D sets and IP rich sets in Z
R. McCutcheon and J. Zhou
1. Introduction.

In this paper we will be dealing with the space of ultrafilters on Z, endowed with its usual
algebraic structure and topology. A standard background reference is [HS].

A filter on Z is a nonempty set p of subsets of Z that is closed under finite intersections
and supersets and does not contain (). An ultrafilter is a maximal filter, that is a filter not
properly contained in another filter. We denote the set of ultrafilters on Z by (Z, and
endow BZ with the topology generated by the (closed, as well as open) sets A= {pepPZ:
A € p}. With this topology, BZ becomes a compact Hausdorff space.

Identifying z € Z with the principal ultrafilter e(z) = {A C Z : z € A}, BZ becomes a
representation of the Stone-Cech compactification of Z. Now there is a unique associative
extension to SZ of the operation + on Z having the property that for every q¢ € BZ,
the function p — p + ¢ is continuous. (Thus making (6Z,+) a compact right topological
semigroup.) There are several ways to describe this extension; we will content ourselves
with the classical one, i.e.

Aeptqge{reZ: A—xeq}enp.

According to a theorem of Ellis [E], any compact right topological semigroup has idempo-
tents. It is easy to see that if p € 5Z is idempotent (that is, if p = p+p) then any member
of p is an IP set, that is, a set that contains the set of finite sums of some sequence:

FS(<IIJZ>;.21) :{.’Ifll—l—{lllz—f——f—.’lflk T <i2<"'<ik}.

Conversely, any IP set is a member of some idempotent ultrafilter. We call a set A C Z
IP* if it belongs to every idempotent ultrafilter p. (Equivalently, if A€ fails to be IP.) Note
that as {0} is an IP set, every IP* set contains {0}. Some authors require that IP sets be
infinite. We shall call infinite IP sets non-trivial.

Recall that the upper Banach density of a set A C Z is defined as

) |[AN{M,M+1,...,N — 1}
d*(A) = limsu .
(4) N—M—)Eo N-—-M

We will be concerned here with two density-related stengthenings of the IP set notion.
The first, that of D set, was introduced in [BD)].

Definition 1.1 An ultrafilter p € 5Z having the property that d*(A) > 0 for every A € p
is said to be essential. If p is an essential idempotent and A € p, we say that A is a D set.

If B¢ is not a D set (equivalently, if B belongs to every essential idempotent), we say that
B is a D* set.

The second, that of IP rich set, was recently developed by V. Bergelson and A. Leibman,
who have proved (unpublished) that certain return-times intersect all such sets.
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Definition 1.2. A set A C Z is IP rich, or an AIP set, if A\ E is an IP set for every
E C Z with d*(E) = 0. If B¢ C Z is not IP rich (equivalently, if B U E is IP* for some E
with d*(E) = 0) we say that B is AIP*.

As AIP* is supposed to stand for almost IP*, we prefer IP rich to AIP.

IP* sets are AIP* and D*. Since there are zero density IP sets, not every IP set is a D set,
from which it follows that not every D* set is IP*. It’s also clear that not every AIP* set
is IP*, and routine that every AIP* set is D*. (If B is AIP* then B U E is a member of
every idempotent for some zero density F. E doesn’t belong to any essential idempotent,
so B must belong to all of them.)

V. Bergelson (personal communication) asked whether every D* set is AIP*. In this paper
we give a negative answer to this question. That is, we prove:

Main Theorem. There are D* subsets of Z that are not AIP*.

This yields the following proper containments:

IP* G AIP* G D*, or IP 2 AIP 2 D.

The proof, carried out in Section 3, proceeds via construction of an IP rich set that is not
a D set. Workable characterizations of D sets and IP rich sets, which are of independent
interest, are given in Section 2. Our equivalent condition for IP richness, which we call
FS tree richness, already appears in the literature. In [HS, Theorem 20.17] it is shown to
be a necessary property of D sets (making its non-sufficiency potentially interesting to a
different crowd), while in [T] it is proved by elementary means to be a partition regular
property. Our equivalent condition for D sets, meanwhile, is inspired by and comparable
to a combinatorial characterization of central sets given in [HMS].

Acknowledgement. We are indebted to Vitaly Bergelson for suggesting the problem and to
Neil Hindman for helpful comments on an early version.

2. Tree structure characterizations of IP rich sets and D sets.

In this section we give characterizations of D sets and IP rich sets. These are modeled on
an elementary characterization of so-called central sets by Hindman, Maleki and Strauss
in [HMS]. We begin with several definitions.

Definition 2.1. Let Q be the set of finite sequences of integers, including the empty
sequence.

Sometimes, we will want to include zero in our finite sums sets.
Definition 2.2 FSy((z;)) = FS((z;)) U{0}.

The following definition will be instrumental in the inductive process whereby we construct
IP rich sets.

Definition 2.3 If A C Z and f = (x1,...,2k) € Q, we say that A is IP rich over f if for
every E C Z\ FS({z1,...,xx)) with d*(E) = 0 there exist non-zero 41, Tpt2,... € Z
such that F/S({z;)52,) C A\ E.



Here is a related notion. Recall that a non-trivial IP set is just an infinite IP set.

Definition 2.4. Let F' C Z be a finite set. An IPp set is a set R + F, where R is a
non-trivial IP set. A set J C Z is IP} if J intersects every IPr set non-trivially.

The following lemma is a generalization of the fact that for any IP* set B and any n € Z,
the set nZ N B is again IP*.

Lemma 2.5. Let ' C Z be a finite set. If J C Z is an IP}, set and n € N then (nZ+F)NJ
is IP7 as well.

Proof. For every non-trivial IP set R,

R+F¢gJ =R¢g (I =1

fer

Therefore
ulJu-n={0u(N -5’
fer fer
is IP*, which implies that
0 u (an - f))

fer

is IP*. So, for every non-trivial IP set R there exist r € R, f € F', z € Z and j € J such
that 7 =nz = j — f, so that r + f = nz+ f = j, whence (R+ F)N ((nZ+ F)NJ) #0. O

We now move to our characterization of IP rich sets.
Definition 2.6. A set A C Z is FS tree rich if there is a subset T' C ) having the following

properties:

I1. () e T
12. If f € T then d* (Bf) >0, where By, 0 ={r€Z: (21,...,21,2) € T}
I3. If (1,...,2x) € T then FS((z1,...,21)) C A.

Hindman and Strauss show (cf. [HS, Theorem 20.17]) that FS tree richness is necessary for
D sets. We establish now that F'S tree richness is necessary (and sufficient) for IP richness.

Theorem 2.7. Let A C Z. Then A is IP rich if and only if it is FS-tree rich.

Proof. We start with:
Claim. If A is IP rich over (z1,...,x) then

B={z€Z\FS((z1,...,xx)) : A is IP rich over (z1,...,zs,2)} (2.1)

has positive upper Banach density.

Suppose Claim is false. Pick recalcitrant (z1,...,x%) and let F' = FSO((xl, e xk>) We
will construct a set E C Z \ FS((z1,...,xx)) with d*(E) = 0 such that A°U E is IP},
which will yield a contradiction.



Let
K={z€Z\FS((z1,...,z1)) : FS((z1,...,ap,2)) C A}.

Let < be a well-order on Z. We will construct sequences (k;)zcx\p and (E,)cx\p (of
numbers tending to co and sets, respectively) satisfying the following:

(a) For every z € K \ B and every interval I with |I| > k,,

I|
In E'| < | :
yeEK\B,y<z

b) For every z € K\ B, d*(E.) = 0.

c) For every x € K\ B, E!, C k,Z.

d) If z,y € K\ B with y < « then k,|k,.
e) For every z € K \ B,

M ((A\E) —y)\ {0}

YyEF,
is not IP, where F,, = FSO((xl, R x>)
(f) For every € K\ B, E, C Z\ FS((z1,...,z1)).
Supposing that this construction has been carried out, let

E=BU ] E,.
r€K\B

By (2.1) and (f), E C Z\ FS((z1,...,zx)). Also d*(E) = 0. To see this, note that if I,
are intervals with [I;| = k, then by (c) and (d) at most one member of (J,cx\ 5,4 By
can belong to I, whereas by (a) and the fact that d*(B) = 0 one has

/
Ln |J E
yEK\B,y<z

+|L, N B| = |L|o(1).

Moreover A°U E is I Pj. as desired. For if its complement A \ E contains R + F' for some
(non-trivial) IP set R then picking € R and an IP set R’ not having 0 as a member such
that R' 4+ {0,2} C R one will have

R c () ((A\E)—y)\ {0}

YyeF,

The latter set is therefore IP, but x € K \ B (z € K by definition and x ¢ E D B) and
E! C E, so by (e) it is not IP.

It remains to show that one can carry out the construction. Suppose x € K \ B and k,,
E,, have been determined for all y € K \ B with y < z. Since z ¢ B, A is not IP rich
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over (z1,...,%, @), so there is a set E, C Z\ FS((z1,...,xx, ) with d*(E;) = 0 such
that A\ E, contains no set of the form FS((ajl)fil) with xx11 =  and z; non-zero for
i > k+ 2. In particular, (), cp. ((A\ Ez) —y) \ {0} is not IP.

It is clear that we may choose k, in conformity with (a) and (d). Now put

E, = (kzn [ (B - )\ {0}

yeFy,

Note that (b) and (c) are satisfied, and since 0 € E’, (f) is as well provided k, is large
enough, which we may require. We now establish (e).

We know that (), ((A\ E) —y) \ {0} is not IP, so its complement

{0tu |J (A°UE,) —y)

yeFy,

is IP*. Thus
k.Z N ({0} Ul (A -yuE, - y)))

YyeEF,

is IP*, so that the potentially larger

oo U @ -y ukzn |JEB-y)={0pu |J @A —yUE,

yely, yeEL: YyEFy,

is IP* as well. This set is however contained in

{oyu U ((A°uE) —y),

yeFy,

which is therefore IP*, implying that its complement

M ((A\E;) —y)\ {0}

yeFy,

is not IP, yielding (e) and establishing Claim.

In light of the above claim, it is now easy to check that
T ={feQ:AisIP rich over f}

satisfies 11-13 above.

Conversely, suppose that T satisfies I11-13 and let F C Z with d*(E) = 0. We must show
that A\ E contains an IP set. Since () € T, d*({z € Z : (z) € T}) > 0, and for all
x in this set, z € A. So we may choose x; such that (z;) € T and z; ¢ E. Next we
have d* ({z € Z : (z1,z) € T}) > 0, and for every z in this set, {z,z + 21} C A. Since
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d*(EU(E —z1)) = 0, we may choose x5 such that (z1,z2) € T and 22 € EU (E — 7).
Note now that FS({xl, 332}) C A\ E. It is clear that this process can be continued and
will yield a sequence (z;)52; for which FS((z;)52,) C A\ E. O

We next move to our elementary characterization of D sets. One will immediately see that
it is similar to the FS-tree richness condition, but stronger, in that the intersection of the
successor sets of any finite family of nodes must have positive upper Banach density.

Theorem 2.8. Let A C Z. Then A is a D set if and only if there is a subset T' C €2 having
the following properties:

D1. () € T}

D2. If f1,..., fy € T then d*(By, N---N By,) > 0, where

Bay,ap) =12 €L (21,..., 28, 7) € T}

D3. If (z1,...,2%) € T then FS((z1,...,z1)) C A.

Proof. We will be using the standard fact that if p is idempotent and A € p then
A€p+p,ie {m:A—m € p} € p. Let p be an essential idempotent with A € p. Let
Ay =AN{m:A—-mecp}. Forzec Ay, let

Ay =An(A—-z)n{m: (AN(A—-=x)) —mep}cp.
Note that for such z, x € A. Now for y € A,), let
A(zy) = AN(A—z)N(A—y)N(A—z—y)n{m : (AN(A—z)N(A—y)N(A—z—y))—m € p} € p.

Note that for such z,y, FS({(z,y)) C A. Now for z € A(, ) one defines A, , ) € p, etc.
Continuing in this fashion, one defines p-sets {A; : f € T'} for some set T' C Q. Letting
Bay,ar) ={v € Z : (21,...,71,2) € T} one has By, . 2,) = A(ay,...,z,), and D1-D3
above are satisfied.

Conversely, suppose that T satisfies D1-D3. By expanding T if necessary, we can assume
that T satisfies:

D4. If (x1,...,xx) € T and Ly, Lo, . .., L, are consecutive blocks of natural numbers whose

union is {1,2,...,k} then, letting y; = >, x;, one has (y1,...,y,) € T.

To see this, note that once we include every such (y1,...,y,) for (z1,...,x) originally in
T, D4 will be already satisfied, and that after doing so By, . . ,) C By,,...y,); that is,

every set of successors is a superset of an original set of successors, so D2 (and obviously
D3) will still be satisfied. Now let

S = (| (Bs\E).
feT ECZ,
d*(E)=0
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As the sets By \ E have the finite intersection property, S is non-empty and of course
closed. Moreover if p € S and C € p then d*(C) > 0, as otherwise (B \ C) € p, a
contradiction. Also A € p for all p € §. We claim that S is a semigroup and thus contains
idempotents; such idempotents will be essential and will contain A, and this will complete
the proof.

Let p,q € S. We need to show that p+q € S. Let C' € p+ q be arbitrary. It suffices to
find r € S with C' € r.. (If p + q were not a member of the closed set S, one could find
a basic neighborhood C' = {r : C € r} of p + ¢ disjoint from S.) In order to show this it

is sufficient to show that d*(ﬂ?zl By, NC) > 0 for every fi,..., fn € T, as then we can

choose
re N (BrnO)\E).
feT ECZ,
d*(E)=0

One has {x € Z: C —x € q} € p, so since p € S, for every f1,...,fn €T,
h
d*({xeﬂBfi:C—xeq}) > 0.
i=1

Fix f; = (a:gi),...,a:é?) €T, 1<i<h We may choose z € ﬂ?zl By, with C' —z € q.
Since q € S,

.....

.....

where p,, is the principal ultrafilter on n. Put another way,
h
d* ({n € m B(mgi)p--,w?,m) n+zxe C}) > 0.
i=1 ‘

Observe now that (by D4)

777777

which completes the proof. ]

As mentioned in the introduction, Towsner [T] has shown by an elementary argument that
for any finite partition of Z, some cell is FS tree rich. In light of the example given in the
next section, it’s natural to issue the following:
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Challenge. Give an elementary argument that for any finite partition of Z, some cell A
supports a tree T satisfying D1-D3 above, i.e. is a D set.

3. An IP rich set that is not a D set and proof of Main Theorem.

Characterizations in place, we are now ready to construct the set that will enable us to
prove our main theorem.

Theorem 3.1 There exists a set A C Z such that A is IP rich and A is not a D set.

Proof. Recall that a subset of Z is thick if it contains arbitrarily long intervals. It is an
exercise that there exists a countable pairwise disjoint family {5; : i € N} of thick subsets
of N. We will be constructing countably many sets A of positive upper Banach density
in this proof. Each of these will be assumed to be contained in a separate member of such
a family. By an n-spaced subset of some S; we mean a set B C S; N [n,00) having the
property that if z € B and 0 < |z —y| < n then y € S; \ B.

Let Ay C Sy be a set of odd numbers with d*(A()) > 0. Let z1 be the least member of
A(y. Choose mp with 2™t > z; and let A(,,) be a 2m1+2_gpaced subset of S, consisting
of numbers equal to 2™ (mod 2" +1) with d*(A(,,)) > 0. Now pick the least member
of Ay U A(,,) not already used (i.e. not x1). Suppose that x5 comes from A(,,). Choose
mao > my with 22 > (21 + x2) and let Az, ,0) b 2 2m2+2_gpaced subset of S consisting
of numbers equal to 2”2 (mod 2™21) with d*(A(y, 4,)) > 0. Let x3 be the least member
of Ay U A(z) U Az, a,) not already used. Say it comes from A(). Choose m3z > my with
2M3 > (r1 + x9 + x3) and let A(z) be a 2m3+2_gpaced subset of S, consisting of numbers
equal to 2™ (mod 2"3 %) with d*(A(,,)) > 0.

Continue in this fashion; at the stage where we are ready to create a set within Sjy1,
we let zp be the least member of any of the sets constructed in previous stages that
was not already used. Say it comes from a set A, . 4. Choose my > my_1 with
2™k > (z1+---+xp) and let Ay, . q,.2,) Dea 2mk+2_spaced subset of Sy, consisting of
numbers equal to 2% (mod 2™+ 1) with d* (A, . a,.20)) > 0.

We note that:

ar,ar) T FSO((al, e at,:ck)) +{0,1,...,2™k} C Sk41.

B. Every member of A(al’...7at7xk) is divisible by 2.

C. No member of A, a,.a0) + FSo({ar,. .., ar, k) is divisible by 2m++1,

-----

Let T be the set of (a1,...,ar) € Q used as subscripts for sets A(.) in this construction.
D. Letting B(q,,....a,) =12 € Z: (a1, ...,ar,7) € T}, one has B,, ... ap) = A(ay,...,an)-
Next put
A= U <A(a1,...,ak)+FSO(<a‘17"'7ak>)) = U FS(<G1,...,CLk>)-
(al,...,ak)ET (al,...,ak)GT

Then I1-I3 above are plainly satisfied, so A is IP rich. We now turn to showing that A is
not a D set.



E. If (a1,...,a;) € T and m € N then
(1) 4a; < @iy, 1 <7<t
(2) If a; = 2™ (mod 2™*!) then a; Z 0 (mod 2™), 1 < i < t.

(3) If for some 1 < iy < iy < --- < i <t one has (a;, + a, +---+aik) = 0 (mod 2™)
then a;, =0 (mod 2™). (Hence a;; =0 (mod 2™), 1 < j <k.)

(1) follows from the fact that A, . a;.2,) 18 4(z1 + - - + 21)-spaced. For (2), note that
for some i1 < iy < -+ < 4, (a1,...,at) = (Tiy,...,x;). Since z;, € A, i, )
z;, = 2™it-1 (mod 2™—1T1). This implies that m = m;, . Now use the fact that the
sequence m; increases with j. For (3), assume the negation and choose a shortest (i.e.
minimum k, but note k£ > 2) counterexample. Then obviously a;, # 0 (mod 2™). Choose

r such that a;, = 2" (mod 2"1). Then
(@i, + @i, + -+ aik_1> =0 (mod 2")

but a;, # 0 (mod 2") (again, since m; increases with j). So this is a shorter counterexample,
which is a contradiction.

F. If (a;)$2, is a sequence having the property that (ai,...,a;) € T for every t € N then
d*(FS(({ai)2,)) = 0.

This follows from E (1). For let ¢ € N and let I be any interval of length 4*. Since
at+1 > 4%, I contains at most one member of x + FS((a;)$2,, ) for any x € FIS({a;)i_,).
Therefore, I contains no more than 2! members of FS({a;)52,).

G. For all z,y € A, if there exists an IP set R C N with RU(R+z) U (R+y) C A then
there exists some (a1, ...,a;) € T such that {z,y} C FS((a1,...,ax)).

To see this, pick m such that 2™ is greater than max{x,y}. Under the hypothesis about
R, A must contain a configuration of the form {h2™, h2™ + x, h2™ + y}. By definition of
A, h2™ is a member of some set A(q, . 4, r) —i—FSO((al, e, Oy, xk>) By C no member of
that set is divisible by 2™#*1. This implies that m < my, so that max{z,y} < 2™*. Then
by A, {h2™ h2™ + z, h2™ + y} C Sk41, which implies that in fact

{R2™, h2™ + 2, k2" + y} C AN Sp1 = Ay, aron) + FSo((a1, ..., ar, i),

But A, ap0p) 18 2mr 2 gpaced, 2% >y + -+ + 7, max{x,y} < 2™+, so for some
Tj € A(ay,....ar,2,) ONE actually has

{R2™ h2™ + z, h2™ 4y} C {z;} + FSO(<CL1, ) ..,at,xk)) C FS((al, . .,at,xk,xj)).

Now write (z;,,...,2;,) = (ai,...,as Tx, ;) and suppose that z; ,...,z; are not di-
visible by 2™ while x;_,,,...,z; are; this is possible by E (2). By E (3), no mem-
ber of FS((xi,,...,x;,)) is divisible by 2™, so h2™ € FS((zi,,,,--.,%i,)). Now, every
member of FS((xqu, . ..,xiz)) is divisible by 2™i. On the other hand, by C z;
is not divisible by 2™l Therefore m;, > m, whence max{z,y} < 2™%. It’s also

9



the case (by stipulation; see the construction) that z; + ---+ x;, < 2™a. Now since
M + 2’ = h2™ + x for some M € FS((z;i,,,,...,%;.)) and &’ € FS((z;,,...,z;,)),
2Mia|(h2™ — M) = (' —z). Sox = 2’ € FS({(zi,,...,x;,)). As a similar argument applies
to y, we have {z,y} C FS((zi,...,z;,)).

H. Suppose that (z;,,...,z;,), (zj,,...,2;5) € T. If

(FS((ajil,...,a:ik)) \FS(<$i1,~.~,$ik,1>)) N (FS((a;jl,...,xjt>) \FS((le,...,a:jt_1>))

is non-empty then k£ =t and iy = j;, 1 < s < t.

Note that, by construction, (a1,...,a;) € T is uniquely determined by a;. (If a; € Sk41
then a;_1 = z. Now use induction.) So by symmetry we may assume that if there
is a counterexample to H then there is a counterexample with z;, < xz;,. But since
xi, € A(Iz‘1»~~7$z‘k,1)’ it has distance at least 4(xq + --- + x;,_,) from any other z;. It

follows that every member of FS((xil, e ,xzk)) is less than z;,, a contradiction.

Suppose now that A is a D set. Then there is a tree 7" C § which, together with its
successor sets B}, satisfies D1-D3 above. In particular, for each y, z € BE) there is some

IP set R C N with RU(R+y)U(R+2) C A. By G, then, for every y,z € B, there there
exists some (a1, ...,ax) € T such that {y, z} C FS({a1,...,ar)).

Consider now the map from B, to T that sends z € B, to the unique (by H) w(z) =
(a1,...axr) € T having the property that = aj + y for some y € FSy({(a1,...,ar—1)).
What G tells us is that for every y,z € B(), either 7(y) is an initial segment of 7(z)
or vice-versa. Since for any fixed y there can be only finitely many z € BE) such that
7(2) is an initial segment of 7(y), the length of 7(y) as y ranges over the infinite set By,

is unbounded and there exists at least one infinite sequence (aj,as,...) in the closure of
m(B()) (topology of pointwise convergence). So 7(y) is an initial segment of (a1, az,...)

for every y € BE) (otherwise we could find z € BE) such that neither of 7(y), 7(z) was an
initial segment of the other). Therefore B(, C FS({a;)$2,), and since by E (1) 4a; < a;11
for every i, one has d* (F'S({a;)52,)) = 0 by F, contradicting d* (BE)) > 0. O

Recall now from the introduction our main theorem, which we are ready to prove.
Main Theorem. There are D* subsets of Z that are not AIP*.

Proof of Main Theorem. Let A be the set constructed in the previous theorem. Then
Z\ A is D* but not AIP*. ]
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