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Abstract

We give several sufficient conditions on an infinite integer matrix (dij) for
the set R =

{
∑

ij∈α, i>j dij : α ⊂ N, |α| < ∞
}

to be a density intersective set,

including the cases dnj = jn(1 + O(1/n1+ε)) and 0 < dnj = o
(

√

n
logn

)

. For

the latter, a concentration function estimate that is of independent interest is
applied to sums of sequences of 2-valued random variables whose means may

tend to ∞ as
√

n
logn .

1 Introduction

This paper is concerned with density intersective sets in Z.

Definition. A set R ⊂ Z is density intersective if for every A ⊂ N with d∗(A) :=

lim supb−a→∞
|A∩{a+1,...,b}|

b−a
> 0, one has R ∩ (A− A) 6= ∅.

According to the Furstenberg correspondence principle, R is density intersective if
and only if it is a set of measurable recurrence, i.e., if for every invertible measure
preserving transformation T of a probability space (X,A, µ) and every A ∈ A with
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µ(A) > 0, there is some n ∈ R such that µ(A ∩ T−nA) > 0; see [F]. Proofs here
proceed via the ergodic-theoretic formulation.

We will address some cases of the following conjecture, which is implicit in [BFM].

Conjecture 1.1. Let (dij)ij∈N be an infinite matrix with entries from Z. Then R =
{∑i,j∈α dij : α ⊂ N, 0 < |α| < ∞} is density intersective.

Anecdotal evidence for the truth of the conjecture is provided by the fact that the
set R in question is in general chromatically intersective, i.e., it meets

⋃r
i=1(Ci − Ci)

whenever N =
⋃r

i=1Ci is a finite partition. This fact follow follows from the more
powerful polynomial Hales-Jewett Theorem [BL]; however see Section 1.7 of [Mc1] for
a direct proof.

Here are a few cases in which Conjecture 1.1 was previously known to hold:

1. dij = 1. This is Sárközy’s theorem [S], which states that the set of square
numbers is density intersective.

2. dij =
∑k

t=1 n
(t)
i m

(t)
j , where n

(t)
i , m

(t)
j ∈ Z are arbitrary. See [BFM].

3. dij =
∑k

t=1 n
(t)
i m

(t)
j if i ≥ j, dij = 0 otherwise; where n

(t)
i , m

(t)
j ∈ Z, are arbitrary.

See [BH̊aM].

In this paper, we use a mixture of ergodic theory, ultrafilter methods, combinatorial
reasoning and harmonic analysis to provide an affirmative answer in several new
cases, encompassing those in which dnj = jn(1 + O(1/n1+ε)) and those in which

dnj = o
(

√

n
logn

)

as n → ∞ for each fixed j. Higher degree versions of our results

are possible, though we confine ourselves here to degree two in order to simplify the
exposition.

A distinguishing feature of our results is a greater robustness (insensitivity to per-
turbation of the matrix (dij)) than in examples 1–3 above. Indeed, rate-of-growth
considerations together with mildly restrictive inequalities in the columns of the ma-
trix (dij) will be used in place of the more constraining equations characterizing 1–3.
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2 Ultrafilters on the finite subsets of N

In this section we introduce and elaborate on a recently developed (cf. [B, BM1, BM2])
ultrafilter based methodology for dealing with recurrence questions in ergodic theory.
Although this material is somewhat esoteric, our proofs seem to require it.

Definition. If S is a set, we denote by F(S) the set of non-empty, finite subsets of S.
We abbreviate F(N) by simply F , and for n ∈ N, write Fn = {α ∈ F : minα > n} =
F
(

{n+ 1, n+ 2, . . . }
)

.

Definition. Let A ⊂ F . The upper density of A is the number

d(A) = lim sup
n→∞

|A ∩ F
(

{1, 2, . . . , n}
)

|
2n

.

The lower density d(A) is defined similarly. Note that d(Fn) = d(Fn) =
1
2n
.

For α, β ∈ F , write α < β if maxα < min β. If α < β, write α ∗ β = α ∪ β. (α ∗ β is
undefined otherwise.)

One may check that the pair (F , ∗) is an adequate partial semigroup in the sense of
[BBH] (see also [HM]). Briefly, this means that ∗ maps a subset of F × F to F , is
associative for all triples where defined, and for any α1, . . . , αn ∈ F there is a β such
that αi ∗ β is defined for all i, 1 ≤ i ≤ n.

We will be dealing with the Stone-Čech compactification βF of F . We take the points
of βF to be ultrafilters on F , the principal ultrafilters being identified with the points
of F . Given a set A ⊂ F , the closure of A is given by A = {p ∈ βF : A ∈ p}. The
set {A : A ⊂ F} is a basis for the closed (and also the open) sets of βF .

For α ∈ F and A ⊂ F , write α−1A = {β ∈ Fmaxα : α ∗ β ∈ A}.
Definition. Let δF =

⋂

n Fn. Now for p ∈ βF and q ∈ δF , define p ∗ q ∈ βF by the
rule A ∈ p ∗ q if and only if {α ∈ F : α−1A ∈ q} ∈ p.

One can show that this extends ∗ as previous introduced and remains associative
where defined. Moreover, (δF , ∗) is a compact Hausdorff right topological semigroup.
(For more information, see [HM, Section 2].)

Any compact Hausdorff right topological semigroup contains an idempotent. An
idempotent p ∈ δF having the property that d(A ∩ Fn) > 0 for every A ∈ p and
n ∈ N is called an essential idempotent.
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Proposition 2.1. There exists an essential idempotent p ∈ δF .

Proof. Let L = {A ⊂ F : ∃n ∈ N such that d(A ∩ Fn) =
1
2n
}. One may show that

L is a filter, and so by Zorn’s lemma is contained in some ultrafilter, call it q. As
Fn ∈ L ⊂ q for all n, one has q ∈ ⋂

n Fn = δF . We claim that for every A ∈ q and
n ∈ N, one has d(A ∩ Fn) > 0. For, if d(A ∩ Fn) = 0, then d(Ac ∩ Fn) =

1
2n
, so that

Ac ∈ L ⊂ q, and hence A /∈ q.

Next, note that δF ∗ q = {r ∗ q : r ∈ δF} is a closed left ideal (in particular, a
compact Hausdorff right topological semigroup itself) in δF , and hence contains an
idempotent p. One has p = r ∗ q for some r. If A ∈ p = r ∗ q and n ∈ N, then
{α ∈ F : α−1A ∈ q} ∈ r. In particular, since r ∈ δF ⊂ Fn, Fn ∈ r, and so there is
some α ∈ Fn such that α−1A ∈ q. Since α−1A ⊂ Fn, d(α

−1A) = d(α−1A ∩ Fn) > 0.
Also, for all m > n one has

|A ∩ F
(

{n+ 1, n+ 2, . . . , m}
)

| ≥ |α−1A ∩ F
(

{n+ 1, n+ 2, . . . , m}
)

|

(the map β 7→ α ∗ β from the latter set to the former is injective), hence d(A∩Fn) >
0.

Let X be a topological space and f : F → X a function. If p ∈ βF and x ∈ X , we
write p-limα f(α) = x if for every neighborhood U of x, {α : f(α) ∈ U} ∈ p. Note
that if X is compact and Hausdorff, then the p-limit always exists and is unique.

3 F-linear and F-quadratic functions

Throughout this section, G will denote a general countable additive abelian group,
though we will consider only G = Z and the direct sum of countably many copies of
Zk+1, which we denote by G =

⊕

i∈N Zk+1, in the sequel. (Though we are interested
primarily in the integers, some of our constructions are imported from

⊕

i∈N Zk+1;
proofs for general G are in any case virtually identical.) We will also consider unitary
and measure preserving actions of G on Hilbert spaces and probability spaces, respec-
tively. These will be denoted interchangeably by G or by (Tg)g∈G, where Tg+h = TgTh.

If A ⊂ G, we will write, for k ∈ N, kA for the k-fold sum A + A + · · ·+ A. That is,
kA = {a1 + a2 + · · ·+ ak : ai ∈ A, 1 ≤ i ≤ k}.

We say that S ⊂ G is syndetic if there is a finite set F ⊂ G such that G = S + F .
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Definition. A function v : F → G is F-linear if for every α, β ∈ F with α < β,
one has v(α ∗ β) = v(α) + v(β). If k ∈ N, we shall say such v is k-covering if for
every A ⊂ F with d(A) > 0, kv(A)− kv(A) is syndetic. We say v is covering if it is
k-covering for some k.

Elsewhere in the literature, F -linear functions are called IP systems. The functions
of the following definition, meanwhile, are often called VIP systems (of degree at
most 2).

Definition. A function v : F → G is F-quadratic if for every α, β, γ ∈ F with
α < β < γ, one has

v(α ∗ β ∗ γ)− v(α ∗ β)− v(α ∗ γ)− v(β ∗ γ) + v(α) + v(β) + v(γ) = 0. (1)

We remark that F -linear functions are F -quadratic by definition. In practice, we take
it that the domain of an F -linear or F -quadratic function v need not be all of F ; for
example, it is sufficient that v be defined on Fn for some n.

Proposition 3.1 (cf. [Mc2, Theorem 2.5]). The map v : F → G is F-linear if and
only if there is a sequence (di)i∈N in G such that v(α) =

∑

i∈α di. The map v : F → G
is F-quadratic if and only if there is a matrix (cij)i,j∈N whose entries lie in G such
that v(α) =

∑

i,j∈α cij.

Note that by replacing cij by cij + cji when i > j we may assume that cij = 0 for
i < j in the second part of Proposition 3.1.

According to Proposition 3.1 (with G = Z), Conjecture 1.1 is equivalent to the
assertion that v(F) is density intersective for every F -quadratic function v. In the
remainder of this section we shall extend the definition of covering to F -quadratic
functions and confirm Conjecture 1.1 for all covering F -quadratic functions v.

Proposition 3.2 (cf. [Mc3, Lemma 1.2]). Let p ∈ δF be idempotent and let v : F →
G be F-quadratic, where G is a commutative Hausdorff topological group. If the limit
g := p-limα v(α) exists, then g = 0.

Proof. Let U be a neighborhood of the identity 0 ∈ G and write A = {γ : v(γ) ∈
g + U}. Then as p-limα v(α) = g, we have A ∈ p. As p is idempotent, one also has
{β : {γ : β ∗ γ ∈ A} ∈ p} ∈ p. Hence, by requiring also that β, γ ∈ A,

A′ := {β : {γ : β ∗ γ, β, γ ∈ A} ∈ p} ∈ p.
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Similarly {α : {β : α ∗ β ∈ A′} ∈ p} ∈ p, and requiring also that α, β ∈ A′ gives

{α : {β : {γ : α ∗ β ∗ γ, α ∗ β, α ∗ γ, β ∗ γ, α, β, γ ∈ A} ∈ p} ∈ p} ∈ p.

Hence there exist α, β, γ ∈ F with v(α ∗β ∗γ), v(α ∗β), v(α ∗γ), v(β ∗γ), v(α), v(β),
and v(γ) all lying in g+U . Thus by (1), 0 ∈ 4(g+U)−3(g+U) and so g ∈ 3U −4U .
As U was arbitrary, g = 0.

Definition. Let H be a separable Hilbert space and G a unitary action on H. Write

KG = {f ∈ H : {Tgf : g ∈ G} is precompact in the norm topology}.

Theorem 3.3 (cf. [Ma]). KG is the closed linear subspace of H generated by the
eigenfunctions of the action (Tg), i.e., by those f for which there is a character
ω : G → S1 ⊂ C such that Tgf = ω(g)f .

Let (X,A, µ, G) be an invertible measure preserving system on a probability space.
For g ∈ G, x ∈ X and f ∈ L2(X), write Tgf(x) = f(Tgx). In this way, G acts
unitarily on L2(X). The action (Tg) is weakly mixing if and only if KG is spanned by
the constants.

The following theorem is the key to our method; it implies that when p is essential,
the weak operator p-limit of Tv(α), where v is F -linear and covering, does not depend
on v.

Theorem 3.4. Let H be a separable Hilbert space and let G be a unitary action
on H. Suppose p ∈ δF is an essential idempotent and let v : F → G be F-linear and
covering. For f ∈ H write Pf = p-limα Tv(α)f , where the limit is taken in the weak
topology. Then P is the orthogonal projection onto KG.

Proof. The limit in question exists and satisfies ‖Pf‖ ≤ ‖f‖ because, restricted to
closed bounded subsets of H, the weak topology is compact and metrizable. Clearly
P is linear, and it is well known that any continuous linear self-map P of a Hilbert
space with ‖P‖ ≤ 1 and P 2 = P is an orthogonal projection. We show now that
P 2 = P .

Let f ∈ H with ‖f‖ ≤ 1, let ε > 0 and let ρ be a metric for the weak topology on
the unit ball of H. Let A1 = {α : ρ(Pf, Tv(α)f) < ε} ∈ p so that, by idempotence,
{

α : α−1A1 ∈ p
}

∈ p. Let A2 = {α : ρ(P 2f, Tv(α)Pf) < ε} ∈ p and fix β ∈ A2 ∩
{

α :
α−1A1 ∈ p

}

. Let

Aβ = β−1A1 ∩
{

γ > β : ρ
(

PTv(β)f, Tv(γ)Tv(β)f
)

< ε
}

.
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Then Aβ ∈ p, so in particular Aβ is non-empty. Now choose γ ∈ Aβ. One has

ρ(P 2f, Pf) ≤ ρ(P 2f, Tv(β)Pf) + ρ(PTv(β)f, Tv(γ)Tv(β)f) + ρ(Tv(β∗γ)f, Pf) ≤ 3ε,

where we have used the facts that P commutes with Tv(β) (an easy exercise), β ∈ A2,
γ ∈ Aβ, β ∗ γ ∈ A1, and v(β ∗ γ) = v(β) + v(γ). Since ε and f were arbitrary, this
shows that P 2 = P and hence that P is an orthogonal projection.

Since range(P ) = ker(1 − P ) is a closed linear subspace of H, in order to show that
KG ⊂ range(P ) it suffices to show that all eigenfunctions are in range(P ). Suppose
we are given an eigenfunction f for (Tg) with eigencharacter ω : G → S1 ⊂ C, so that
Tgf = ω(g)f . The limit p-limα ω

(

v(α)
)

exists since S1 is compact. But the function
u : F → S1 defined by u(α) = ω

(

v(α)
)

is F -linear; that is, one has, for α < β,
u(α ∗ β) = u(α)u(β). By Proposition 3.2, therefore, p-limα ω

(

v(α)
)

= 1. From this
it easily follows that p-limα Tv(α)f = f . Hence f ∈ range(P ).

Finally we show that range(P ) ⊂ KG. Since v is covering, there is k such that v is
k-covering. Let f ∈ range(P ). Then ‖Pf‖ = ‖Tv(α)f‖ = ‖f‖, so that p-limα Tv(α)f
exists and equals Pf = f in the norm topology (as p-limα ‖Tv(α)f−Pf‖2 = 2‖Pf‖2−
2Re(p-limα〈Tv(α), P f〉) = 0). Let ε > 0, and put B = {α : ‖Tv(α)f − f‖ < ε},
so that B ∈ p. Since p is essential, d(B) > 0, hence kv(B) − kv(B) is syndetic,
so we may choose a finite set R ⊂ G such that every g ∈ G can be written as
g = r +

∑k
i=1

(

v(bi) − v(ci)
)

, where bi, ci ∈ B, 1 ≤ i ≤ k, and r ∈ R. To prove
f ∈ KG we need to show that {Tgf : g ∈ G} is precompact, so it is enough to
show that {Trf : r ∈ R} is a 2kε-net for {Tgf : g ∈ G}. Let g ∈ G and write

g = r+
∑k

i=1

(

v(bi)− v(ci)
)

, where bi, ci ∈ B, 1 ≤ i ≤ k, and r ∈ R. Then, using the
unitarity of Tg,

‖Tgf − Trf‖ = ‖T∑
(v(bi)−v(ci))f − f‖ ≤

k
∑

i=1

‖Tv(bi)f − Tv(ci)f‖ < 2kε.

We wish to extend the previous theorem to a certain class of F -quadratic functions.
This motivates the following definition.

Definition. Let v : F → G be F -quadratic and let α ∈ F . The derivative of v with
step α is given by Dαv(β) = v(α ∗β)−v(α)−v(β), β > α. One may easily show that
Dαv is F -linear. If Dαv is also covering for all α ∈ F , we shall say that v is covering.

As is typical for proofs of this type, a Van der Corput lemma is used for the extension.
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Theorem 3.5 (Van der Corput lemma). Assume that (uα)α∈F is a bounded sequence
in a Hilbert space. Let p ∈ δF be an idempotent. If p-limβ p-limα〈uβ∗α, uα〉 = 0 then
p-limα uα = 0 in the weak topology.

Proof. If γ = {i1, i2, . . . , ik}, where i1 < i2 < · · · < ik, we will write αγ for αi1 ∗ αi2 ∗
· · · ∗ αik . We shall use the convention that α∅ = ∅.

Without loss of generality we will assume that ‖uα‖ ≤ 1, α ∈ F . Suppose to the

contrary that p-limα uα = ũ 6= 0. Let δ = ‖ũ‖2
2

and pick k ∈ N and ε > 0 such that
1
k
+ ε < δ

2
. We shall inductively choose an increasing sequence α1, . . . , αk ∈ F such

that for all j, 1 ≤ j ≤ k, one has

(i) for every non-empty γ, β ⊂ {1, . . . , j} with β < γ, |〈uαβ∗αγ , uαγ〉| < ε;

(ii) for every γ, β ⊂ {1, . . . , j} with ∅ 6= β < γ, p-limα |〈uαβ∗αγ∗α, uαγ∗α〉| < ε;

(iii) for every non-empty β ⊂ {1, . . . , j}, 〈uαβ
, ũ〉 > δ;

(iv) for every β ⊂ {1, . . . , j}, {ω > αβ : 〈uαβ∗ω, ũ〉 > δ} ∈ p; and

(v) for every β ⊂ {1, . . . , j}, {ω > αβ : p-limα |〈uαβ∗ω∗α, uα〉| < ε} ∈ p.

Having done this, let vi = uα1∗α2∗···∗αi
, 1 ≤ i ≤ k, and observe that, by (i), |〈vi, vj〉| < ε

for all i and j with 1 ≤ i, j ≤ k, i 6= j. From this it follows that 〈∑k
i=1 vi,

∑k
i=1 vi〉 <

k+k2ε < 1
2
k2δ, which implies that |〈∑k

i=1 vi, ũ〉| ≤ ‖∑k
i=1 vi‖ ‖ũ‖ <

√

1
2
k2δ

√
2δ = kδ.

On the other hand, (iii) implies that 〈vi, ũ〉 > δ for all i, so that 〈∑k
i=1 vi, ũ〉 > kδ, a

contradiction that completes the proof.

Suppose then that 0 ≤ j < k and α1, . . . , αj have been chosen. By the induction
hypothesis, for some ε′ < ε,

B =
(

⋂

β,γ⊂{1,...,j}, ∅6=β<γ

{ω > αβ ∗ αγ : |〈uαβ∗αγ∗ω, uαγ∗ω〉| < ε′}
)

∩
(

⋂

β⊂{1,...,j}
{ω > αβ : 〈uαβ∗ω, ũ〉 > δ}

)

∩
(

⋂

β⊂{1,...,j}
{ω > αβ : p-limα |〈uαβ∗ω∗α, uα〉| < ε}

)

=B1 ∩ B2 ∩ B3
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is a member of p. (Briefly, B1 ∈ p by (ii), B2 ∈ p by (iv) and B3 ∈ p by (v).) As p is
idempotent, we may choose αj+1 ∈ B such that α−1

j+1B ∈ p.

One now checks that (i)–(v) hold for j replaced by j + 1. A few details: (i) follows
from αj+1 ∈ B1, (ii) follows from αj+1 ∈ B3 if j + 1 ∈ β and from α−1

j+1B1 ∈ p if

j + 1 ∈ γ, (iii) follows from αj+1 ∈ B2, (iv) follows from α−1
j+1B2 ∈ p and (v) follows

from α−1
j+1B3 ∈ p.

Here is the extension to covering F -quadratic functions.

Theorem 3.6. Let H be a separable Hilbert space and let (Tg) be a unitary G-action
on H. Let p ∈ δF be an essential idempotent and suppose v : F → G is F-quadratic
and covering. For f ∈ H, write Pf = p-limα Tv(α)f , where the limit is taken in the
weak topology. Then P is the orthogonal projection onto KG.

Proof. As in the proof of Theorem 3.4, we must show that P = P 2. Let f ∈ H
and write f = f1 + f2, where f1 ∈ KG and f2 ∈ K⊥

G. For β ∈ F and h ∈ H, write
Pβh = p-limα TDβv(α)h. Since Dβv is F -linear and covering, by Theorem 3.4 Pβ is the
orthogonal projection onto KG. Hence, writing xα = Tv(α)f2,

p-limβ p-limα〈xα, xβ∗α〉 = p-limβ p-limα〈f2, Tv(β∗α)−v(α)f2〉
= p-limβ p-limα〈T−v(β)f2, TDβv(α)f2〉
= p-limβ〈T−v(β)f2, Pβf2〉 = 0.

By Theorem 3.5, one has p-limα xα = 0 weakly; that is, Pf2 = 0. On the other hand,
just as in the proof of Theorem 3.4, one has Pf1 = f1, by Proposition 3.2. (Note for
this step that the map α → ω

(

v(α)
)

is F -quadratic.)

Now by a standard argument, a projection theorem yields a recurrence theorem.

Corollary 3.7. Let (X,A, µ, G) be a measure preserving system, p ∈ δF an essential
idempotent and v : F → G F-quadratic and covering, and suppose µ(A) > 0. Then
p-limα µ(A ∩ Tv(α)A) ≥ µ(A)2.

Proof. Let H = L2(X) and f = 1A ∈ L2(X). Then one has p-limα µ(A ∩ Tv(α)A) =
p-limα〈f, T−v(α)f〉 = 〈f, Pf〉 = 〈Pf, Pf〉 ≥ µ(A)2. (For the final inequality, we used
the fact that P is the orthogonal projection onto a space containing the constants.)
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Combined with the Furstenberg correspondence principle, Corollary 3.7 is sufficient
to achieve the primary goal of this section, namely showing that v(F) is density
intersective for any covering F -quadratic function v. It remains to give interesting
examples of covering F -quadratic functions.

4 Examples of covering

In this section we obtain specific applications of Corollary 3.7 as well as additional
examples of covering. First we give some background material. See, e.g., [BHiM] for
more details.

Any countable discrete abelian group G admits of a Følner sequence, i.e., an exhaus-
tive sequence (Φn) of finite subsets of G satisfying, for every g ∈ G, |Φn∩(g+Φn)|

|Φn| → 1
as n → ∞. Any Følner sequence, in turn, gives rise to a notion of upper density:
dΦ(A) = lim supn

|A∩Φn|
|Φn| . Such densities are shift invariant: dΦ(g + A) = dΦ(A) for

A ⊂ G and g ∈ G.

Although G may contain countably many disjoint sets of upper density 1, this is
not so for shifts of the same set. Indeed, if dΦ(A) > 1

k
then G cannot contain k

disjoint shifts of A. It follows that if dΦ(A) > 0 then A − A meets every difference
set D = {gi − gj : i > j}. (Here (gi)i∈N is any infinite sequence of elements of G.) A
thick set is a subset of G that meets every syndetic set (conversely, a set is syndetic if
and only if it meets every thick set). Alternatively, T ⊂ G is thick if for every finite
set F , there is some g ∈ G such that g+F ⊂ T . It is easy to show that any thick set
contains a difference set. Therefore if dΦ(A) > 0 then any thick set meets A− A. In
other words, A−A is syndetic. This leads to the following.

Lemma 4.1. Let (Φn) be a Følner sequence for G and let v : F → G be F-linear.
Suppose that for some k ∈ N and every A ⊂ F with d(A) > 0, one has dΦ

(

kv(A)
)

> 0.
Then v is k-covering.

Proof. Immediate as dΦ
(

kv(A)
)

> 0 implies kv(A)− kv(A) is syndetic.

Some of our examples require the following theorem.

Theorem 4.2 (cf. [BKMP, Corollary 1]). Assume k, j, n ∈ N with j ≤ n and let B
be a subset of {0, 1}n, which we view as a subset of

⊕

i∈N Zk+1. Suppose moreover
that |B| ≥ 2j. Then |kB| ≥ (k + 1)j.
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We shall use Theorem 4.2 via the following theorem concerning
⊕

i∈N Zk+1. It will
assist in the proof of Lemma 4.5 below.

Theorem 4.3. Suppose k ∈ N and define G =
⊕

i∈N Zk+1, with (ei)i∈N its standard
generating set (e1 = (1, 0, 0, . . . ), e2 = (0, 1, 0, . . . ), etc.). For α ∈ F , define v(α) =
∑

i∈α ei. Then v is F-linear and k-covering.

Proof. Let A ⊂ F with d(A) > 0. Choose t large enough that d(A) > 2−t. Let
Φn = {a1e1 + · · ·+ anen : ai ∈ Zk+1, 1 ≤ i ≤ n}. Then (Φn)n∈N is a Følner sequence.
We will show that dΦ

(

kv(A)
)

> (k + 1)−t, which will be sufficient for the proof by
Lemma 4.1. Let n0 be arbitrary and choose n > n0 such that |A∩F

(

{1, 2, . . . , n}
)

| ≥
2n−t. Setting A′ = A∩F

(

{1, 2, . . . , n}
)

we may apply Theorem 4.2 and conclude that

|kv(A′)| ≥ (k+1)n−t. Since kv(A′) ⊂ Φn, this yields
|kv(A)∩Φn|

|Φn| ≥ |kv(A′)∩Φn|
|Φn| ≥ (k+1)−t.

Since n0 was arbitrary and n > n0, we are done.

We shall not make use of the following optional corollary concerning weak mixing
actions of

⊕

i∈N Zk+1, however it demonstrates nicely what is going on in the results for
Z to come. We include it for aficionados, who may be intrigued to see the conclusion
following without the stronger hypothesis of mild mixing.

Corollary 4.4. Assume G and v are as in Theorem 4.3. Let (X,A, µ, G) be a
weakly mixing measure preserving probability system and let p ∈ δF be an essential
idempotent. Then for any f, g ∈ L2(X), one has

p-limα

∫

fTv(α)g dµ =
(

∫

f dµ
)(

∫

g dµ
)

.

Proof. Since G is weakly mixing, KG consists of the constant functions. Hence by
Theorem 3.4, p-limα Tv(α)g = Pg in the weak topology and Pg =

∫

g dµ is the
projection onto KG. Thus

p-limα

∫

fTv(α)g =

∫

f
(

Pg
)

dµ =

∫

f
(

∫

g dµ
)

dµ =
(

∫

f dµ
)(

∫

g dµ
)

.

Lemma 4.5. Fix k ∈ N and let (dn)n∈N be a sequence of natural numbers. Suppose
there exists M > 0 such that k

(
∑n

i=1 di
)

< dn+1 < M(k + 1)n+1 for every large
enough n ∈ N. If u : F → Z is defined by u(α) =

∑

i∈α di, then u is F-linear and
k-covering.
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Proof. We assume in the proof that the given string of inequalities holds for all
n; the reader may make the minor adjustments for the general case. Let Φn =
{1, 2, . . . ,M(k + 1)n+1}, n ∈ N. Then (Φn) is a Følner sequence. Let A ∈ F with
d(A) > 0. Choose t large enough that d(A) > 2−t. Let n0 be arbitrary and pick
n > n0 having the property that A′ = A ∩ F

(

{1, 2, . . . , n}
)

satisfies |A′| > 2n−t.
Letting v : F

(

{1, 2, . . . , n}
)

→ Zn
k+1 be as in the proof of Theorem 4.3, one has,

as was the case in that proof, |kv(A′)| ≥ (k + 1)n−t. Now define π : Zn
k+1 → Φn by

π(a1, a2, . . . , an) = a1d1+a2d2+· · ·+andn. The restrictions on (di) entail that π is one-
to-one, hence

∣

∣π
(

kv(A′)
)
∣

∣ ≥ (k+1)n−t. But by linearity of π, π
(

kv(A′)
)

= kπ
(

v(A′)
)

.
Moreover, it is easily checked that π

(

v(A′)
)

= u(A′). Therefore |ku(A′)| ≥ (k+1)n−t.

But ku(A′) ⊂ Φn, so
|ku(A)∩Φn|

|Φn| ≥ (k+1)−t−1

M
. Since n0 was arbitrary and n > n0, we

have established that dΦ
(

ku(A)
)

≥ (k+1)−t−1

M
, and Lemma 4.1 applies.

Combining Lemma 4.5 with Corollary 3.7, we already get new results.

Corollary 4.6. Fix k ∈ N and assume that (cij)i,j∈N is an integer matrix such that
cij = 0 when j > i and each column (di = cij) satisfies the rate-of-growth condition
of Lemma 4.5. Write v(α) =

∑

i,j∈α cij, α ∈ F . Then if (X,A, µ, T ) is an invert-
ible measure preserving probability system, µ(A) > 0, and p ∈ δF is an essential
idempotent, then p-limα µ(A ∩ Tv(α)A) ≥ µ(A)2.

Proof. One has Dαv(β) =
∑

i∈β di, where di =
∑

j∈α cij . Since each column of the
matrix satisfies the rate-of-growth condition of Lemma 4.5, so does (di), which is
a finite sum of columns. By Lemma 4.5, Dαv is k-covering, which implies, as α is
arbitrary, that v is covering. Hence the conclusion follows from Corollary 3.7.

Corollary 4.7 (of the proof of Lemma 4.5). Fix k ∈ N and let (dn)n∈N be a sequence
of natural numbers. Suppose there exists M > 0 and a one-to-one sequence (mi) in
N such that k

(
∑n

i=1 dmi

)

< dmn+1 < M(k + 1)n+1 for every large enough n ∈ N. If
u : F → Z is defined by u(α) =

∑

i∈α di, then u is F-linear and k-covering.

Proof. We use the fact that if Φn is a Følner sequence and (xn) is an arbitrary sequence
then Ψn = Φn + xn defines a Følner sequence (Ψn).

Modify the proof of Lemma 4.5 as follows. Once n is chosen, pick N > mn such that
A′ = A∩F

(

{1, 2, . . . , N}
)

satisfies |A′| > 2N−t. For α ⊂ {1, 2, . . . , N}\{m1, . . . , mn}
write Aα = {B ⊂ {m1, . . . , mn} : α ∪ B ∈ A′}. As

∑

α |Aα| = |A′|, we can choose
α = αn so that |Aαn | > 2n−t. Run the rest of the proof with Aαn in place of A′

to get |ku(Aαn)∩Φn|
|Φn| ≥ (k+1)−t−1

M
, which implies that |ku(A)∩(xn+Φn)|

|xn+Φn| ≥ (k+1)−t−1

M
, where

12



xn = ku(αn). One concludes that dΨ
(

ku(A)
)

≥ (k+1)−t−1

M
, where Ψn = xn + Φn. In

particular, ku(A)− ku(A) is syndetic.

Corollary 4.8. Let (dn) be an unbounded sequence of natural numbers and set v(α) =
∑

n∈α dn. Define rn = min1≤y<n
dn
dy
. Suppose there is a k ∈ N such that for every

sequence of indices (mn) with dmn > kn one has
∑∞

n=1(rmn − 1) < ∞. Then v is
covering.

Proof. Let m1 be the least integer such that dm1 > k. Having chosen m1, . . . , mn,
let mn+1 be the least index satisfying k

∑n
i=1 dmi

< dmn+1 . The sequence (mn)n∈N is
increasing, so one-to-one, and dmn+1 > kdmn , so dmn > kn by induction on n. By
Corollary 4.7 we need only find M such that dmn+1 < M(k + 1)n+1 for all n. Put
Nn = k

∑n
i=1 dmi

. Since k
∑n

i=1 dmi
≥ dy for y < mn+1, one has dmn+1 ≤ rmn+1Nn.

Therefore, Nn+1 = Nn + kdmn+1 ≤ (1 + krmn+1)Nn. Since
∑∞

n=1(rmn − 1) < ∞, rmn+1

is bounded and the product
∏

n

(

1+krmn

1+k

)

=
∏

n

(

1 + k(rmn−1)
1+k

)

converges. Hence

dmn+1 < rmn+1N1

∏n+1
i=2 (1 + krmi

) ≤ M(k + 1)n+1 for some M independent of n.

Examples. The map v(α) =
∑

n∈α dn is covering by Corollary 4.8 for a great many
sequences (dn), including the following:

1. dn = bnγc, where γ > 0.

2. dn = bexp(nγ)c, where 0 < γ < 1
2
.

We sketch a justification of 2. In this case rx ≈ exp
(

xγ − (x−1)γ
)

≈ exp
(

γxγ−1
)

, so
rx2 − 1 ≈ exp

(

γx2γ−2
)

− 1 ≈ γx2γ−2. Also, if dmx > 3x then mγ
x > x and so mx > x2.

Thus ∞
∑

x=1

(rmx − 1) <

∞
∑

x=1

(rx2 − 1) ≈
∞
∑

x=1

γx2γ−2 < ∞.

The following example shows what can go wrong when one has no control on the
sequence (rn) defined in the proof of Corollary 4.8.

Proposition 4.9. Let (sn)
∞
n=1 be any sequence of natural numbers converging to ∞.

Then there exists a sequence (dn)
∞
n=1 such that 1 ≤ dn ≤ sn

√
n for all n and v(α) =

∑

n∈α dn is not covering.

13



Proof. Let (mi) be a rapidly increasing sequence of natural numbers. Set dn = 1 for

all n with 1 ≤ n ≤ m2
1

2
, and

dn = m1m2 . . .mt, for
m2

1

2
+

m2
2

4
+ . . .

m2
t

2t
< n ≤ m2

1

2
+

m2
2

4
+ · · ·+ m2

t

2t
+

m2
t+1

2t+1 .

One may check that if (mi) grows rapidly enough then 1 ≤ dn ≤ sn
√
n holds for all n.

Now define a set A ⊂ F as follows. For t ∈ N, let

At =
{

B ⊂ F
(

{

t−1
∑

i=1

m2
i

2i
+ 1, . . . ,

t
∑

i=1

m2
i

2i

}

)

:
m2

t

2t+1 − tmt

2t/2+1 < |B| < m2
t

2t+1 +
tmt

2t/2+1

}

.

(Roughly, B consists of those subsets of {∑t−1
i=1

m2
i

2i
+1, . . . ,

∑t
i=1

m2
i

2i
} having cardinality

within t standard deviations of expected were B chosen by coin tossing.)

The relative density zt of At in F
(

{∑t−1
i=1

m2
i

2i
+ 1, . . . ,

∑t
i=1

m2
i

2i
}
)

increases to 1 fast
enough (e.g., by the central limit theorem) to ensure that

∏∞
t=1 zt > 0. From this, we

get that
A =

{

α1 ∪ α2 ∪ · · · ∪ αn : n ∈ N, αt ∈ At, 1 ≤ t ≤ n
}

satisfies d(A) > 0.

Put v(α) =
∑

n∈α dn and let k ∈ N. We claim that kv(A) − kv(A) is not syndetic;
indeed does not have positive density. To see this, note that α ∈ A can be written
α = α1 ∪ α2 ∪ · · · ∪ αN , where αt ∈ At, 1 ≤ t ≤ N . We then have

v(α) = |α1|+m1|α2|+m1m2|α3|+ · · ·+m1m2 . . .mN−1|αN |,

with |αt| confined to an interval of length tmt2
−t/2. It follows that for any x ∈

kv(A)− kv(A)

x ≡ x1 +m1x2 +m1m2x3 + · · ·+m1m2 . . .mn−1xn mod m1m2 . . .mn,

where xt is confined to an interval of length 2ktmt2
−t/2. It follows that, modulo

m1m2 . . .mn, kv(A)− kv(A) hits at most
∏n

t=1 2ktmt2
−t/2 residue classes, and hence

has density at most (2k)nn!2−n(n+1)/4 → 0 as n → ∞.

On the other hand, for somewhat slower growing sequences (dn), one may prove a
positive result, irrespective of control on the sequence (rn) defined in Corollary 4.8.
We begin with the following concentration function estimate.
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Lemma 4.10. There exist positive constants c, C, having the following properties.
Suppose N ∈ N and (dn)

N
n=1 is a sequence of integers with d1 = 1 and 1 ≤ dn ≤

max{1, c
√

n
logn

} for n ≥ 2. If (Xn)
N
n=1 are independent random variables with P(Xi =

0) = 1
2
= P(Xi = di) then P(

∑N
n=1Xn = k) ≤ C(

∑N
n=1 d

2
n)

−1/2 for all k.

Proof. Let c = 1
11

and C = 3; we have made very little attempt to make these
constants optimal. We may assume without loss of generality that (dn)

N
n=1 is non-

decreasing. If d1 = d2 = · · · = dN = 1 then P(
∑N

n=1Xn = k) ≤
(

n
bn
2
c
)

2−n ≤ C√
N

for all k; we may therefore assume that dN ≥ 2. In particular, this implies that

dN ≤ c
√

N
logN

.

Write X =
∑N

n=1Xn. Then for ω ∈ R and k ∈ Z,

E(e2πiω(X−k)) = e−2πiωk
N
∏

n=1

E(e2πiωXn) = e−2πiωk
N
∏

n=1

cos(πdnω)e
πiωdn .

Integrating with respect to ω,

E(1X=k) = E

(

∫ 1

0

e2πiω(X−k) dω
)

=

∫ 1

0

E(e2πiω(X−k)) dω.

It follows that

P(X = k) ≤
∫ 1

0

∣

∣E(e2πiω(X−k))
∣

∣ dω =

∫ 1

0

N
∏

n=1

| cos(πdnω)| dω.

One has | cosx| ≤ e−x2/2 for |x| ≤ .56π. If 1 ≤ n ≤ N , choose tn ∈ Z and {dnω} ∈
[−.56, .56] such that dnω = tn + {dnω}. (This representation may not be unique,
which will be important later.) Then

| cos(πdnω)| = | cosπ{dnω}| ≤ e−
π2

2
{dnω}2 = e−

π2

2
(dnω−tn)2 .

Thus

P(X = k) ≤
∫ 1

0

exp

(

− π2

2

N
∑

n=1

(dnω − tn)
2

)

dω. (2)

Write V =
∑N

n=1 d
2
n, and more generally VS =

∑

n∈S d
2
n when S ⊂ {1, . . . , N}. Since

dN ≤ c
√

N
logN

,

V 1/2 =
(

N
∑

n=1

d2n

)1/2

≤ (Nd2N)
1/2 ≤ c

N

(logN)1/2
≤ N. (3)

15



According to (2), it suffices to show that

V 1/2

∫ 1

0

exp

(

− π2

2

N
∑

n=1

(dnω − tn)
2

)

dω ≤ C = 3. (4)

By (3), the contribution in the left hand side of (4) from those ω for which there
exists a choice (tn) making the integrand less than 1

N
(i.e., for which there are tn with

π2

2

∑N
n=1(dnω − tn)

2 > logN) is at most N · 1
N

= 1.

For a fixed choice (tn), the function g(ω) = π2

2

∑N
n=1(dnω− tn)

2 is quadratic in ω and

can be written in the form g(ω) = A(ω − ω0)
2 + B, where A = π2

2

∑N
n=1 d

2
n = π2

2
V

and B is the minimum value of g. It follows that the contribution to the left hand
side of (4) from ω giving rise to this choice of (tn) is at most

V 1/2

∫ ∞

−∞
exp

(

− A(ω − ω0)
2 − B

)

dω = V 1/2
√

π
A
e−B = (π/2)−1/2e−B.

Therefore, it suffices to show that
∑

(tn)
(π/2)−1/2e−B < 2, where the sum is over those

choices (those we choose to make in the remainder of the proof) of the sequence (tn)
for which B ≤ logN . We will in fact show that

∑

(tn)
e−B < 2.1.

Setting g′(ω) = 0 and solving for ω, we get ω0

∑N
n=1 d

2
n =

∑N
n=1 dntn. Thus

B = g(ω0) =
π2

2

∑

n

(

dn

∑

djtj
∑

d2j
− tn

)2

=
π2

2

(

∑

d2n
(
∑

djtj)
2

(
∑

d2j)
2

− 2
∑

dntn

∑

djtj
∑

d2j
+
∑

t2n

)

=
π2

2

((
∑

djtj)
2

∑

d2j
− 2

(
∑

dntn)
2

∑

d2j
+

∑

t2n
∑

d2j
∑

d2j

)

=
π2

2
V −1

(

(
∑

t2n)(
∑

d2n)− (
∑

dntn)
2
)

=
π2

2
V −1

(

∑

i<j

(d2i t
2
j + d2jt

2
i ) +

∑

d2nt
2
n −

∑

i,j

ditidjtj

)

=
π2

2
V −1

∑

i<j

(d2i t
2
j + d2jt

2
i − 2didjtitj)

=
π2

2
V −1

∑

i<j

(ditj − djti)
2. (5)
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We now discuss the choice of (tn). Recall, we only need consider those ω for which all
legal choices (tn) give g(ω) ≤ logN . For such ω, initially we will choose tn such that
{dnω} ∈ [−.5, .5] (we will change some of the tn in a moment). Define an equivalence
relation ∼ on {1, 2, . . . , N} by i ∼ j if and only if ti

di
=

tj
dj
. Let S be a largest

equivalence class of ∼, and choose relatively prime a, d, with a
d
equal to the common

value ti
di
, i ∈ S. Note in particular that d | di for all i ∈ S. Since each i has at least

N − |S| values of j for which i 6∼ j,

∑

i<j

(ditj − djti)
2 ≥ 1

2
N(N − |S|).

But B ≤ g(ω) ≤ logN , so by (5) and (3) one has

∑

i<j

(ditj − djti)
2 ≤ 2

π2
V logN ≤ 2c2

π2
N2. (6)

Since c < 1 we deduce that

1
2
N(N − |S|) ≤ 2c2

π2 N
2 < 1

4
N2,

and so |S| > 1
2
N . Thus the largest equivalence class S is in fact unique. We shall

now strengthen this bound on S by showing that Sc := {1, . . . , N}\S is rather small.

If i ∈ S then (ditj − djti)
2 is divisible by (di

d
)2, so by considering pairs i, j, exactly

one of which is in S, one gets

∑

i<j

(ditj − djti)
2 ≥ |Sc| 1

d2
VS. (7)

Combining this with (6), VSc ≤ |Sc|d2N , and VS ≥ |S|d2 ≥ 1
2
d2N we obtain

π2

2
|Sc| 1

d2
VS ≤ V logN

≤ VS logN + |Sc|d2N logN

≤ VS logN + c2|Sc|N
= VS logN + 2c2d−2|Sc|(1

2
d2N)

≤ VS logN + 2c2d−2|Sc|VS.

Canceling VS and isolating |Sc|, we get

|Sc| ≤ d2 logN
π2

2
− 2c2

<
1

4
d2 logN. (8)
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Our next task is to estimate the closeness of ω to a
d
. We have

1

2
N(ω − a

d
)2 ≤ (ω − a

d
)2
∑

n∈S
d2n =

∑

n∈S
(ω − tn

dn
)2d2n

≤
N
∑

n=1

(dnω − tn)
2 =

2

π2
g(ω) ≤ 2

π2
logN ≤ 2c2

π2d2N
N.

Thus |ω − a
d
| ≤ 2c

πdN
, and so |dnω − dn

a
d
| ≤ 2c

π
< .06 for all n ∈ Sc. What this means

is that if we rechoose (for all n ∈ Sc) tn such that dn
a
d
− tn ∈ (−.5, .5], the sequence

(tn) will still be legal for ω, i.e., |dnω − tn| ≤ .56. By choosing in this fashion, we
ensure that for each fixed d, at most d+1 sequences (tn) contribute, there being d+1
choices for a, while a and d determine (tn) uniquely.

Now by (8), |Sc| ≤ 1
4
d2 logN , so VSc ≤ |Sc|d2N ≤ 1

4
c2d2N . But VS ≥ 1

2
d2N , so

VS ≥ 1
2
V . Therefore, using (7),

∑

i<j

(ditj − djti)
2 ≥ |Sc| 1

d2
VS ≥ |Sc| 1

2d2
V. (9)

Let n ∈ S. If d > 1 then d ≤ dn ≤ c
√

n
logn

, which implies that n ≥ d2 logn
c2

> d2 log d
c2

+1.

It follows that all integers 1, . . . , dd2 log d
c2

e lie in Sc, and so |Sc| ≥ d2 log d
c2

. As this
obviously holds for d = 1 as well, (5) and (9) imply that

B =
π2

2
V −1

∑

i<j

(ditj − djti)
2 ≥ π2

4d2
|Sc| ≥ π2

4c2
log d ≥ 100 log d.

Thus
∑

(tn)

e−B ≤
∞
∑

d=1

(d+ 1)e−100 log d =
∞
∑

d=1

d+ 1

d100
< 2.1

as required.

Theorem 4.11. There exists an absolute constant c > 0 such that if 1 ≤ dn ≤
c
√

n
logn

for all large enough n then for every A ∈ F with d(A) > 0, d∗
(

v(A)
)

> 0,

where v(α) =
∑

n∈α dn. In particular v is 1-covering.

Proof. We may assume without loss of generality that the inequality in question holds
for all n, since the behavior of (dn)

N
n=1 can affect d∗

(

v(A)
)

by at most a factor of 2−N .
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Let (Xn)
∞
n=1 be independent random variables with P(Xi = 0) = 1

2
= P(Xi = di).

Let X(n) =
∑n

i=1Xi, and let sn be the standard deviation of X(n), so that s2n =
Var(X(n)) = 1

4

∑n
i=1 d

2
i . Let c and C be as guaranteed by Lemma 4.10. Let ε = d(A) >

0 and choose a large n such that |A∩F({1,2,...,n})|
2n

> ε
2
. By Chebychev’s inequality

P(|X(n) − EX(n)| > tsn) ≤
1

t2
.

Hence, taking t = 2/
√
ε, we may choose an interval In of length 4sn/

√
ε such that

P(X(n) ∈ In) > 1− ε
4
. From this is follows that B :=

{

α ∈ F
(

{1, 2, . . . , n}
)

: v(α) ∈
I
}

satisfies |B| ≥ 2n(1− ε
4
), hence |B ∩ A| ≥ 2n ε

4
.

According to Lemma 4.10, the number of distinct sets α ⊂ {1, 2, . . . , n} such that

v(α) =
∑

i∈α di = T is at most 2nC
2sn

. It follows that v(B ∩A) ≥ 2nε/4
2nC/2sn

= ε
2C

sn. From

this we get |v(A)∩In|
|In| ≥ ε3/2

4C
. Letting n → ∞, one deduces that d∗

(

v(A)
)

≥ ε3/2

4C
> 0.

We thus come to the main result of the paper.

Corollary 4.12. Let (cij)i>j be an infinite, lower triangular, natural number valued

matrix. Suppose that for every j ∈ N, cnj = o
(

√

n
logn

)

as n → ∞. Then v(α) =
∑

i,j∈Z, i>j cij is covering. In particular, v(F) is a set of measurable recurrence, hence
density intersective.

Proof. Let α ∈ F . Then Dαv(β) =
∑

n∈β
(
∑

j∈α cnj
)

. For n large enough, one has

1 ≤ ∑

j∈α cnj ≤ c
√

n
logn

, so by Theorem 4.11 Dαv is covering. The final claim follows

from Corollary 3.7.

Comparing Proposition 4.9 with Theorem 4.11, one is lead to the following.

Question. What is the precise rate of growth necessary to ensure that v(α) =
∑

n∈α dn is covering?

5 p-covering

A more general form of Theorem 3.6 will be used in this section for an application
that is modestly less straightforward than Corollary 4.6.
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Definition. Let p ∈ δF be idempotent and let v : F → G be F -linear. If there exists
k ∈ N such that for every A ∈ p, the set kv(A)− kv(A) is syndetic, then we shall say
that v is p-covering. If v : F → G is F -quadratic then we shall say v is p-covering if
Dαv is p-covering for all α ∈ F .

Theorem 5.1. Let H be a separable Hilbert space and let G be a unitary action on H.
Suppose p ∈ δF is an idempotent and let v : F → G be F-linear or F-quadratic and
p-covering. For f ∈ H write Pf = p-limα Tv(α)f , where the limit is taken in the weak
topology. Then P is the orthogonal projection onto KG.

Proof. For the linear case, note that all that is used of the premises p essential, v
covering in the proof of Theorem 3.4 is that v is p-covering. The quadratic case then
follows from the linear case exactly as in the proof of Theorem 3.6.

Lemma 5.2. There exists an (essential) idempotent ultrafilter p ∈ δf having the
property that for every A ∈ p and every n ∈ N, there exists α ∈ Fn and ε > 0 such
that for all m0 ∈ N there is some m > m0 with d(α−1A ∩ Fm) > ε2−m.

Proof. Let L = {A ⊂ F : limn→∞ 2nd(A ∩ Fn) = 1}. Then L is a filter and is
thus contained in some ultrafilter q that is plainly a member of δF . Note that for
any B ∈ q, lim supm 2md(B ∩ Fm) > 0, as otherwise Bc ∈ L ⊂ q, a contradiction.
Next pick an idempotent p of the form p = r ∗ q, where r ∈ δF . If now A ∈ p
then {α : α−1A ∈ q} ∈ r, so that for some α ∈ Fn, α−1A ∈ q. In particular,
lim supm 2md(α−1A ∩ Fm) > 0, as required.

Lemma 5.3. Let k ∈ N, k ≥ 2, and suppose dn is a sequence of positive integers
such that

∑

n |dn+1

dn
− k| < ∞. Define v : F → Z by v(α) =

∑

n∈α dn. For any ε > 0
there exists n0 such that for all m ≥ n ≥ n0,

|(k − 1)v(Fn−1) ∩ Φm| ≥ (1− ε)km−n,

where Φm = {1, 2, . . . , dm − 1}.

Proof. First we note that the convergence of
∑

(dn+1

dn
−k) is equivalent to the conver-

gence of
∑

log(dn+1/kdn), which in turn is equivalent to the convergence of dn/k
n to

some limit c > 0. Requiring this sum to be absolutely convergent is slightly stronger,
but will hold if dn/k

n converges rapidly enough to c. As k > 1 and the conclusion is
unaffected by altering the first few terms dn, we may assume without loss of generality
that dn is strictly increasing.

20



Let sm = (k − 1)
∑m−1

i=1 di. We aim to show that sm is close to dm. More specifically,
define δ = δ(m) to be the largest integer < m such that

sm ≤ dm + dm−δ(m). (10)

(We allow negative δ(m), although it is clear that δ(m) > 0 for large m.) We aim to
prove

∞
∑

m=1

k−δ(m) < ∞.

As sm − dm = (kdm−1 − dm) + (sm−1 − dm−1) we have |sm − dm| ≤
∑m

i=1 |kdi−1 − di|,
where for convenience we define d0 = 0. Then

∞
∑

m=1

|sm − dm|
km

≤
∞
∑

i=1

|kdi−1 − di|
ki

∑

m≥i

1

km−i
≤ C

∞
∑

i=2

∣

∣

di
kdi−1

− 1
∣

∣+O(1) < ∞,

where we have used the fact that dm ∼ ckm. By definition of δ(m), |sm − dm| ≥
dm−1−δ(m) and hence

∑ dm−1−δ(m)

km
< ∞. As dm ∼ ckm,

∑

m k−δ(m) < ∞.

Choose n0 sufficiently large so that
∑

m≥n0
k−δ(m) < ε/2 and fix n ≥ n0. Let Nm be

the number of elements of (k − 1)v(Fn−1) ∩ {1, 2, . . . , dm − 1}. Clearly Nm ≤ km−n.
Indeed, all elements of (k − 1)v(Fn−1) ∩ {1, 2, . . . , dm − 1} are of the form

∑m−1
i=n cidi

with ci ∈ {0, . . . , k − 1}. On the other hand we shall show that

Nm+1 ≥ kNm − (k − 1)Nm−δ(m) −Nm+1−δ(m+1). (11)

To see this, note that the sums that are counted to get Nm+1 include the sums counted
to get Nm, plus 0, . . . , k− 1 times dm, provided these are distinct and less than dm+1.
Repeats lie in k − 1 overlap intervals involving a previous sum. However, all such
sums must be of the form

∑

i≤m cidi where
∑

i<m cidi ≤ sm − dm < dm−δ(m). Thus
there are at most Nm−δ(m) repeated numbers in each overlap interval. Similarly there
are at most Nm+1−δ(m+1) sums that are at least dm+1, as all such sums can be written
as

∑m
i=n(k − 1)di −

∑m
i=n cidi with

∑m
i=1 cidi ≤ sm+1 − dm+1 < dm+1−δ(m+1). Let

xm = Nm/k
m−n. Dividing (11) by km+1 gives

xm+1 ≥ xm − (k−1
k
xm−δ(m))k

−δ(m) − (xm+1−δ(m+1))k
−δ(m+1).

As Nm ≤ km−n, we have xm ≤ 1 for all m ≥ n. Also Nn = 1, so xn = 1. Hence for
all m ≥ n,

xm ≥ 1− 2
m
∑

t=n

k−δ(t) ≥ 1− ε.

Thus |(k − 1)v(Fn−1) ∩ Φm| = Nm ≥ (1− ε)km−n for all m ≥ n ≥ n0.
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Theorem 5.4. Let p be as in Lemma 5.2 and let cij, i > j, be positive integers
such that for each j,

∑

i |
c(i+1)j

cij
− j| converges. Let u : F → Z be defined by u(α) =

∑

i,j∈α, j<i cij. Then u is p-covering.

We note that, in particular, any example for which for every j there is an ε > 0 with
cnj = jn(1 +O(1/n1+ε)) as n → ∞ satisfies the conditions of the theorem.

Proof. Let α ∈ F and put k = maxα. Then v(β) = Dαu(β) =
∑

n∈β dn, where dn =
∑

j∈α cnj. As cnj grows as j
n for each fixed j, it is clear that dn/cnk → 1 exponentially

fast in n. Hence dn satisfies the conditions of Lemma 5.3. We will show that v is
p-covering. Specifically, we will show that for any A ∈ p, (k − 1)v(A)− (k − 1)v(A)
is syndetic.

Define Φn = {1, 2, . . . , dn − 1}. Let A ∈ p. Choose by the conclusion of Lemma 5.2
α ∈ F and ε > 0 having the property that for every m0, there is m > m0 with
d(α−1A ∩ Fm) > ε2−m. Pick some j0 with 2−j0 < ε. Let γ = 1

2
k−j0. By Lemma 5.3,

there exists n0 such that for all m ≥ n ≥ n0, |(k − 1)v(Fn−1) ∩ Φm| > (1 − γ)km−n.
We may also assume without loss of generality that dn is strictly increasing for all
n ≥ n0. Choose m0 > n0 with d(α−1A ∩ Fm0) > ε2−m0 .

For the remainder of the proof, we view, e.g., Fm as a subset of
⊕∞

i=m+1 Zk. Also we
use the abbreviation Fm

m0
= F({m0 + 1, . . . , m}). Pick m > m0 with

∣

∣(k − 1)v(Fm
m0

)
∣

∣ ≥
∣

∣(k − 1)v(Fm0) ∩ Φm+1

∣

∣ > (1− γ)km−m0 = km−m0 − 1

2
km−m0−j0

and
∣

∣α−1A ∩ Fm
m0

∣

∣ > ε2m−m0 > 2m−m0−j0.

By Theorem 4.2, one has
∣

∣(k − 1)(α−1A) ∩ (k − 1)Fm
m0

∣

∣ > km−m0−j0.

Since
∣

∣(k − 1)Fm
m0

∣

∣ = km−m0 , one has
∣

∣(k − 1)Fm
m0

\ (k − 1)(α−1A)
∣

∣ < km−m0 − km−m0−j0 .

Applying v,
∣

∣v
(

(k − 1)Fm
m0

\ (k − 1)(α−1A)
)
∣

∣ < km−m0 − km−m0−j0 .

This implies
∣

∣v
(

(k − 1)Fm
m0

)

| −
∣

∣v
(

(k − 1)(α−1A) ∩ (k − 1)Fm
m0

)
∣

∣ < km−m0 − km−m0−j0.
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We may conclude that
∣

∣v
(

(k − 1)(α−1A) ∩ (k − 1)Fm
m0

)
∣

∣ > 1
2
km−m0−j0. Now, for

large m, (k − 1)
∑

i≤m di ≤ dm+2, so
∣

∣(k − 1)v(α−1A) ∩Φm+2

∣

∣ > 1
2
km−m0−j0. Since m

is arbitrarily large and |Φm+2| = dm+2 ∼ ckm+2 for some c > 0,

dΦ
(

(k − 1)v(α−1A)
)

≥ 1

2c
k−m0−j0−2.

In particular, (k − 1)v(α−1A)− (k − 1)v(α−1A) is syndetic. But

(

(k − 1)v(α−1A)− (k − 1)v(α−1A)
)

⊂
(

(k − 1)v(A)− (k − 1)v(A)
)

,

which completes the proof.

As in Corollary 3.7, Theorems 5.1 and 5.4 imply the following.

Corollary 5.5. Let (X,A, µ, T ) be invertible measure preserving and let µ(A) > 0. If
p is as in Lemma 5.2, ε > 0 and u(α) =

∑

i,j∈α, j<i cij where cnj = jn(1 +O(1/n1+ε))

for each fixed j, then p-limα µ
(

A ∩ Tv(α)A
)

≥ µ(A)2. In particular, u(F) is a set of
measurable recurrence, hence density intersective.

Question. Let (dn)
∞
n=1 be a sequence of natural numbers and assume there is a k > 0

such that dn+1 ≤ kdn for all n ∈ N. Must v(α) =
∑

n∈α dn be covering? If not, must
v be p-covering for p as in Lemma 5.2?
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