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0. Introduction

The purpose of this paper is to give a concise proof and some combinatorial conse-
quences of the following theorem.

Theorem 0.1 Assume that (X, .4, s, T) is an invertible probability measure preserv-
ing system, k € N, A € A with u(A) > 0, and p;(z) € Q[z] are polynomials satisfying
pi(Z) C Z and p;(0) =0, 1 < i < k. Then
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Being less general than the polynomial Szemerédi theorem obtained in [BL1] (see Theorem
1.19 in [B2], these Proceedings) in that it deals with one rather than a commuting family of
invertible measure preserving transformations of (X, A, 1) and thereby has combinatorial
applications in Z and R rather than in Z* and R?, Theorem 0.1 has nevertheless a novel
stronger although subtle feature: the limit appearing there is a uniform limit, whereas
the main theorem of [BL1] would merely give, in the case of a single measure preserving
transformation,
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The reasons for undertaking the task of presenting a proof of Theorem 0.1 are twofold.
First of all, the argument that we are going to give has some new and in our opinion
promising features developed for our proof of an IP polynomial Szemerédi theorem (see
section 4 in [B2]). These features, which allow for the attainment of uniformity of the limit,
are more general than the methods of [BL1]. What one would like to have, of course, is an
extension of Theorem 0.1 to a multi-operator situation, namely, one would like to show (for
example) that for commuting invertible measure preserving transformations 71, - - -, T}, of
(X, A, ) one has
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Indeed, with extra effort we could, combining the techniques we present here with those
of [BL1], give a full generalization of [BL1], namely we could show that for polynomials
pij(z) € Q[z] with p;;(Z) C Z and p;;(0) =0,1 <3 <s,1<j <k and A € A with
p(A) > 0 one has

1 N-1 s k

. 55 (N

Aiminf 77 D “(ﬂ ( T ))A) > 0.
n=M =1 j=1

However, the proof in this general case would be much more cumbersome than that of

[BL1], to the point of obscuring the new features. Therefore, we choose to confine ourselves

to the single operator case.

The other reason for presenting a proof of the uniformity of the limit is that this seems
to be the right or most desirable thing to have in any ergodic theorem dealing with weak
or norm Cesaro convergence. For example, Furstenberg’s ergodic Szemerédi theorem [F1]
established uniformity of the limit appearing in Theorem 0.1 for first degree polynomials
pi(n). We would like to say that
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exists, but this seems to be presently out of reach even in the linear case when k > 4 (for
the non-uniform limit as well).
Two major tools which we use are:

(i) The structure theorem for measure preserving systems established by Furstenberg
in [F1], and which will be used in the form appearing in [FKO], which, roughly speaking,
tells us that (X, A, u, T) can be “exhausted” by a chain of factors so that at every link in
the chain there is either relative compactness or relative weak mizing.

(ii) An elaboration of a special case of a Polynomial Hales-Jewett Theorem, recently
obtained in [BL2] which plays in our treatment the role analogous to that of the polynomial
van der Waerden theorem in the proof of the polynomial Szemerédi theorem in [BL1], and
which allows us to push uniformity of the limit through compact extensions. See Theorem
3.1, Corollary 3.2, and the appendix (Section 4).

We wish to conclude this introduction by giving some of the combinatorial conse-
quences of Theorem 0.1. Each is proved using a correspondence principle due to Fursten-
berg (see Theorem 0.2 below). In order to formulate this correspondence principle, as well
as our applications, we will remind the reader of a few definitions.

Suppose that E C Z is a set. The upper density, d(E), and lower density d(E) of E
are defined by
_ |[EN[-N,-N+1,,---,N]|

TP ON + 1 , d(E) =limin ON + 1 '

The upper Banach density of E is given by
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F is said to be syndetic if it has bounded gaps, or, more formally, if for some finite set
F C Z one has
E+F={z+y:x€ E,ye F}=17.

Clearly, any syndetic set has positive lower density, any set of positive lower density has
postive upper density, and any set of positive upper density has positive upper Banach
density. It is also completely clear that these are all different notions.

Here now is Furstenberg’s correspondence principle.

Theorem 0.2 Given a set £ C Z with d*(F) > 0 there exists a probability measure
preserving system (X, A, u,T) and a set A € A, u(A) = d*(F), such that for any k € N
and any ni,---,ni € Z one has:

F(ENE-n)N---N(E—-ng) >p(ANT"AN---NT™A).

The first of our applications follows easily from Theorems 0.1 and 0.2.
Theorem 0.3 Let E C Z with d*(E) > 0. Then for any polynomials p;(z) € Q[z]
with p;(Z) C Z and p;(0) =0, 1 < i < k, the set
{n € Z: for some x € Z,{z,x+ pi1(n),---,x+px(n)} C E}

is syndetic.

Theorem 0.4 Let p;(x) € Q[z] with p;(Z) C Z and p;(0) = 0, 1 < ¢ < k. Suppose
that » € N and that N = U£=1 C; is any partition of N into r cells. Then there exists
some L € N and some a > 0 with the property that for any interval I = [M, N] C Z with
N — M > L there exists ¢, 1 < i <r, and n € C; N I such that

d* (Ci N (Ci—pi(n)) N---N(C; —pk(n))) > .
In particular, the system of polynomial equations

g ="n,
T2 —T1 =p1(n)a

r3 —T1 = p2(n),

Tr+1 — X1 = pk(n)

has monochromatic solutions {zg, - - -, Zx4+1} with n = 2y choosable from any long enough
interval.

Proof. Renumbering the sets C; if needed, let (C;)?_,, where s < r, be those C; for
which d*(C;) > 0. For all 4, 1 < i < s, let (X, A, ui, T3) and A; € A;, u(A;) = d*(Cy)
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be measure preserving systems and sets having the property that for any £ € N and any
ny,---,ng € Z one has:

d*(CZ N (CZ — nl) Mn---N (CZ — nk)) > ,U,Z'(Ai N TinlAi N---N TznkAz)

This is possible by Theorem 0.2. Applying Theorem 0.1 to X = X; x --- x X;, A =
A1Q - QAs, p=p1 X+ X pg, A=Ay X --- X Ag, and T =T x --- x Ts we have:
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Let L now be large enough that if I = [M, N] C Z is any interval with N — M > L
then

501> alt] and | (U &) n1) > (1 - a)l1].
=1

(The former is possible by (1) which, as one may check, cannot hold unless |SNI| > al|l|
for large intervals I. The latter is possible since C;, 1 < i < s consist of all C; for which
d*(C;) > 0.) Of course, it follows that for any interval I with |I| > L, there exists 4,
1<i<s,and n € C;NINS. For this n we have

d* (Cz N (Cz —pl(n)) N---N (Cz —pk(n))) > MZ(AZ N szl(n)AZ n---N szk(n)Al)
> p(ANTPMAN ... ATPEM A) > q.

1. Measure theoretic preliminaries.

In this section we collect the facts concerning measure spaces and their factors which
we will be using. For more details, the reader may wish to consult [FKO]. First of all,
we remark that for the proof of Theorem 0.1 it suffices to assume that the measure space
(X, A, p) is a Lebesgue space. This is a result of the fact that we may always pass to the o-
algebra generated by (T™A)ne 4, which is separable, the fact that p may clearly be assumed
non-atomic, and the fact that Theorem 0.1 is a result about the measure algebra induced by
(X, A, 1) (with no reference to the points of X). Therefore, as any separable non-atomic
probability measure algebra is isomorphic to that induced by Lebesgue measure on the
unit interval, one may freely choose (X, A, 1) to be any measure space having a separable,
non-atomic measure algebra; in particular, one may assume that (X, A, ) is Lebesgue.
Furthermore, we may, in view of ergodic decomposition, assume that T is ergodic.
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Suppose that (X, A, u,T) is an ergodic measure preserving system, where (X, A, u)
is a Lebesgue space, and that B C A is a complete, T-invariant o-algebra. Then B
determines a factor (Y, By,v, S) of (X, A, u, T), the construction of which we now indicate.
Let (B;)2, C B be a T-invariant sequence of sets which is dense in B (in the sense that for
any B € B and € > 0 there exists i € N such that u(BAB;) < €), and denote by Y the set
of equivalence classes under the equivalence relation which identifies 1 with zo, 1 ~ z2,
when for all 2 € N, z; € B; if and only if 5 € B;. Let 7 : X — Y be the natural projection
and let By = {BCY : 7~ Y(B) € B}. For B € By, let v(B) = u(r~'B). Finally, write
S7(x) = n(Tx). Then (Y, By,v,S) is a factor of (X, A, u, T).

Since any complete, T-invariant o-algebra B C A determines such a factor, we will
simply say that B is a factor of A, or that A is an extension of B, and will identify B; with
B when referring to the induced system, which we now write as (Y, B,v,S). If z € X and
y €Y, with y = w(z), we will say that “z is in the fiber over y.”

If (Y,B,v) is a factor of (X, A, p), then there is a uniquely (up to null sets in Y)
determined family of probability measures {y, : y € Y} on X with the property that s,
is supported on m~1(y) for a.e. y € Y and such that for every f € L'(X, A, u) we have

| 1@ au@) = [ ([ £6)du@) avtw)

Sometimes we write u, for p, when z is in the fiber over y. The decomposition gives, for
any A-measurable function f, the conditional expectation E(f|B):

B(fB)(y / F(@)dy (@) a

Equivalently, the conditional expectation E(-|B) : L*(X, A, u) — L%(X,B, ) is the or-
thogonal projection onto L?(X, B, y). In particular, E(E(f|B)|B) = E(f|B).

Let A ® A be the completion of the o-algebra of subsets of X x X generated by all
rectangles C x D, C,D € A. Now define a T' x T-invariant measure ji on (X x X, A® A)
by letting, for fi, fo € L®(X, A, i)

/XxX fi(z1) f2(22) dﬁ:/y/X/Xfl(ml)fz(@) Aty (z1)dpy (z2)dv(y).

(It is clear that there is one and only one measure which satisfies this condition.) We write
X xy X for the set of pairs (z1,z2) € X x X with z; & z3. One checks that X xy X is
the support of i, and we speak of the measure preserving system (X xy X, A®g A, i, T),
where A ®p A is the fi-completion of the o-algebra {(X xy X)NC: C € A® A} and T
is the restriction of T' x T' to X xy X.

We now procede to introduce the basic elements of the Furstenberg structure theory.
The specific format we adopt is from [FKO|.

Definition 1.1 Suppose that (Y, B, v, S) is a factor of an ergodic system (X, A, u, T)
arising from a complete, T-invariant o-algebra B C A, and f € L?(X, A, ). We will say
that f is almost periodic over Y, and write f € AP, if for every § > 0 there exist functions
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g1, > 9r € L3(X, A, p) such that for every n € Z and a.e. y € Y there exists some
s =s(n,y),1 <s <k, such that [|T" f —g,||z2(x,8,4,) < 0. If the set AP of almost periodic
over Y functions is dense in L?(X, A, 1), we say that (X, A, u,T) is a compact extension
of (Y,B,v,S), or simply that A is a compact extension of B. If (X xy X, A®p A, [i, T)
is ergodic, then (X, A, u, T) is said to be a weakly mizing extension of (Y, B, v, S), or, A is
said to be a weakly mixing extension of B.

For proofs of the following two propositions, see [FKO].

Proposition 1.2 Suppose that an ergodic system (X, A, p,T) is a weakly mixing
extension of (Y, B,v,S). Then (X xy X, A®p A, i,T) is also a weakly mixing extension
of (Y,B,v,S).

Proposition 1.3 Suppose that (X, A, u,T) is a compact extension of (Y, B,v,S).
Then for every A € A with u(A) > 0 there exists some A" C A with p(A4’) > 0 and
14 € AP.

The notions of relative weak mixing and relative compactness are mutually exclusive.
Moreover, one may show that (X,.4, u,T) is a weakly mixing extension of (Y, B, v, S) if
and only if there is no intermediate factor (Z,C,~y,U) between (X, A, u, T) and (Y, B, v, S)
which is a proper compact extension of (Y, B,v,S). (This is the relativized version of the
fact that a system is weakly mixing if and only if it has no non-trivial compact factor.)
The structure theorem (see Theorem 6.17 in [F2] and remarks following) we need may now
be formulated as follows:

Theorem 1.4 Suppose that (X, A, u,T) is a separable measure preserving system.
There is an ordinal  and a system of T-invariant sub-o algebras {4 C A: & < n} such
that:

(i) Ao = {0, X}

(ii) For every & <, A¢41 is a compact extension of Ay.

(iii) If £ < n is a limit ordinal then A¢ is the completion of the o-algebra generated
by Ugr ¢ Aer-

(iv) Either A,) = A or else A is a weakly mixing extension of A,,.

The factor A, appearing in the structure theorem is called the mazimal distal factor
of A. In the next section, we show that in order to prove Theorem 0.1 for the system
(X, A, p, T), it suffices to establish that the conclusion holds when A is taken from its
maximal distal factor.

2. Weakly mixing extensions.

In this section, we will prove the following relativized version of Theorem 3.1 from
[B1].

Theorem 2.1 Suppose an ergodic system (X, A, u, T') is a weakly mixing extension
of (Y, B,v,S), and that p1(z),-- -, pr(z) € Q[z] are non-zero, pairwise distinct polynomials
with p;(Z) C Z and p;(0) =0, 1 <4 < k. Then for any f1,---, fr € L™°(X, A, u),

N-—-1 k k
i & (o= 0sm)] -
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Using Theorem 2.1, we will then show (Corollary 2.5) that if the conclusion of Theorem
0.1 holds for the maximal distal factor of a system, then it also holds for the full system.
In other words, the validity of Theorem 0.1 passes through weakly mixing extensions.
We will be using the following concept of convergence in density.

Definition 2.2 Suppose that (zp)hen C R. If for every € > 0 the set {h € Z :

|zp, — x| < €} has (lower) density 1, we write

D—lim zp = .
h—oo

Equivalently, x5, — = as h — oo, h ¢ E for some E C Z with d(E) = 0.

We call the following lemma a “van der Corput type trick”, because it is motivated
by van der Corput’s fundamental inequality.

Lemma 2.3 Suppose that {z,, : n € Z} is a bounded sequence of vectors in a Hilbert

space H. If
N-1
Z -Tnawn—l—h Oa
n=M

D—lim i
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then
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Proof. Let € > 0. Fix H large enough that
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where lim supy_ pr—y00 || ¥y || = 0. We will show that limsupy_pro0 [[Par,n|| < €. We
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1 =1 E 2
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where Uy, ; — 0 as N — M — oo. By choice of H the last expression is less than e when
N — M is sufficiently large.

O
The following lemma will serve as a starting point in our proof of Theorem 2.1.
Here and throughout (for the sake of convenience and without loss of generality) we

take L™°(X, A, ), L?(X, A, i), etc. to consist of real-valued functions only. Also, if
f,9€ L?(X, A, ), we will write f ® g(z1,72) = f(71)g(x2)-

Lemma 2.4 Suppose that an ergodic system (X, A, u, T') is a weakly mixing extension
of (Y,B,v,S) and that f,g € L>°(X, A, p). If either E(f|B) =0 or E(g|B) = 0 then

D—lim ||E(fT"g|B)|| = 0.
h— o0
Proof. Note that it suffices to show that

N
. 1 )
NN 2::1 |E(fTg|B)||” = 0.

We have N
1
lim — S ||E(fTg(B)|’
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n

~([uena)( [wenam)
=( / B(f1B)* dv) ( / E(g|B)? dv) = 0.

O

We now describe the inductive technique whereby we will prove Theorem 2.1. This
technique was also utilized in [B1]. First of all we may and shall assume without loss of gen-
erality that all polynomials are in Z[z]. The induction will be on P = {py(z), -, pr(z)} C
Z[z], the set of polynomials appearing in the theorem, using a partial ordering on the family
of all such sets which we now describe.

Suppose that P = {p1(z),---,pr(x)} C Z[z] is a finite set of pairwise distinct poly-
nomials having zero constant term. We associate with P the (infinite) weight vector
(a1, -, Qm,---) where, for each i € N, a; is the number of distinct integers which oc-
cur as the leading coefficient of some polynomial from P which is of degree 7. For example,

P = {4z,9z, 322 — 5z, 322 + 122, — 722, 22*, 22* + 3z, 22* — 1023, 172°})

has weight vector (2,2,0,1,1,0,0,---). (Notice that the weight vector ends in zeros.) If
P has weight vector (ai,---,am,---) and @ has weight vector (by,---, by, --), we write
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P < @, and say that “P precedes @7, if for some n, a,, < b,,, and a,, = b, for all m > n.
This partial order comes from a well-ordering on the set of weight vectors

{(al,---,am,0,0,---):mEN,aiENU{O},lgiSm,am>0},

and therefore gives rise to the inductive technique we are after. This technique, which we
call PET-induction, works as follows: in order to prove any assertion W(P) for all finite
sets of pairwise distinct polynomials P having zero constant term, it suffices to show that

(i) W(P) holds for all P having minimal weight vector (1,0,0,---), and
(ii) If W(P) holds for all P < @ then W(Q) holds as well.
We now proceed to prove Theorem 2.1 via PET-induction.

Proof of Theorem 2.1. First we show that the conclusion holds if the weight
vector of P = {p1(z),---,px(x)} is (1,0,0,--). In this case k¥ = 1 and p;(z) = jz for
some non-zero integer j. We may write f; as the sum of two functions, one of which
has zero conditional expectation over B and the other of which is B-measurable, namely
fi=(f1 — E(f1|B)) + E(f1|B). Since the conclusion obviously holds when f; is replaced
by E(f1|B) (recall that E is idempotent), we need only show that the conclusion holds
when f; is replaced by ( f1—E( fl\B)), i.e. we may assume without loss of generality that
E(f1|B) = 0. What we must show, then, is that

1 N-—-1
NeMosoo N—MZM hij| =0
n—

However, by the uniform mean ergodic theorem,

1 N-1
. in _
N—IJ%JHLOO N-M _ZJVIT fl Pfl’

in norm, where P is the projection onto the set of T7-invariant functions. Since (X, A, p, T)
is a weakly mixing extension of (Y,B,v,S), and E(fi|B) = 0, we have Pf; = 0. This
completes the minimal weight vector case.

Suppose now that @ = {pi(x),---,px(x)} is a family of non-zero, pairwise distinct
polynomials having zero constant term, and that the conclusion holds for all P with P < Q.
Reindexing if necessary, we may assume that 1 < degp; < degps < --- < degpg. Let
f1,--+, fr € L°(X, A, 1). Suppose that E(f,|B) = 0 for some a, 1 < a < k. We then must

show that
k

. ;N -
N—ll}/frn—moHN—M ZM(HlTp( )f")H =0

n= 1=

To see that the supposition is made without loss of generality, consider the identity
k k
Hai - Hbz = (a1 - bl)bzbg .. bk + al(ag - b2)b3b4 .- bk +---+ajaz-- -ak_l(ak - bk)
i=1 i=1
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with a; = TP*(™ f; and b; = SP*(™) E(f;|B), noting that on the right hand side we have a
sum of terms each of which has at least one factor with zero expectation relative to B.
We use Lemma 2.3. Let z,, = Hle TPi(") £, Then

N-1
lim sup 1 (T, Trth)
N—M—)ooN_anM et
1 N-1 k k
=1 pi(n) £, pi(n+h) ¢
S o 3 [ (15 ) (Tmeos) o
n=M i=1 i=1
;N k (2)
= limsup / ( TPi(n)—p1(n) Z)
N—M—oco N —M n:ZM h g f

k
< H TPi(nth)=pi(n)=pi(h) (TP (h)fi)) dp.

For any h € Z let
P, ={pi(n) —p1(n) : 2 <i<k}U{pi(n+h) —pi(n) —pi(h) : degp; > 2,1 <i < k}.

P, consist of polynomials with zero constant term. Furthermore, the equivalence class of
polynomials in ) with degree and leading coefficient the same as p; (n) has been annihilated
in Pp. All other equivalence classes consisting of polynomials in () of the same degree as
p1(n) have been preserved (although the leading coefficients of these classes have changed).
Equivalence classes of higher degree are completely intact. New equivalence classes may
exist, but if so they will be of lesser degree than p;(n). It follows that P, < Q. We now
consider two cases:

Case 1. degp; > 2. Then degp; > 2, 1 < ¢ < k, and one may check that for all
h outside of some finite set, P, consists of 2k — 1 distinct polynomials. For these h, we
use our induction hypothesis for the validity of the theorem conclusion for the family P,
(utilizing weak convergence only) and continue from (2):

1 N-1 k
= limsup U Z /E(f1|8)(HSPi(n)—P1(n)E(fi|B)>
n=M 1=2

NeM—oo N —

k
(H gpi(n+h)—p: (n)_pi(h)E(Tpi (h)f1‘3)> dv = 0.
=1
This since E(f,|B) = 0.

Case 2. degp; = degpy = --- =degp, =1 < degpir1. (Of course, if all the p; are of
degree 1 then ¢ = k and there is no p;11.) In this case p;(n + h) — p1(n) — p1(h) =0, and
pi(n+ h) —p1(n) — pi(h) = p;(n) — p1(n), 2 < i <t, so that Py, will consist of 2k —¢ — 1

10



elements (again, excepting a finite set of A’s for which other relations might hold). In this
case we write p;(n) = ¢;n, 1 < i <t, and proceed from (2):

lim sup

N-1 t
. 1 / h ;(n)— ih
= > [ saet s ([[s O B
N-M-oo N =M — s

k
( 11 Spi(n)—pl(n)E(fi|B)Sp"("+h)‘p1(")"”(h)E(Tpi(h)f”B)) W

i=t+1
Ift+1 <a<ek,thisis zero. If 1 < a <t, however, it will still be at most

(I BT falB)| 2y, ) TT Il
l#a

so that, by Lemma 2.4,

N-1

Z (@n, Tnsn) < DAim|[|B(faT" falB)l|2(v.s,) | [ 117113 =
l#a

1
D-lim i
oo PSP N

In either of these two cases, Lemma 2.3 gives

N—
(1) | o
=M

lim H

N—-M-—oo | N — M

The following corollary is what we have been aiming for in this section.

Corollary 2.5 Suppose that (X, A, u, T) is an ergodic measure preserving system and
denote by (Y, Ay, v, S) its maximal distal factor. If for all A € A,, with v(A) > 0, we have

N-1

lim sup v( AﬂSpl(")Aﬂ---ﬂSpk(")A)

N-M-oo N — M

:M

N-1
1
— limsu /1 SPim) ], ... §7P(M ] 4 du > 0,
N_MJ;N—MEJ . g !

then for all A € A with u(A) > 0,

T

lim su ANTP ™M AN ... TP 4
IR N 2 M )
N-—-1
: 1 —p1(n) —pi(n)
= limsup 14T 1g- TP 4 du > 0.
N-M-oo N =M —
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Proof. By Theorem 1.4, (X, A, u, T) is either isomorphic to, or is a non-trivial weakly
mixing extension of, (Y, A,, v, S). In the former case there is nothing to prove, so we assume
the latter. If A € A, then for some > 0 we have

v(As) =v({y €Y : my(A) > 6}) > 0.

We have E(14|A,) > 014, so that by Theorem 2.1 (utilizing only weak convergence),

N-1
Z /1AT_p1(n)1A cTPR( Y gy

N N M
N-1
:Alri_mMngo MHZA;/MS M E(14]A,) - STPME(14]A,) dv
N-1
= limsup M Z /E(lA\A )STPL M E(14]A,) - - S_p’“(")E(lA\An) dv
N—-M—oo

n=

0" limsup o Z /1A55_p1(”)1A5"'5_”(")1As dv > 0.
—M—=00 n=M

3. Uniform polynomial Szemerédi theorem for distal systems.

According to Corollary 2.5, in order to establish Theorem 0.1 for an arbitrary system
(X, A, s, T), it suffices to establish that the conclusion holds for its maximal distal factor
(X, Ay, 1, T). That is what we shall do in this section, using transfinite induction on the
set of ordinals {¢ : £ < n} appearing in Theorem 1.4. As Theorem 0.1 trivially holds for
the one point system, there are two cases to check: that the validity of the theorem is not
lost in the passage to successor ordinals, namely, through compact extensions, and that the
validity of the theorem is not lost in the passage to limit ordinals. Again, in this section
we assume without loss of generality that all polynomials are in Z|z].

In order to show that the validity of Theorem 0.1 passes through compact extensions,
we will use a combinatorial result, the polynomial Hales-Jewett theorem obtained in [BL2].
A special case of it is given as Theorem 3.1. If A is a set, we denote by F'(A) the set of all
finite subsets of A. (Of course if A is finite this is just P(A).)

Theorem 3.1 Suppose numbers k,d,r € N are given. Then there exists a number
N = N(k,d,r) € N having the property that whenever we have an r-cell partition

F({1, kb x {1+, N}) = e

one of the sets C;, 1 <4 < r contains a configuration of the form

{A U (B x 8%) : B ranges over subsets of {1,--, k}}

12



for some A C ({1,---,k}x{1,---, N}?) and some non-empty set S C {1, --, N} satisfying

AN ({1, k} x §%) = 0.

Theorem 3.1 is a set-theoretic version and generalization of the polynomial van der
Waerden theorem proved in [BL1]. To give some of the flavor of how one uses this theorem
to help with polynomial dealings, we show first, as an example, how Theorem 3.1 guarantees
that for any finite partition of Z, Z = |J,_, D;, we may find 4, 1 < ¢ < r and z,n € Z,
n # 0, with {z,z + n?} C D;. Namely, let N = N(1,2,r) as in Theorem 3.1 and create a

partition
-

F({1}><{1,---,N}2) = e?

=1

according to the rule:

A€Ciifandonlyif »  tseD;1<i<r.
(1,t,8)EA

According to Theorem 3.1, there exists 7, 1 < i < r, A C ({1} X {1,---,N}d), and a
non-empty set S C {1,---, N}, satisfying AN ({1} X SZ) = (), such that

{A4,AU ({1} x S*)} C C;.

Letting = 21 ; syeats and n =3, o ¢, we then have {z,z + n?} C D;.

This example uses very little of the strength of Theorem 3.1, in particular it only needs
the case k = 1 there. By considering general k£, one may prove in a completely analogous
fashion that for any finite set of polynomials p;(z),- - -, p(z) € Z[z] with p;(0) =0, 1 < k,
and any finite partition of Z, Z = (J;_, D;, one may find ¢, 1 <4 <r,and z,n € N, n # 0,
with {z,z + p1(n), -,z + pr(n)} C D;. The following consequence of Theorem 3.1 is all
we shall need from it and is a still further elaboration of the method introduced in the
previous paragraph. In an appendix we will show how it can be derived from Theorem 3.1.

Corollary 3.2 Suppose that r, k,t € N and that
pl(xh 0T '7'T;t)7 e 7pk:(:[;17 T 7'7’.t) € Z[:L.h o '7:L.t]

with p;(0,---,0) = 0, 1 < 4 < k. Then there exist numbers w, N € N, and a set of
polynomials

Q: {q1(y1a'.'ayN)a"'7QIU(y1a"'7yN)} C Z[y177yN]

with ¢;(0,---,0) =0, 1 <4 < w, such that for any r-cell partition @ = |J;_, C;, there exist
some i, 1 < i <r, g€ @, and non-empty, pairwise disjoint subsets S1,---,S5; C {1,---, N},
such that, under the symbolic substitution z,, = Zne s, Yn, 1 <m < t, we have

{q(y1,---,yzv),q(y1,---,yzv) +p1(z1, ), gy, YN) +pk(x1,---,aft)} C Ci.

13



We now make some definitions.

Definition 3.3 A subset E C Z will be called thick if for every M € N, there exists
a € Z such that {a,a+1,a+2,---,a+ M} C E.

Note that a set is thick if and only if it contains arbitrarily large intervals, and a set
is syndetic if and only if it intersects every thick set non-trivially.

The following definition is tailored to fit into the framework of the usage of Corollary
3.2 in passing to compact extensions. Here for any ni,---,n; € N (or any additive group)
we write

FS(ny,---,ne) ={ny, +---+mng, : 1<m<t,1<iy <o <y, <t}
Definition 3.4 Suppose (X, A, 4, T') is an invertible measure preserving system and
that B C A is a complete T-invariant sub-g-algebra. B is said to have the PSZ property if
for every A € B with u(A) > 0, t € Z, and polynomials p1(x1,---x¢), - -, pr(T1,- -, x¢) €

Z[zq,---,x¢ having zero constant term, there exists 6 > 0 such that in every thick set
E C Z, there exist ny,---,n; € Z such that FS(ny,---,n;) C E and

(AN TPi(nine) A ... Tpk(n1,--~,nt)A) > 4.
The case t = 1, in particular, gives some ¢ > 0 for which the set
{neZ: u(AﬂTpl(n)Aﬂ...ﬂTpk(”)A) > 6}

is syndetic, which insures that

N-1
1

.. ANTPrM AA ... TP(") 4 .

Nh_I?EEEON—MnZ:M”( " e )20

Therefore, in light of Corollary 2.5, we will have established Theorem 0.1 if we are
able to prove that the maximal distal factor of any system has the PSZ property. This is
exactly what we shall do in the remainder of this section. The reader may wonder why
this definition is stronger than appears necessary, that is, why we choose to deal with
polynomials of many variables. The reason is that our method of proof requires the PSZ
property in this strength in order to preserve itself under compact extensions. Corollary
3.2 is the key to this method, as we shall now see.

Theorem 3.5 Suppose that (X, A, u,T) is an ergodic measure preserving system
and that B C A is a complete, T-invariant sub-o-algebra having the PSZ property. If
(X, A, s, T) is a compact extension of the factor (Y, B, v, S) determined by B, then A has
the PSZ property as well.

Proof. Suppose that A € A, u(A) > 0. By Proposition 1.3 there exists a subset
A" C A, u(A’) > 0, such that 14+ € AP. Therefore we may assume without loss of
generality that f =14 € AP. Suppose that ¢,k € N and that

pl(xla o '7$t)7 o '7pk($17 e 7$t) € Z[mh 0T '7:Ut]
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have zero constant term. There exists some ¢ > 0 and a set B € B, v(B) > 0, such
that for all y € B, p,(A) > c. Let e = /. Since 14 € AP, there exist functions
g1, -+,9r € L>(X, A, 1) having the property that for any n € N, and a.e. y € Y, there
exists s = s(n,y), 1 < s < r, such that ||[T"f — g;|[y < e. For these numbers r, k,t and
polynomials p;, let w, N € N and

Q:{q1(y1a"'7yN)7"'7Q’w(y17'“7yN)}C Z[ylf"ayN]a QZ(0770):0a 1 Szgw

have the property that for any r-cell partition @ = |J._, C;, there exists i, 1 < i < r,
q € Q, and pairwise disjoint subsets Sq,---,S; C {1,---, N} such that substituting z,, =
ZnGSm Yn, 1 < m < t, we have

{Q(yla"'7yN)7Q(y1""7yN) _pl(xlu"'7$t)7"'aq(y17"'7yN) _pk(xla"'axt)} C C’L

(This is possible by Corollary 3.2.)
Since B has the PSZ property, there exists 7 > 0 such that for every thick set £ C Z,
there exists uy,---,un € Z such that FS(uy,---,un) C F and

v(Bn SN ga...q g un) B) s,

Let D be the number of ways of choosing ¢ non-empty, pairwise disjoint sets S1,---,S5; C
{1,---,N}, and set § = 575. We want to show that in any thick set E C Z there exist

ny,---,ng € Z such that FS(nq,---,n;) C E and
M(A A TP (N ) A ..o Tpk(n1,~--,nt)A) > 6.

Let E be any thick set. There exist uq,---,uy € Z such that FS(uy,---,uny) C E

and
V(B N Sql(u1,~~~,uw)B A---N Sqw(m,"-,UN)B) > 7).

Pick any y € (B N SuuuN)B N ...N Sqw(ul""’“N)B). Form an r-cell partition of
Q, Q = U,_, Ci, by the rule go(y1,---,yn) € C; if and only if s(qa(ul,---,uN),y) = 1,
1 < a < w. In particular, if ¢, € C; then |[T%(“1,uN) f_g.|| < . For this partition, there
exists some i, 1 < i < r, some ¢ € Q, and pairwise disjoint subsets Sy,---,S; C {1,---,N}
such that, under the substitution z,, = Zne s, Yn, 1 <m < t, we have

{Q(yh'"7yN)7Q(y17'..ayN) _pl(xla"'7$t)7"'7q(y17"'7yN) _pk(xla"'w,l:t)} - C’L

In particular, making the analogous substitutions n,, = Zne s, Un, 1 <m < &, we have
FS(ny,---,ny) C E, and furthermore, we have, setting po(z1,---,z¢) = 0,

‘|TQ(U1,---,UN)—pb(n1,--'Jlt)f - gz||y <e 0<b<Ek.

Setting § = S—9(41:uN)y  we have

HT—pb(nl,"',’nt)f _ T_Q(ula"'1uN)gng <e 0Zb<LE.
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In particular, since this holds for b = 0, we have by the triangle inequality
|TPelmmd f— f|| < 2e, 1<b<F.
It follows that

py (AN TP mm) ) < |[ppe(mnd fo fI° < ae 1<b< k.

Moreover, i € B, so that pz(A) > c, therefore, since € = /57,

pg(ANTP O m) A AP0 ) > ¢ — dhe® =

The sets Si,---,S; depend measurably on y, and therefore the numbers nq,---,n; are
measurable functions of y defined on the set (B N Sau(uuN)Bn...N Sqw(ul""’“N)B),
which, recall, is of measure greater than 7. Hence, as there are only D choices possible for

S1,-++,St, we may assume that for all y € H, where H € B satisfies v(H) > 5, n1,---,ny
are constant. For this choice of nq,---,n; we have
p(ANTPrm) Aoy Teemn) 4) > Sy(H) > SL <
-2 2D

(

Looking again at Theorem 1.4, we see that, having proved that the PSZ property
is preserved under compact extensions, we have left only to prove that, given a totally
ordered chain of T-invariant sub-c-algebras with the PSZ property, the completion of the
o-algebra generated by the chain again possesses the PSZ property.

Proposition 3.6 Suppose that (X, A, u, T) is a measure preserving system and that
Ag is a totally ordered chain of sub-o-algebras of .A having the PSZ property. If |, Ag is
dense in A, that is, if A is the completion of the o-algebra generated by Ug Ag, then A
has the PSZ property.

Proof. Suppose A € A, u(A) >0, t,k € N, and that
pl(xh'"7xt)7"'apk(x17'"7xt) € Z[',I;lf"axt]

are polynomials with zero constant term. There exists £ and B € A, such that

u((a\ B B\ A) < A

Let [du= [, [y duydv(y) be the decomposition of the measure p over the factor Ag. Let
C={yeB: py(A)>1- 2(k—1+1)} It is easy to see that v(C) > 0. Since A has the PSZ
property, there exists some a > 0 having the property that in any thick set £ we may find
ny,---,nt € Z such that FS(ny,---,ny) C F and

v(Cngrnm)on...ngeeltnnd o) > g (3)
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Set 6 = § and let E be any thick set. Find ni,---,n; € Z satisfying (3) and with

FS(ny,---,ny) C E. For any y € (C’ N §pi(rm )N ... n Spk("l"”’"t)C’) we have

fhy (A), py (TP (P1me) A) ooy, (TPR(Mm0) A) all ot less than 1 — m, from which it
follows that 1
Ly (A N TP1(H1,"',nt)A) A---N TPk("l:"',nt)A) P
Therefore,
p(ANTP ) A) (o ok 4) % =

4. Appendix: Proof of Theorem 3.2.

We will now derive Corollary 3.2 from Theorem 3.1. First, we derive from Theorem
3.1 its natural “multi-parameter” version.

Proposition 4.1 Suppose k,d,r,t € N are given. Then there exists a number N =
N(k,d,r) € N having the property that for any r-cell partition

F({1,2,---,k} x {1,2,--- tN}) = | ] G,
=1
one of the cells C;, 1 <7 < r contains a configuration of the form
{Au (Bx(S1U---US)Y) :BC {1,---,k}},
where A C ({1, --,k} x {1,--,tN}*) and 0 # S; C{(j —1)N+1,---,jN}, 1 <j <t
satisfy

Aﬂ({l,---,k}x(Slu---USt)d) = 0.

Proof. Let N = N(k,d,r) be as in Theorem 3.1. Given any partition

T

F({1,2,--,k} x {1,2,--- tN}) = | G,
we will construct a partition
F({1,2,--,k} x {1,2,---,N}¥) = | ] D;

in the following way: given any set U C ({1,2,---,k} x {1,2,- --,N}d), let
Uij={ve{l,---,N}*: (jv) eU},1<j<k.

17



Also, for any set E C {1,---, N} let yv(E) C {1,---,tN}% be the set which is obtained
by taking the union of ¢¢ shifts of E,

vE)= | (E+(N,---,iaN)).
0<41,+,5q<t

(Notice, in particular, that y({1,---, N}4) = {1,---,tN}%.) Now let
k
y(U) = JLi} x 1 (U),
j=1

and put U € D; if and only if v(U) € C;. According to the property whereby N was
chosen, one of the sets D;, 1 <4 <r, say D;, contains a configuration of the form

{HUBx8Y:BC {1, k}},
for some H C ({1,---,k} x {1,---, N}%) and some non-empty S C {1,---, N} satisfying
HnN ({1a7k} X Sd) :Q)

Let S; =S+ (i—1)N,1<i<t,and put A=~y(H). Then ) #S; C {(i—1)N+1,---,iN},
1 <4 <t, and one may check that for every B C {1,---,k},

Y(HU (B x 5%) =AU (Bx (S1U---US)?).
It follows that

{AU(Bx(SU-US)Y) B {1,k cC

Furthermore, AN ({1,--+,k} x (S1 U---USy)4) =0, so we are done.

We are now in position to prove Corollary 3.2.

Proof of Corollary 3.2. Let d be the maximum degree of the polynomials pj,
1<j<k,andlet N= N(k,d,r) be as in Proposition 4.1 above. We claim there exists a
map

@ F({l,---,k} X {1,---,tN}d) — Zly1, -, YsN]

satisfying ¢(A U B) = ¢(A) 4+ ¢(B) whenever AN B = (), and such that

. 1 t)
p({i} x im{Y, - mB, - m{ - mB))
=p; (Y, + -+ T Ym,, W5 Yy o +ym3t<t>)
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whenever 1 < j < k and {m(l) » msl)} C{l—-1)N+1,---,IN}, 1 <1 <t. We now
proceed to define the function ¢ on singletons.
Fix j, 1 < j < k. There exist polynomials

Qg iy (ul,u2, ety Uil+..._|_it) € Z[Ul, o '7ui1+---+it]7 1 S il + -+ it S d,
such that whenever {mgl) msl)} C{(l—-1)N+1,---,IN}, 1 <1 <t, we have

pj(umgl)+"'+U,mg11),---,um§t)+ -+ u (t))

’ITLSt

= > > Qi ooy (U055 Uy =23 Uy 5 Uy ).
1 1t

i1 i 1 l !
Iatti<d g0 Oy m® o m}

For example, say that p;(z1,22) = z3zs + 22 + 25. Then a;o(u1) = u?, ap1(u1) = ua,
ag0(u, ug) = 2uqug, a1,1(u1,u2) = u3ug, and ag,1(u1, ug, uz) = 2ujugus. Now for each
t-tuple of subsets

0 DY C{I - )N+ 1, INY, 1<I<t, 1<ii+---+i; <d,
we pick exactly one representative point (j,aq,---
isfies

.aq) € ({5} x {1,---,tN}4) which sat-

t
l !
{ay, -+ aq} = P, 10},

=1
and define

90({(.]'70'17 o '7a'd)}) = ail,--~,it(yl§1)7' : .’yl(.l)’ o '7yl§t)7 o '7yl(t)) € Z[yla o '7ytN]-

¢ is defined to be zero on all singletons in ({;} x {1,---,tN}%) not so chosen.
Repeat these steps for 1 < j < k. Now extend ¢ to all of F({1,---,k} x{1,---,tN}9)
according to the additivity condition we require of ¢.

Now, whenever 1 < j < k, and {m(l) . ms,)} c{l-1)N+1,---,IN}, 1 <1<,
we have

pj(ymgl) —l—"'—}—ymgll)’---,ymgt) _I_..._}_ymgi))
= ) ) Qi iy (Y05 5 Y05 Yy Yyo))
1 i 1 it

ISttt <d g0 Oy fm® o m ()

- Z w({(jaala"';ad)})
(a1,"',ad)€{m§ , ,mgl), ..7m§t) (t)}d

(151 x (D, m}4).

Let w = k(tN)¢ and let (qi (y1,- -, ytN)) be the images of the singletons under ¢,
so that

F=o(F({1, k} x {1, tN}) ) = FS(ai(yr. -, 0)) 1y
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If now F = {J;_, Ci, then

T

F({lv""k} X {17"'7tN}d) = U‘P_I(Ci)u

=1
and by Proposition 4.1, there exists i, 1 <i <7, A € ¢~1(C;), and sets
SSc{l-1)N+1,---,IN}, 1<I<t,

having the property that for all j, 1 < 5 <k,
An (i} x (S10---u8)") =0, AU ({7} x (S1U---U8)") € p™1(Ca).

Let q(y1,---,yn) = @(A). Put po(x1,---,2¢) = 0. Then for all j, 0 < j < k, we have,
substituting z; = Znesl Yn, 1 <1<t

a1, yenN) F i (21, -, 2) = tp(AU ({5} x (S1U---U St)d)) € C;.
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