The logarithmic scoring rule of decision theory

1. How do you grade a weatherman?

Weatherman A says there’s a 30% chance of rain Monday. Weatherman B disagrees; he
says there is a 45% chance. Say it rains Monday. Based on this much evidence, we should
favor the predictions of Weatherman B. Suppose next that Weatherman A says there is a
65% chance of rain Tuesday; Weatherman B says 80%. It doesn’t rain on Tuesday. Now
who looks to be the better weatherman? To answer this, we need a way to keep score.

A naive strategy would be to give the weatherman a score equal to the probability they
ascribe to the actual outcome. So Weatherman A would get .3 points for his Monday
prediction and .35 points for his Tuesday prediction, while Weatherman B would get .45
points for his Monday prediction and .2 points for his Tuesday prediction. Both would be
at .65 points—a tie.

This turns out not to be a very good way to score weathermen. For, suppose we think the
probability of rain is 70%. If we say 70%, we score .7 if it rains and .3 if it doesn’t. So our
expected score (according to our own estimate) is (.7)(.7)+(.3)(.3)= .58. We’d do better
to just say 100%, when our expected score would be (.7)(1.0)+(.3)(0)=.7. The upshot is
that a weatherman who knows the rule will only give predictions of 0% and 100%-not a
desired feature.

Another idea would be to prefer the weatherman who assigns the highest probability to
the complete set of observations {rain Monday, no rain Tuesday}. Since (presumably) the
Tuesday prediction was conditioned on the observation of rain on Monday, the conditional
probability law P(E N F) = P(E)P(F|E) tells us that Weatherman A assigned proba-
bility (.3)(.35)=1.05 and Weatherman B assigned probability (.45)(.2)=.9 to that set of
observations. According to this analysis (which will turn out to be essentially correct),
Weatherman A’s performance is best.

2. Logarithmic scoring.

A “scoring rule” for weathermen (and prognosticators generally) is implemented as follows:
choose some non-decreasing function f on (0,1). Suppose a weatherman assigns a proba-
bility ¢ to some event (rain Monday, for example). Assign a score f (q) if the event occurs
and f(1—gq) if it doesn’t. But what function f(z) should be chosen? Various scoring rules
exist, but f(z) = logx is of special interest. (A logarithmic scoring rule.)

In favor of the logarithmic scoring rule is the fact that the expected score it assigns is
S(q) = plogg + (1 — p)log(l — q), where p is the actual probability of rain, which is
maximized at ¢ = p. To see this, we calculate diqS(q) = g + %. (We assume here that

these are natural logarithms, though any base will do.) This is zero at ¢ = p, and one may
check that this critical point corresponds to the global maximum of S.

On the other hand, there are many functions f(z) having the property that the global
maximum of pf(q) + (1 — p)f(1 — q) occurs at ¢ = p. A more convincing argument for
f(x) = log x comes from considering a situation in which there are more than two possible
outcomes. (This was considered in [1].) Consider for example the case of an unfair die
with n faces. A predictor picks positive numbers q1,¢o,...,¢,, With g1 + g2+ -+ ¢, =1
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to represent his estimation of the respective probabilities of these faces landing down upon
a toss of the die. The player scores f(g;) in the event of the ith outcome.

Taking n = 3, the expected score is S(q1,q2) = p1 f(q1) +p2f(@2) +(L—=p1 —p2) f(1—q1 —q2),
where p; and py are the actual probabilities of outcomes 1 and 2. The function S has a
critical point where its partial derivatives S, = p1f'(¢1) — (1 —p1 —p2) f'(1 —¢1 — ¢2) and
Sgs = P2f'(q2) — (1 —p1 — pa2) f'(1 — ¢1 — g2) are both equal to zero. If this critical point
corresponds to the global maximum of S, and we want this to occur at q; = p1, q2 = po,
this yields p; f'(p1) = p2f'(p2). But this should hold for all py, p» with 0 < p; + p2 < 1.
In otherwords, zf'(z) is constant on (0,1) and one quickly determines f(x) to be some
constant multiple of log z.

Yet another argument for the logarithmic scoring rule comes from consideration of the
surprisal of an observation, which is basically a numerical measure of how “surprised” a
prognosticator is by the observation we are considering...or to put it somewhat differently,
a measure of how much information is gained by way of the observation.

For example, upon learning the result of a fair coin toss, one gains 1 bit of information,
which is —log, %; note that % is the probability previously assigned to the observed result
(be it heads or tails). More generally, upon making any observation, the result of which
was previously assigned probability ¢, the surprisal consists in — log, g bits of information.
A progonisticator is doing a good job prognosticating precisely to the degree that he is
able to minimize surprisal (the very best prognosticator would not be at all surprised by
anything), and of course to minimize the expectation of the surprisal —log, ¢ is precisely
to maximize expected performance under the logarithmic scoring rule.

3. Your office football pool.

So how exactly should you score your office football pool? When I was in graduate school,
my fellow math TAs were representatively unimaginative: everyone paid a dollar and
picked a winner for each NFL game—who picked the most correctly got the money. One
of us (John) made his picks by tossing a coin, and did surprisingly well over time. Surely,
I figured, there must be some system that would favor excellence in prognostication more
consistently. I wasn’t a big fan of betting against a point spread, though, because once
the outcome of a game is sealed, teams aren’t generally competing at peak effort.

Could the logarithmic scoring rule provide what I was looking for? Here’s the general
idea: the players submit probabilities for each game, are scored according to the rule,
and it’s winner take all as before. Making the predictions becomes more interesting,
scoring a bit more tedious. Note, however, you don’t actually have to take logarithms;
logp: +--- 4+ logp, > logqy + --- + loggq, if and only if p;---p, > ¢1---qn, SO one can
choose to multiply the appropriate probabilities rather than add their logarithms.

Does the system produce the desired result of rewarding excellence more consistently?
This isn’t an easy question to answer—certainly not always. Consider for example the
case of John the coin tosser playing against his sister Janet. Janet doesn’t watch football
either, but has read that home teams win 57% of the time in the NFL. John, presumably,
calls each game at probability .5 for the home team; Janet says .57. Taking logs base
2 and adding 1 to each player’s score for normalization, John scores log,(.5) + 1 = 0
regardless of who wins, while Janet scores log,(.57) + 1 &~ .189034 for a home win and
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log,(.43) + 1 &~ —.21759 for a win by the visitors. This is not good for Janet; if 8 home
teams win and 8 lose, John takes her money. In fact it could be much worse. If only the
15 Sunday games count and 8 home teams win, John still takes her money! Janet retains
a slight edge (she wins with probability 3;%,(.57)(.43)'>~#(*?) ~ .515), but she’d do far
better if they were just picking winners.

The philosophy supporting the logarithmic scoring rule is so solid, however, that it’s worth
looking at a more realistic (if still artificial) example involving several (10) players having
various states of knowledge. Here is such a model: “games” are contests between two
teams of nine fair dice each having various numbers of faces. High pip count from a single
round of throws wins (ties broken randomly). The strength of a team of dice is determined
by the number of faces on its constituents. For each die, this number is itself determined
by a prior roll of a fair six-sided die. The ten players competing in the pool have graded
amounts of knowledge; Player N knows how many faces are on each team’s first N — 1
dice. Teams play just once, then retire.

For example, say Player 3 knows that Team A’s first two dice have 5 and 4 sides respectively,
while Team B’s first two dice have 2 and 3 sides. He estimates the probability that A wins
the contest using the normal approximation, as follows. Let S = Us + Uy — Uz — Uy +
Zzzl(Di — C;), where U, are independent uniform variables on {1,...,n} and each of
C;, D; are independent variables distributed as Uy, on {1,2,...,6} (where an initial roll
of a 6 sided die determines the n of the subsequently evaluated variable U,). Team A
wins if § > 0; if S = 0 a coin is tossed to determine the winner. The expectation of S is
E(Us)+E(Uy)—E(Us)—E(Us) =342.5—-2—1.5=2,as E(D;—C;) = 0 for all 7, while the
variance is i—i—%—k%—k?—i— 14-2%5 ~ 30.903 for a standard deviation of around 1/30.903 ~ 5.56.
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The normal approximation thus yields P(A wins) ~ P(Z < ;) =~ N(.36) ~ .64. (In

order for B to win, S must fall at least .36 standard deviations left of its mean.)

A computer simulation of 14,000 16-game pools among these 10 contestants gave the
following victory rates:

Picking winners Logarithmic scoring

Player 1 1.83% 2.59%
Player 2 4.56% 2.23%
Player 3 5.37% 2.37%
Player 4 6.45% 2.96%
Player 5 7.20% 3.90%
Player 6 8.31% 4.87%
Player 7 9.89% 6.65%
Player 8 12.68% 9.42%
Player 9 17.18% 17.30%
Player 10 26.53% 47.71%

Here, logarithmic scoring seemed to serve the most knowledgable player quite well.
4. Guessing games.

Here’s one to try. For your next game of twenty questions, have the guesser include his
credence ¢ in a “yes” response with every question, and, instead of charging a single ques-
tion each time, charge fractional (real valued) amounts based on the logarithmic scoring
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rule, i.e. —log, ¢ if “yes” and —log,(1 —¢q) if “no”. The guesser can always go with ¢ = .5
and be charged 1 question. Or, they can indulge their desire to guess “Wilt Chamberlain”
in the very first round (with ¢ = 272%) without feeling like they are wasting their guess.

In 1972 at the University of Florida, students were given examinations with true-false and
multiple choice questions. They were told to answer them probabilistically and were scored
logarithmically (among other ways...see [2]). Be careful...if you assign zero probability to
a correct answer, you score —oo! No quantity of all-nighters will dig you out of that hole.

Anyone for Clue?
5. Sleeping Beauty.

Consider Beauty, whose case is a hot topic in contemporary analytic philosophy. She is
involved in an experiment in which a fair coin is flipped on Sunday night. Beauty doesn’t
see the result of the toss, but surely her credence in heads is % on Sunday night. She goes
to sleep and is awakened Monday morning and asked for her credence again, after which
she learns the true outcome. Now if (and only if) the outcome was tails, she receives a
drug that puts her to sleep for another 24 hours and erases all memory of her Monday
awakening. On Tuesday she is again awakened and asked for her credence in heads.

Beauty knows how the experiment works. If heads, she’s awakened once; if tails, twice.
She won’t know for sure what day it is when she wakes up. The question is this: when she
wakes up Monday morning, what should her credence in heads be? Some philosophers say
5. They’re called halfers. Others say 3. They’re called thirders.

What does the logarithmic scoring rule say? If Beauty assigns credence of q to heads, she’ll
score log ¢ if in fact the coin landed heads. This happens with objective probability % But
if the coin landed tails, she will be asked for her credence twice (once on Monday and again
on Tuesday). So maybe she should be scored twice. That makes her score 2log(1— gq) if the

coin landed tails, which also happens with objective probability % Her expected score is
thus S(g) = 5 (logg+2log(1—g)). One has d—qu(q) = 5, — 1 Thisis zero at ¢ = 3, and
it is easily checked that S has a global maximum there. Apparently logarithmic scoring

favors the one-third solution.

Or does it? Maybe Beauty has a “negative surprisal” when her memory is erased, and
this should be scored as well. That would cancel one of the two “tails” surprisals, and
we’d be back to the one-half solution. Which is correct? This is difficult to answer. The
logarithmic scoring rule doesn’t come with a user’s manual. It’s a powerful tool, but we
must ultimately decide on its proper scope of application. There comes a point where
mathematics ends, and philosophy begins....
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