primitive. Now $fg/(c(f)c(g)) = (f/c(f))(g/c(g))$ is primitive. Hence $c(fg) \sim c(f)c(g)c(f/g/c(f)c(g)) \sim c(f)c(g)$. \hfill \square

Lemma 9.2 If $\deg f > 0$ and f is irreducible in $R[X]$ then f is irreducible in $F[X]$, where $F = \text{Frac} R$ is the field of fractions of R.

Proof. Suppose $f = gh$ in $F[X]$. By multiplying by denominators, there exist non-zero $a, b \in R$ with $ag, bh \in R[X]$. Thus $abf = (ag)(bh) \in R[X]$ and $c(abf) \sim c(ag)c(bh)$. But $f = c(f)(f/c(f))$ is a factorization of f in $R[X]$ and if $\deg f > 0$, $f/c(f) \notin (R[X])^\times = R^\times$. Thus $c(f) \in R^\times$ and so $c(abf) \sim ab$. Now $ab/c(ag)c(bh) = u \in R^\times$ and $f = (u^{-1}ag/c(ag))(bh/c(bh))$ is a factorization of f in $R[X]$. Hence either $\deg g = 0$ or $\deg f = 0$ and so g or h is a unit in $F[X]$. \hfill \square

Lemma 9.3 If R is a UFD then $f \in R[X]$ is irreducible iff either

(a) $f \in R$ is an irreducible in R, or
(b) f is primitive in $R[X]$ and irreducible in $F[X]$.

Proof. Assume first that $\deg f = 0$. If $f = ab$ in R, $f = ab$ in $R[X]$. Conversely, if $f = gh$ in $R[X]$ then $\deg g = \deg h = 0$, so $f = gh$ in R. Since $R^\times = (R[X])^\times$, irreducibility in $R[X]$ is equivalent to irreducibility in R. Assume now that $\deg f > 0$. If f is irreducible in $R[X]$ then by the previous lemma, f is irreducible in $F[X]$. Also, $f = c(f)(f/c(f))$, so $c(f) \in (R[X])^\times = R^\times$ and f is primitive. Conversely, if f is primitive and irreducible in $F[X]$ and $f = gh$ in $R[X]$, then $f = gh$ in $F[X]$, so wlog $g \in (F[X])^\times \cap R[X] = R$. But then $g \mid c(f)$ in R, so $g \in R^\times = (R[X])^\times$. Thus f is irreducible in $R[X]$. \hfill \square
Theorem 9.4 If R is a UFD then $R[X]$ is a UFD.

Proof. Write $f = c(f)f'$ where f' is primitive. Now $c(f) = u p_1 \ldots p_r$ where $u \in R^\times = (R[X])^\times$ and p_i are irreducible in R. If $f' = gh$ with $g, h \not\in (R[X])^\times = R^\times$ then $c(g)c(h) \sim 1$, so g, h are primitive and $\deg g, \deg h > 0$ (since otherwise either g or h would lie in R^\times). By induction on the degree, f' is the product of irreducible primitive polynomials $f' = \prod f_i$. Hence f has a factorization into irreducibles.

Now assume $f = u p_1 \ldots p_r f_1 \ldots f_i = v q_1 \ldots q_a g_1 \ldots g_u$ where $u, v \in R^\times$, p_i, q_j are irreducible in R and f_i, g_j are primitive and irreducible in $F[X]$. The ring $F[X]$ is a PID, so is a UFD. The elements $u p_1 \ldots p_r$ and $v q_1 \ldots q_a$ are units in $F[X]$, so $t = u$ and wlog $f_i = \gamma_i g_i$ for some $\gamma_i \in (F[X])^\times = F \setminus \{0\}$. Write $\gamma_i = a_i/b_i$ with $a_i, b_i \in R$. Now $b_i f_i = a_i g_i$, so $b_i \sim c(b_i f_i) = c(a_i g_i) \sim a_i$. Thus $\gamma_i \in R^\times$ and $f_i \sim g_i$ in $R[X]$. Now $c(f) \sim u p_1 \ldots p_r \sim v q_1 \ldots q_a$, so by unique factorization in R, $r = s$ and wlog $p_i \sim q_i$ in R and hence in $R[X]$. Hence the factorization of f is unique in $R[X]$.

Factorization methods

Evaluation method: If $g \mid f$ in $R[X]$ then $g(c) \mid f(c)$ in R for all $c \in R$.

Example: If $f = x^2 - 4x + 1 \in \mathbb{Z}[x]$, then $f(\pm 2) = 1$. If $f = gh$ then we can assume wlog that g is linear. But then $g(\pm 2) = \pm 1$. The only linear polynomials with this property are $\pm X/2$ which do not lie in $\mathbb{Z}[X]$. Hence f is irreducible in $\mathbb{Z}[X]$ (and hence also in $\mathbb{Q}[X]$).

Reduction mod p: If $f = gh$ in $R[X]$ and p is a prime then $\bar{f} = \bar{g}\bar{h}$ in $(R/(p))[X]$.

Example: If $f = x^4 - x^2 + 4x + 3 \in \mathbb{Z}[x]$, then if $p = 2$, $\bar{f} = x^4 + x^2 + 1 = (x^2 + x + 1)(x^2 + x + 1)$ in $(\mathbb{Z}/2\mathbb{Z})[x]$ and if $p = 3$ then $\bar{f} = x^4 - x^2 + x = x(x^3 - x + 1)$ in $(\mathbb{Z}/3\mathbb{Z})[x]$. In $\mathbb{Z}[x]$, f cannot factor as a product of two quadratics (since there is no quadratic factor mod 3), nor can it have a linear factor (no linear factor mod 2), hence f is irreducible in $\mathbb{Z}[X]$.

Lemma (Eisenstein’s irreducibility criterion) Assume R is a UFD, $f = \sum_{i=0}^n a_n x^n \in R[X]$, is primitive, and p is a prime such that $p \not\mid a_n$, $p \mid a_i$ for $i < n$ and $p^2 \not\mid a_0$. Then f is irreducible in $R[X]$.

Proof. Suppose $f = gh$. Then $\bar{g} = a_n x^n$ in $(R/(p))[X]$. Thus $\bar{g} = a x^i$ and $\bar{h} = b x^j$ for some $a, b \in R/(p)$ and $i + j = n$. But $\deg g + \deg h = n$ and $i \leq \deg g$, $j \leq \deg h$. Hence $i = \deg g$ and $j = \deg h$. If g and h are not units in $R[X]$ and f is primitive then $\deg g, \deg h > 0$. Hence $\bar{g}(0) = \bar{h}(0) = 0$, so $p \mid g(0), h(0)$. Thus $p^2 \mid g(0)h(0) = f(0) = a_0$, a contradiction. Hence f is irreducible.

Exercises

1. Show that for p a prime in \mathbb{Z}, $f(X) = 1 + X + \ldots + X^{p-1} = (X^p - 1)/(X - 1)$ is irreducible in $\mathbb{Q}[X]$ [Hint: consider $f(X+1)$ and use Eisenstein’s criterion].

2. Let $f = x^3 - x + 1$. Show that $(\mathbb{Z}/3\mathbb{Z})[X]/(f)$ is a field with 27 elements.
A polynomial \(f(X_1, \ldots, X_n) \in R[X_1, \ldots, X_n] \) is called symmetric if
\[
f(X_1, \ldots, X_n) = f(X_{\pi(1)}, \ldots, X_{\pi(n)})
\]
for any permutation \(\pi \in S_n \).

Examples \(X_1^2 + X_2^2 + X_3^2 \) and \(X_1X_2 + X_2X_3 + X_3X_1 \) are symmetric polynomials in the ring \(\mathbb{Z}[X_1, X_2, X_3] \), however \(X_1^2X_2 + X_2^2X_3 + X_3^2X_1 \) is not symmetric (consider the permutation \(\pi = (12) \)).

The elementary symmetric polynomials \(\sigma_r \in R[X_1, \ldots, X_n] \) are defined by \(\sigma_r = \sum_{i_1 < i_2 < \cdots < i_r} X_{i_1} \cdots X_{i_r} = \sum_{|S|=r} \prod_{i \in S} X_i \) where in the second expression the sum is over all subsets \(S \) of \(\{1, \ldots, n\} \) of size \(r \).

Examples For \(n = 3 \), \(\sigma_0 = 1 \), \(\sigma_1 = X_1 + X_2 + X_3 \), \(\sigma_2 = X_1X_2 + X_2X_3 + X_3X_1 \), \(\sigma_3 = X_1X_2X_3 \).

Note: \((X + X_1)(X + X_2) \cdots (X + X_n) = X^n + \sigma_1X^{n-1} + \sigma_2X^{n-2} + \cdots + \sigma_n \).

Define the degree of \(cX_1^{a_1} \cdots X_n^{a_n} \in R[X_1, \ldots, X_n], c \neq 0 \), as the \(n \)-tuple \((a_1, \ldots, a_n) \). More generally define the degree of \(f = \sum_{a_1, \ldots, a_n} c_{a_1, \ldots, a_n} X_1^{a_1} \cdots X_n^{a_n} \) as the maximum value of \((a_1, \ldots, a_n)\) over all \(c_{a_1, \ldots, a_n} \neq 0 \), where \(n \)-tuples are ordered lexicographically: \((a_1, \ldots, a_n) < (b_1, \ldots, b_n)\) iff there exists an \(i \) such that \(a_i < b_i \) and \(a_j = b_j \) for all \(j < i \).

Example In \(R[X_1, X_2, X_3] \), \(\deg(X_1^2X_2^3 + X_1^3X_3) = (7, 0, 1) \).

In \(R[X_1, \ldots, X_n] \), \(\deg \sigma_r = (1, \ldots, 1, 0, \ldots, 0) \), where there are \(r \) ones and \(n - r \) zeros.

Lemma 10.1 The lexicographic ordering on \(\mathbb{N}^n \) is a well ordering: \(\mathbb{N}^n \) is totally ordered and every non-empty \(S \subseteq \mathbb{N}^n \) has a minimal element.

Proof. To prove every \(S \neq \emptyset \) has a minimal element, inductively construct sets \(S_i \) with \(S_0 = S \) and \(S_i \) equal to the set of elements \((a_1, \ldots, a_n)\) of \(S_{i-1} \) for which \(a_i \) is minimal. It is clear that \(S_i \neq \emptyset \) and the (unique) element of \(S_n \) is the minimal element of \(S \). \(\square \)

Lemma 10.2 If \(f \in R[X_1, \ldots, X_n] \) is symmetric and \(\deg f = (a_1, \ldots, a_n) \) then \(a_1 \geq a_2 \geq \cdots \geq a_n \).

Proof. Assume otherwise and let \(a_i < a_j \) with \(i > j \). Then if \(\pi = (ij) \), \(f(X_1, \ldots, X_n) = f(X_{\pi(1)}, \ldots, X_{\pi(n)}) \) has a term with degree \((a_{\pi(1)}, \ldots, a_{\pi(n)})\) which is larger than \((a_1, \ldots, a_n)\), contradicting the definition of the degree. \(\square \)

Lemma 10.3 If \(f, g \in R[X_1, \ldots, X_n] \) and \(f, g \) are monic (the term with degree equal to \(\deg f \) or \(\deg g \) has coefficient 1) then \(\deg fg = \deg f + \deg g \) where addition of degrees is performed componentwise: \((a_1, \ldots, a_n) + (b_1, \ldots, b_n) = (a_1 + b_1, \ldots, a_n + b_n)\).
Proof. Prove that in the lexicographical ordering, \(a < b \) and \(c \leq d \) imply \(a + c < b + d \). The rest of the proof is the same as for the one variable case. \(\square \)

Theorem 10.1 The polynomial \(f \in R[X_1, \ldots, X_n] \) is symmetric iff \(f \in R[\sigma_1, \ldots, \sigma_n] \).

Clearly \(\sigma_i \) is symmetric, and the set of symmetric polynomials forms a subring of the ring \(R[X_1, \ldots, X_n] \). Hence every element of \(R[\sigma_1, \ldots, \sigma_n] \) is symmetric. We now need to show every symmetric polynomial can be written as a polynomial in \(\sigma_1, \ldots, \sigma_n \). We use induction on \(\deg f \). Let \(f \) be a counterexample with minimal \(\deg f \) (using Lemma 1). Let \(\deg f = (a_1, \ldots, a_n) \) and let the leading term have coefficient \(c \in R \). Then \(g = c\sigma_1^{a_1} \sigma_2^{a_2} \cdots \sigma_n^{a_n} \) has \(\deg g = (a_1, \ldots, a_n) = \deg f \) (by Lemma 3) and the same leading coefficient \(c \). Thus \(\deg(f - g) < \deg f \). Now \(g \) is symmetric, so \(f - g \) is symmetric. By induction on \(\deg f \), \(f - g \in R[\sigma_1, \ldots, \sigma_n] \). But \(g \in R[\sigma_1, \ldots, \sigma_n] \). Hence \(f \in R[\sigma_1, \ldots, \sigma_n] \), contradicting the choice of \(f \).

If \(\alpha \in R' \) and \(R \) is a subring of \(R' \), we call \(\alpha \) algebraic over \(R \) if the map \(\text{ev}_\alpha : R[X] \to R' \) is not injective, i.e., there exists a non-zero \(f(X) \in R[X] \) with \(f(\alpha) = 0 \). More generally we say \(\alpha_1, \ldots, \alpha_n \) are algebraically dependent if \(\text{ev}_{\alpha_1,\ldots,\alpha_n} : R[X_1, \ldots, X_n] \to R' \) is not injective, or equivalently there exists a non-zero polynomial \(f \in R[X_1, \ldots, X_n] \) with \(f(\alpha_1, \ldots, \alpha_n) = 0 \). We say \(\alpha_1, \ldots, \alpha_n \) are algebraically independent over \(R \) if they are not algebraically dependent.

Theorem 10.2 The elements \(\sigma_1, \ldots, \sigma_n \) are algebraically independent over \(R \). The elements \(X_i \) are algebraic over \(R[\sigma_1, \ldots, \sigma_n] \).

Proof. Assume \(\sum c_{a_1,\ldots,a_n} \sigma_1^{a_1} \cdots \sigma_n^{a_n} = 0 \) in \(R[X_1, \ldots, X_n] \). Among the (finite set of) \((b_1, \ldots, b_n) \) such that \(c_{b_1,\ldots,b_n} \neq 0 \), pick one such that \((b_1 + \cdots + b_n, b_2 + \cdots + b_n, \ldots, b_n) \) is maximal in the lexicographical ordering. The map sending \((a_1, \ldots, a_n) \) to \((a_1 + \cdots + a_n, a_2 + \cdots + a_n, \ldots, a_n) \) is an injection \(\mathbb{N}^d \to \mathbb{N}^d \), so this \((b_1, \ldots, b_n) \) is uniquely determined. Now \(\deg \sum c_{a_1,\ldots,a_n} \sigma_1^{a_1} \cdots \sigma_n^{a_n} = (b_1 + \cdots + b_n, b_2 + \cdots + b_n, \ldots, b_n) \) contradicting \(\sum c_{a_1,\ldots,a_n} \sigma_1^{a_1} \cdots \sigma_n^{a_n} = 0 \). Thus \(\sigma_1, \ldots, \sigma_n \) are algebraically independent. The elements \(X_i \) are algebraic over \(R[\sigma_1, \ldots, \sigma_n] \) since they are roots of \(X_n - \sigma_1 X^{n-1} + \cdots + \sigma_n = 0 \). \(\square \)

As a consequence of Theorem 2, any symmetric polynomial \(f \in R[X_1, \ldots, X_n] \) can be written as \(g(\sigma_1, \ldots, \sigma_n) \) with \(g \) a unique element of \(R[X_1, \ldots, X_n] \). For example, \(X_1^2 + X_2^2 + X_3^2 = \sigma_1^2 - 2\sigma_2 \).

Exercises

1. Let \(\delta = \prod_{i<j} (X_i - X_j) \in \mathbb{Z}[X_1, \ldots, X_n] \). Show that \(\delta^2 \) is symmetric and for \(n = 3 \) express \(\delta^2 \) in terms of \(\sigma_1, \sigma_2, \sigma_3 \).

2. Let \(f(X) = X^3 - 3X + 5 \) have complex roots \(\alpha_1, \alpha_2, \alpha_3 \). Find a polynomial with complex roots \(\alpha_1^2, \alpha_2^2, \alpha_3^2 \).